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Abstract

Case-parent trio studies considering genotype data from children affected by a disease and from 

their parents are frequently used to detect single nucleotide polymorphisms (SNPs) associated 

with disease. The most popular statistical tests in this study design are transmission/disequlibrium 

tests (TDTs). Several types of these tests have been developed, e.g., procedures based on alleles or 

genotypes. Therefore, it is of great interest to examine which of these tests have the highest 

statistical power to detect SNPs associated with disease. Comparisons of the allelic and the 

genotypic TDT for individual SNPs have so far been conducted based on simulation studies, since 

the test statistic of the genotypic TDT was determined numerically. Recently, it, however, has 

been shown that this test statistic can be presented in closed form. In this article, we employ this 

analytic solution to derive equations for calculating the statistical power and the required sample 

size for different types of the genotypic TDT. The power of this test is then compared with the one 

of the corresponding score test assuming the same mode of inheritance as well as the allelic TDT 

based on a multiplicative mode of inheritance, which is equivalent to the score test assuming an 

additive mode of inheritance. This is, thus, the first time that the power of these tests are compared 

based on equations, yielding instant results and omitting the need for time-consuming simulation 

studies. This comparison reveals that the tests have almost the same power, with the score test 

being slightly more powerful.
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1 Introduction

Case-parent trio studies are frequently used to test SNPs for association with disease by 

analyzing the genotypes of children having this disease and their parents. Advantages of 

case-parent trio and other family-based designs over population-based case-control studies 

are their robustness against spurious findings due to population stratification and the 

possibility to test for association and linkage simultaneously (Spielman and Ewens, 1996; 

Gauderman et al., 1999; Laird and Lange, 2006).

One of the most popular tests for association in case-parent trio studies is the allelic 

transmission/ disequilibrium test introduced by Spielman et al. (1993), which is equivalent 

to McNemar’s test comparing the numbers of alleles transmitted or not transmitted from the 

heterozygous parents to their offspring affected by disease. This allelic TDT thus allows the 

detection of alleles preferentially transmitted to the affected offspring, and hence, potentially 

associated with the disease of the children.

Instead of testing alleles (and thus, considering chromosomes as units in the analysis), 

genotypes (and therefore, individuals) can also be directly analyzed by employing a 

genotypic transmission/disequilibrium test. In the genotypic TDT, the genotype of an 

affected child is compared to the three other genotypes possible given the parents’ 

genotypes, but not shown by the affected offspring (Self et al., 1991; Schaid, 1996). This 

test is equivalent to a Wald test in a conditional logistic regression model in which each 

caseparent trio forms a stratum and the respective three not transmitted genotypes serve as 

controls (usually referred to as pseudo-controls, as these controls are artificial).

While the allelic TDT is based on the assumption of a multiplicative mode of inheritance, 

the genotypic TDT can be used to test a wide range of genetic models, considering, e.g., an 

additive, dominant, or recessive mode of inheritance (see, e.g., Fallin et al., 2002). 

Moreover, the genotypic TDT allows the determination of parameter estimates, relative 

risks, standard errