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Abstract

Case-parent trio studies considering genotype data from children affected by a disease and from
their parents are frequently used to detect single nucleotide polymorphisms (SNPs) associated
with disease. The most popular statistical tests in this study design are transmission/disequlibrium
tests (TDTSs). Several types of these tests have been developed, e.g., procedures based on alleles or
genotypes. Therefore, it is of great interest to examine which of these tests have the highest
statistical power to detect SNPs associated with disease. Comparisons of the allelic and the
genotypic TDT for individual SNPs have so far been conducted based on simulation studies, since
the test statistic of the genotypic TDT was determined numerically. Recently, it, however, has
been shown that this test statistic can be presented in closed form. In this article, we employ this
analytic solution to derive equations for calculating the statistical power and the required sample
size for different types of the genotypic TDT. The power of this test is then compared with the one
of the corresponding score test assuming the same mode of inheritance as well as the allelic TDT
based on a multiplicative mode of inheritance, which is equivalent to the score test assuming an
additive mode of inheritance. This is, thus, the first time that the power of these tests are compared
based on equations, yielding instant results and omitting the need for time-consuming simulation
studies. This comparison reveals that the tests have almost the same power, with the score test
being slightly more powerful.
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1 Introduction

Case-parent trio studies are frequently used to test SNPs for association with disease by
analyzing the genotypes of children having this disease and their parents. Advantages of
case-parent trio and other family-based designs over population-based case-control studies
are their robustness against spurious findings due to population stratification and the
possibility to test for association and linkage simultaneously (Spielman and Ewens, 1996;
Gauderman et al., 1999; Laird and Lange, 2006).

One of the most popular tests for association in case-parent trio studies is the allelic
transmission/ disequilibrium test introduced by Spielman et al. (1993), which is equivalent
to McNemar’s test comparing the numbers of alleles transmitted or not transmitted from the
heterozygous parents to their offspring affected by disease. This allelic TDT thus allows the
detection of alleles preferentially transmitted to the affected offspring, and hence, potentially
associated with the disease of the children.

Instead of testing alleles (and thus, considering chromosomes as units in the analysis),
genotypes (and therefore, individuals) can also be directly analyzed by employing a
genotypic transmission/disequilibrium test. In the genotypic TDT, the genotype of an
affected child is compared to the three other genotypes possible given the parents’
genotypes, but not shown by the affected offspring (Self et al., 1991; Schaid, 1996). This
test is equivalent to a Wald test in a conditional logistic regression model in which each
caseparent trio forms a stratum and the respective three not transmitted genotypes serve as
controls (usually referred to as pseudo-controls, as these controls are artificial).

While the allelic TDT is based on the assumption of a multiplicative mode of inheritance,
the genotypic TDT can be used to test a wide range of genetic models, considering, e.g., an
additive, dominant, or recessive mode of inheritance (see, e.g., Fallin et al., 2002).
Moreover, the genotypic TDT allows the determination of parameter estimates, relative
risks, standard errors, and confidence intervals in addition to p-values. These estimates can,
e.g., be used to combine results from different case-parent trio studies as well as in meta-
analyses of case-parent trio with population-based case-control studies (see, e.g., Ludwig et
al., 2012). By contrast, both the allelic TDT and the score test corresponding to the Wald
test in the conditional logistic regression model only provide (scores and) p-values.

A disadvantage of the genotypic TDT, in particular in genome-wide association studies,
over the allelic TDT and the score test was its high computation time, as the likelihood of
the conditional logistic regression model had to be maximized by employing an iterative
procedure to obtain the test statistic of the Wald test, and hence, the genotypic TDT statistic.
However, it has recently been shown that when testing SNPs individually an analytic
solution for the maximume-likelihood estimator in this model, and thus, for the genotypic
TDT statistic exists, no matter whether an additive, dominant, or recessive mode of
inheritance is assumed (Schwender et al., 2012). Therefore, this drawback has been
eliminated, and genome-wide applications of the genotypic TDT are as fast as analyses with
the allelic TDT or the score test (see, in particular, Table 4 in Schwender et al., 2012).
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These closed-form solutions of the genotypic TDT also allow the analytic determination of
the power and sample size of the genotypic TDT (and the score test) assuming different
modes of inheritance. This hence avoids the need for time-consuming computations of
required sample sizes or power based on simulation studies. In this article, we derive
equations for these power and sample size determinations and compare the sample sizes
required by the genotypic TDTSs to reach a certain power with the ones needed by the
corresponding score tests. This comparison also includes the allelic TDT proposed by
Spielman et al. (1993) assuming a multiplicative mode of inheritance, since this test is
equivalent to a score test assuming an additive mode of inheritance (cf. Schaid and Sommer,
1994).

For the allelic TDT under general modes of inheritance, equations for the approximations of
power and sample sizes have already been devised by Knapp (1999). An alternative
approach to the one of Knapp (1999) for power and sample size calculations for studies with
a dichotomous outcome have been proposed by Lange and Laird (2002). Their procedure
covers the wide range of general FBATSs (Family-Based Association Tests) as suggested,
e.g., by Laird et al. (2000) and Rabinowitz and Laird (2000) for different family-based
designs and different situations in which, e.g., the genotypes of one or both parents are
missing. This also includes the original TDT (i.e. the allelic TDT) proposed by Spielman et
al. (1993). This method, however, does not cover the genotypic TDT, and hence, does not
provide the possibility for analytic power calculation for the genotypic TDT. Moreover, a
related approach has been devised by Lange et al. (2002) for power and sample size
determinations for general FBATS considering quantitative traits.

This article is organized as follows: We first describe the analytic determination of the
genotypic TDT statistics in Section 2. Afterwards, we derive in Sections 3 and 4 equations
for power and sample size calculations, respectively, for the genotypic TDT. We focus in
these sections on an additive mode of inheritance. Equations for power determinations for
the dominant and recessive mode of inheritance as well as their derivation can be found in
Appendix A.1. In Section 5, we furthermore present concise equations for the test statistics
of the score test, assuming an additive mode of inheritance that can — analogously to the
genotypic TDT statistics — be used for power and sample size calculation. Score tests for a
dominant or a recessive mode of inheritance are discussed in Appendix A.2. In Section 6,
the required sample sizes of these tests are compared with each other and with the ones of
the allelic TDT determined based on the approach of Knapp (1999). Finally, we conduct a
simulation study in Section 7 to validate the equations for the statistical power
determination.

All the closed-form solutions for performing sample size and power calculation are
implemented in the R-package t ri o freely available at http://www.bioconductor.org.

solution to the genotypic TDT

To test under a specified mode of inheritance (e.g., an additive, dominant, or recessive mode
of inheritance) whether a SNP is associated with disease, the genotypic TDT assesses
whether a genotype of this SNP is preferentially transmitted from the parents to their
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affected offspring. The genotypic TDT is based on a conditional logistic regression model
consisting only of one explanatory variable X coding for the specified mode of inheritance.
In this model, the genotype of the affected child is compared with the three not transmitted
genotypes that would have also been possible given the genotypes of the parents.

As an example assume that at a specific SNP one parent shows the homozygous reference
genotype A1A, and the other the heterozygous genotype AzG (where the indices are only
used to differ between the different alleles). Since each parent transmits one of these alleles
to their offspring, it will exhibit one of the genotypes A1Az, A1G, AxAg, and AyG (cf. first
two columns of Table 1). In the conditional logistic regression model, the genotype of this
offspring is considered as case and the other three not transmitted genotypes are used as
pseudo-controls, where the dependency structure is taken into account by forming one
stratum for each case-parent trio.

Denoting the value of X for the affected offspring in case-parent trioi =1, ..., n, by Xig, and
the values for the corresponding three pseudo-controls by X, k=1, ..., 3, the maximum-
likelihood estimate for the parameter y corresponding to X is determined by the value yA
maximizing the conditional likelihood

exp(yzio)
L _ AP0
M= HZk 0exp(1Tix) @

of the conditional logistic regression model. The test statistic of the genotypic TDT is then
given by the Wald statistic

o
Var (3)°

@

The likelihood (1) has to be maximized over the n weights wi:eXp(VIio)/zzzoexp(Wik)

of the n trios. Considering the above example trio and assuming that the offspring shows one
of the heterozygous genotypes, the weight of this case-parent trio under an additive mode of
inheritance (in which case, X codes for the number of minor alleles) is given by

exp(Vaad - 1) _ exP(Yada)
2exp(Yadd - 0)+2exp(Yadd - 1) 2+2exp('yadd)

(7ddd)

However, there only exist ten possible genotype combinations for case-parent trios, and
thus, (at most) ten different weights (see Table 1). Since three of these genotype
combinations have weights not depending on vy,qq, Only seven of them — namely the ones
comprising at least one heterozygous parent — contribute to the maximization of (1). In this
situation, the logarithm of the conditional likelihood (1), therefore, reduces to a sum over

seven numbers ngplvm) of trios showing the respective genotype combination weighted by w
(vadd), Where ¢, pg, p2 € {0, 1, 2} with p; < py are the numbers of minor alleles of the
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children and their parents in the respective trios. Using these numbers and the weights from
Table 1, the reduced log-likelihood is thus given by

" 0,1 1,2 1
C*(Yadd)= (”E) "y )) log (W)

01D, (1.2 exp(Yadd) )
+ (nO 4 pf2Y <7
<n1 "2 ) o8 2+2exp(Yada)

2
exp(cy,
+3 log (( P(cYadd) )2> (L)
c=0

1+exp(Yadd)
= — (log(2)
~+log(1

(©)
+exp<fyadd>>) (ng™"

_|_n§0,1)+n(11,2)+ng1,2)> n (n§0,1)+ng1,2)+ng1,1)+2ng2,2)> add

— 2log(1
2

+exp (’yadd))zngl’l) .
c=0

Noticing that

01, (0

2
npet=ny 40 ’1)+n(11’2)—|—ng1’2)+22n£1’1) )

c=0

is the total number of heterozygous parents and

(0,1) (1,2)

) (1,1)
Nnot=MN7 ~+MNg

nf (L1)

+2n2 ®)

is the total number of more frequent alleles not transmitted from the heterozygous parents to
their affected offspring — or analogously, the total number of minor alleles transmitted by the
heterozygous parents — the first derivative of (3) is given by

orr (/Yadd) —n €xXp (’Vadd)

— Nhet- (6
0Yadd P fexp(Yada) ©)

Setting (6) to zero and solving it for yaqq, the maximum-likelihood estimator for yaqq is
given by

A . Mot Mot
Yaaa=logit { — | =log { ———— . (7)

Thet Tlhet — Tlnot

The variance of y;dd can then be estimated by the value of the negative inverse of the second
derivative
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P(Yaad) _ exp(Yada) N
9~ - 1 ) 27het  (8)
Yadd (1+exp(Yaad))

at Yadd = Yadd 1-€. by

. TMhet
V: A, = N
ar (’Yddd) (nhet — nnot)nnot 3

For a more detailed discussion of the analytic solution for the genotypic TDT, see
Schwender et al. (2012).

Analogously, closed-form solutions for the genotypic TDT statistic (2) can be derived for
the dominant and the recessive mode of inheritance (for these derivations, see Schwender et
al., 2012), where in the dominant case the coding variable X is set to 0 if the subject shows
the homozygous reference genotype, and to 1 otherwise. For a recessive mode of
inheritance, X is set to 1 if both chromosomes show the minor allele, and to 0 otherwise. In
both cases, the maximum likelihood estimate for y takes the form

j=log (Va+h? — h),

where, e.g., in a dominant model a and h are given by

D 4 (B0 4 (LD

Adom = 9
3 (n(()o,l)_’_n(()l,l)) (C)]

and

(1/3 (n(()o’n — n(ll’l) — ngl’l)) — 715071)—1—7181’1))
dom = 0,1 1,1 , (10)
2 ()

respectively.

3 Power calculation for the genotypic TDT

For the additive mode of inheritance, the power of the genotypic TDT can be determined by
an approach analogous to the one used by Knapp (1999) for calculating the power of the
allelic TDT. For this, we consider the random vector Zpet = (Zy, ..., Z7)T consisting of
random variables Zj, j = 1, ..., 7, for the seven numbers of trios corresponding to the
genotype combinations that influence the maximization of the log-likelihood (3). This
random vector is a subvector of Z = (Z1, ..., Zg)", where Z additionally contains the random
variable Zg specifying the total number of trios belonging to the other three genotype
combinations without heterozygous parents. This random vector Z is thus multinomially
distributed with n observations (here, trios) and probability vector g = (qy, ..., gg)".
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We further define u = (uy, ..., u7)T and v = (v, ..., v7)T as the vectors containing the
numbers y;j and v; of more frequent alleles transmitted and not transmitted, respectively,
from the heterozygous parents to their offspring in trios with the j-th genotype combination.
Using these specifications, it can be derived from (4) and (5) that

Nhet :uTZhet +VTZhet andNnOt :VTZhet (11)

are the random variables generating npet and npqt, respectively. Therefore, the square root of
the test statistic of the genotypic TDT can be rewritten as

V) v

G=log (= ) | =
Og(U UtV

with U = uTZpe/n and V = vTZei/n. Note that under the null hypothesis Hg : v = 0 G is
standard normally distributed so that G2 is y2-distributed with one degree of freedom.

Following the same arguments as Knapp (1999) based on the theoretic results presented in
Rao (1973) and setting @ = uT qpet and & = VT Qe With qpet = (a1, ..., 07)7, the test statistic
G follows asymptotically a normal distribution with mean

Y

fada= V/1E1(gada)= v/nlog (%) —

u+v

and variance

ag\? dg dg 99\
2 T T T

S=u Xu| = 2u’ Yv—— Svi=] .
0oqda=u u(&ﬂ) +2u V8ﬂ8®+v V(@q})

Here, Eq (Qaqq) is the expected value of the genotypic TDT statistic forn=1,Xisa7 x 7
matrix with diagonal elements g; (1 - gj) and off-diagonal elements —g;qy, and the two
derivatives are given by

o

_(Bog(5) ~1) V@+o) £~ Jloa (3) /3 9y (3los(5) +1) /(a+0) £ — d1os(5)

U+0 o0 U+0

The statistical power B,qq Of the genotypic TDT assuming an additive mode of inheritance is
thus asymptotically given by

Zn/2 — Madd 21—a/2 — Hadd
e (a/Qg—) 11— (L) 12
add Oadd

where @ is the cumulative distribution function of the standard normal distribution and z, is
the a-quantile of the standard normal distribution.
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In a case-parent trio study, the values ¢, j = 1, ..., 7, can be estimated, and thus, the power
of the genotypic TDT can be determined for each SNP from the data. It is, however, often
also of interest to compute the power for a given number n of trios, a type | error rate a, and
a relative risk RR. Since under the assumption of Hardy-Weinberg equilibrium in the parents
there exists a direct relationship between the relative risk and the probabilities g; for the
different types of trios, ¢, j = 1, ..., 7, can be computed from the relative risk RR (see
Schaid, 1999, for general equations for these probabilities).

For such a determination in an additive model, we setrp=1,r{ =RR, andr, =2RR -1,
where r is the risk to get the disease with ¢ minor alleles relative to the disease risk with no
minor allele (Schaid, 1999). Further denoting the minor allele frequency by m, the
probabilities for the different types of trios can be computed by

2mAP1P2(1 — )P P2y,
~ max{u;,v;} - (2m(RR — 1)+1)’

95

where p; and pp are the numbers of minor alleles of the parents (as defined in Section 2).

Equations for the statistical power of the genotypic TDT assuming either a dominant or
recessive mode of inheritance can be devised in a similar way as for the additive model. For
the derivation of these equations, see Appendix A.1.

4 Sample size calculation for the genotypic TDT

An equation for the required sample size for a given type | error rate a and power {3 can be
derived from equation (12) for the statistical power in the standard way. If a is small and the
relative risk is not too close to 1, either ® (% orl —@ (%)
becomes virtually zero so that this term of (12) dge(s only very slightly influence the
statistical power. Due to the symmetry of these terms, the sample size n required to gain a
desired power 3 and to control the type | error rate at a can in both situations be determined

by

0zg+21_o/2 ) 2
n~|——————] . (13
( E1(g) @

5 Power and sample size determination for the score tests

The test statistic of a score test for testing the null hypothesis Hy : v = 0 against the
alternative Hq : v # 0 is given by

2, _D*0)
Sadd™ I(O)

with
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((v)
9y

oL(y)
Oy

D(v)=

andl ()= —

Assuming an additive mode of inheritance, these two derivatives are given by (7) and (8) so
that the test statistic assuming an additive genetic model can be determined by

2 _ (nnot - 0~5nhct)2 _ (2nnot - nhct)2

Sadd= (14)
& 0~25nhet Tlhet

As shown by Schaid and Sommer (1994), this test statistic is equivalent to the test statistic of
the allelic TDT (Spielman et al., 1993). Using our notation, this can be shown by noting that
Nhet = Na + Ng and Npoe = Na, Where na and ng are the numbers of the minor and the more
frequent allele, respectively, transmitted from heterozygous parents to their offspring (cf.
(11)). Therefore, (14) becomes

2 2
52 — (QnA — (nA +na)) — (nA — ’I’La)
add nA+na nA+na

which is the test statistic of McNemar’s test, i.e. the allelic TDT. Power and required sample
size of the score test assuming an additive mode of inheritance can hence be determined by
exactly the same approach proposed for the allelic TDT assuming a multiplicative model by
Knapp (1999).

For a discussion of the score tests assuming either a dominant or recessive mode of
inheritance and the power calculation for these tests, see Appendix A.2.

6 Comparison of genotypic TDT and score test

Based on the approaches presented in the previous sections the sample sizes required by the
genotypic TDTSs to gain a certain power can be compared with the required sample sizes of
the corresponding score tests.

Using equation (13), we thus computed the required sample sizes for these tests assuming an
additive, dominant, or recessive mode of inheritance, considering different values of the
relative risk (RR=1.05, 1.20, 1.30, 1.40, 1.50) lying in the range of the relative risks
observed in association studies as well as different minor allele frequencies (MAF = 0.01,
0.10, 0.20, 0.50) also considered by Knapp (1999) and Schaid (1999). As type | error rate
we chose a =5 x 1078, which is often used to call (genome-wide) significance in genome-
wide association studies. Moreover, we considered a power of 3 = 0.80 often desired to be
gained in a study.

The results of this comparison are summarized in Table 2. This table reveals that the sample
size required by the score test is always slightly smaller than the one needed by the
corresponding genotypic TDT. Compared to the total sample sizes, these differences are,
however, virtually negligible. This table also supports the well-known fact that huge
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numbers of subjects are required to detect with a high power genome-wide significant SNPs
with a realistic relative risk.

We also compared the sample sizes required by the genotypic TDTs and the score tests with
the ones determined by the approach proposed by Knapp (1999) for approximating the
power of the allelic TDT for general modes of inheritance. The latter sample sizes were
previously published in Table 3 of Knapp (1999). For this comparison, we computed the
sample sizes required by the genotypic TDT and the score test using the same settings
considered in Knapp (1999). These sample sizes are summarized in Table 3.

In particular in the recessive model, the required sample sizes for both the genotypic TDT
and the score test are much smaller than ones computed for the allelic TDT based on the
approach of Knapp (1999).

7 Simulation study

To validate the accuracy of the proposed sample size calculation, we performed a simulation
study using the minor allele frequencies and the type | error rate considered in the previous
section. Since the expected value of the estimate for the parameter v in the conditional
logistic regression model on which the genotypic TDT is based is the log relative risk
(Schaid, 1996), we considered 1.05, 1.20, 1.30, 1.40, and 1.50 as values for exp(y). For each
combination of these minor allele frequencies and exp(y), we simulated 10° case-parent trio
data sets of the respective sample size determined in the previous section. The power was
then estimated by the proportion of data sets for which the null hypothesis was rejected at
the . = 5 x 1078 level. Because of the huge sample sizes for the recessive model, we only
considered genotypic TDTs and score tests assuming an additive or dominant mode of
inheritance.

The results of this simulation study are summarized in Table 4, which shows that all
estimated powers are very close to p = 0.80, the power used in Section 6. Therefore, the
sample size and power equations derived in Sections 3-5 as well as the Appendix show up
to be very accurate even for relative risks close to 1 and small minor allele frequencies.

8 Discussion

We have presented equations for determining the statistical powers and the required sample
sizes for the genotypic TDT and the corresponding score test, assuming an additive,
dominant, or recessive mode of inheritance. These approaches allow the determination of
the power of the genotypic TDT for several relative risks, minor allele frequencies, etc., in
less than a split second, and therefore, avoid very time-consuming simulation-based power
and sample size estimations.

A comparison of the genotypic TDTs with the corresponding score tests showed that both
require about the same sample size to gain the same power with a very slight advance for the
score test. This comparison also implicitly contained the original allelic TDT, as this test
(assuming a multiplicative mode of inheritance) is equivalent to the score test for an additive
model.
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This comparison also reconfirmed the well-known fact that a huge number of samples is
required to gain an acceptable power to detect genome-wide significant SNPs with typically
small relative risks, where the required sample size rapidly increases with decreasing minor
allele frequency. One of the reasons for this is that the smaller the minor allele frequency,
the less trios contribute to the maximization of the conditional likelihood considered when
performing the genotypic TDT, or more generally, when computing the Wald statistic.

The power and sample size determinations presented in this paper are implemented in the R
package t ri o version 3. 1. 2 or later freely available at http://www.bioconductor.org.
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A.1l. Determination of the asymptotic normal distributions of genotypic TDT

statistics

Equations for the statistical power of the genotypic TDT assuming either a dominant or
recessive mode of inheritance can be derived in a similar way as for the additive model
described in Section 3. In these cases, however, the number of components forming the
genotypic TDT statistic cannot be reduced to two terms U and V as in the additive case, but
four components have to be considered (e.g., in the dominant model presented in the Section

2, just "V and ") can be combined). Denoting these components by by, ..., by, the test
statistic G of the genotypic TDT assuming either a dominant or recessive mode of
inheritance also follows asymptotically a normal distribution with mean

p=+/nE(g)
and variance

oSS 0y 2909
i=1k=1 " b, aby,’ )

where oj are the pairwise variances of these terms computed as described in Section 3 (see
also Knapp, 1999).

9y
In the following, the derivatives 5,1 =1, ..., 4, are determined for the dominant and the

recessive mode of inheritance. To differ between these two cases, we use in the following
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the notation d; (instead of b;) for the numbers of trios when considering a dominant mode of
inheritance and the notation r; in the recessive case (for the specification of these numbers,
see Table 5).

A.1.1. Genotypic TDT assuming a dominant model
For the dominant mode of inheritance, the numerator and denominator of the genotypic TDT

statistic g3 =43,/ Var(§qoy, ) @re determined from

’?domzlog < \V adom"’hiom - hdom) (16)

with agom and hgom as specified by (9) and (10), respectively, as well as

(0,1), (0,1 N
Vigm=Var~L (4 >~(n° 1) expCion) | 538 Dexp ()
o o (exP(Faom)+1)° 3(xp(Faom)11/3)%

The square root of the genotypic TDT statistic can, thus, be written as g4, =% 4o v/ Viom:
and the first derivatives of gq4om With respect to d;, i = 1, ..., 4, can, hence, be determined by

99dom _ M dom OViom Ya
= \/Viem+ . 'dom
8dl (9dz dom 8d1 2 v/Viom

To devise the variance of the asymptotic normal distribution, we, therefore, need to compute

8fs/dom 8‘/dOIIl ) A .
oa. aswell as —57—, where in the dominant model the components dj, ..., d4 are given
1 1
by

dlzngo71),d2:n§071),d3:nél’1),d4=n§1’1)+n§1’1)

(see Table 5).

Differentiating (16) with respectto di,i =1, ..., 4, leads to

8'.A)/dom — 1 a‘gczm+2hd0mht(ilc)>m _ h((ll) (17)
~ om |’
Bdi exp(’-)/dom) 2 adom+h<2iom
where
(i) _Ohq () _Oaq
dlom_ F) do anda’dlom - P) dolm N
) )

More exactly,
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@ _3da—2d3tdy ) _ 1 @) _2di+3datdy gy _ 1
dom 6(d1—|—d3)2 » ""dom 2(d1+d3)’ dom 6(d1—|—d3)2 s ""dom 6(d1—|—d3)’

and

O _ G _ dotdy (2 @ _ 1

a =a - > Ldom ™ %dom ™ '
dom dom 3(d1 —|—d3)2 dom lom 3(d1+d3)

Setting c; = ¢y =1 and cz = ¢4 = 1/3 as well as

(@) (@)
t(l) _ 9 a —|—h2 _adlom_|_2hdoIn hdzom
dom™ dd: V dom dom ™ 5 ’
¢ 2 \/ adom+h(lom

the first derivative of Vo With respect to d;, i = 1, ..., 4, can then be derived as

aV—dorn G €XP (’/ydom) 7 7 = dek (Ck — eXp (’?dom))
_ (0,10 Y

dom ~— "“dom 3

adi (exp(}ydom)—’—ci) k=1 (exp(’ﬁydom)—’—ck)

A.1.2. Genotypic TDT assuming a recessive model

Under the assumption of a recessive mode of inheritance, the maxixmum likelihood
estimator of vy iS given by

Hrec=log ( \V arec"‘h%ec - hrec) > (18)

where
3(ro+r4) 3ry — ro+r3 — 3ry
=22 Y andh.=
fhrec r1+r3 iHrec 2(r1473)
contain the four components
(1,2) (1,2) Ly, (11 (L,1)

ri=Nny L, re=ng T, r3=ny 4Ny, ry=ny

(see also Table 5). Further, the inverse Vg 0f the variance of (18) can be determined by

exP(Vrec)

exP (Yrec)
(exXD (Hrec)+3)°

Viee=Var ! (§1e0)=(r1472) — +3(r3+ry)
(exXP(Free)+1)°

(19)

Analogously to the dominant case, the variance of the asymptotic normal distribution can be
derived by computing the first derivatives of vy, and V with respecttorj, i =1, ..., 4.
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Since y;ec has the same form as yéom, its first derivatives are identical to (17), except that
agom and hyom are replaced by a,ec and hyec, respectively. These first derivatives are thus
given by

8’?1«95 _ 1 <a£2€+2hrec hg?c . h(l) >

i exp(Yrec) \ 2 VageothZ,

with

(1)_T2t2r3+3ra (o) 1 (3)_ Z2rtrat3rs g 3

rec 2(7‘1+T3)2 s rec™= 2(7’1—1—7‘3)’ rec 2(T1—|—7‘3)2 ) rec:—ma

and

GOeg®o  3r2tra) oy w3

rec” ‘rec 2 rec™ rec .
(7’1 +T3) r1+73

The same applies to the first derivatives of (19), which take the same form as the first
derivatives of Vo in the dominant model. Setting ¢, = ¢, = 1, c3 = ¢4 = 3, and again

(4)

N, ol +2h, 0 hY)
t(l):— h2 — Trec rec’/trec
o VT et

the first derivative of (19) with respecttor;, i =1, ..., 4, is, thus, given by

8Vvdom cieXp(ﬁ/rcc) 7 7 - CkTk (Ck — €xXp (’/yroc))
_ S+ [t - 1) Y

rec rec

87’1‘ (exp (’A)/rec)+ci) k=1 (exp(ﬁ/rec)—’—ck)?)

A.2. Determination of the asymptotic normal distributions of score test

statistics

The score test statistic is more complex when considering a dominant or a recessive mode of
inheritance than when assuming an additive mode of inheritance. In the dominant case, the
score test statistic is given by

(2 (ngo,n _ n(()(),l)) _ 3né11)+n§11)+ng11))2

472 435 gnfY

2 _
Sdom™=

For an recessive model, this test statistic can be determined by

Biom J. Author manuscript; available in PMC 2015 November 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Neumann et al. Page 15

(2 (nél,Q) _ ngl,Q)) _ n(ol,l) . n§1,1)+3ngl,1))2

452l 485 gnY

2 _
Srec_

(for an alternative representation of these test statistics, see Schaid and Sommer, 1994).

Since these test statistics are concise, they can directly be differentiate with respect to the
respective four components also considered in Appendix A.1 to derive the asymptotic
normal distribution in the genotypic TDT. Setting

edom=(4d1+4d>+3d3 +3d4)3/2anderecz(4r1 +4re+3r3 +3r4)3/2

the first derivatives of syom With respect to dy, ..., ds are given by

ISdom _ 4(d1+3d2+2d4) ISdom _4(3d1 +d2+3d3+d4)
ady €dom ) ddy €dom )

Osdom _ _ 2(6d1410d2+3d3+7dy)  Osdom _ 14di+da+15d3+3dy
ads 3edom > 0dg T 2edom ’

and the first derivatives of s With respecttory, ..., r4 by

Ospec . 4A(ri+3ra+r3+3ry) 9Srec :4 3ri+r2+2r3)
b)

ory Erec ’ Ora €rec )
Ospec _ __ 2ri+14ro+3r3+15ry  Ospee _ 2(10r1+672+7r3+3ry)
ors 2€rec ’ ory 3erec :

These derivatives can then be inserted into equation (15) to compute the variance of the
asymptotic normal distribution of the square root Sof the score test statistic.
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Table 1

Number of minor alleles shown by the affected offspring, their parents, and the corresponding pseudo-controls
for the ten possible genotype combinations case-parent trios can show as well as the weights of the trios in the
maximimization of the conditional likelihood assuming an additive mode of inheritance. The number of trios

showing a specific genotype combination is denoted by ngl’lvp?) with ¢, p1, p2 € {0, 1, 2} and p; < py. Thisis a

modified version of Table 1 from Schwender et al. (2012).

Number of Number of Minor Alleles Weightsin the
Trios Parents Offspring Pseudo-Controls Likelihood
0,1 0 0,11
nOD ' Y 1
0 _—
2+2exp(Yadd)
0,1 1 0,0,1
n§071) exp(Yadd)
2+2exp(Yadd)
1,2 1 1,22
) ' Y 1
1 _—
2+2exp(Yadd)
1,2 2 1,1,2
né1’2) eXp(’)/add)
2+2exp(Yadd)
1,1 1,1,2
IR ° b 1
0 2
(1+exp(7add))
1,1 1 0,1,2
n{t) exp(Yada)
(14exp(Yada))?
1,1 2 0,11
nél’l) eXp(2’Yadd)
(1+exp(7a‘dd))2
0,2 1 1,11
n02) 1
1 —
4
2,2 2 2,2,2
n§272) l
0,0 0 0,0,0
0,0 ’ Y 1
n{0 1
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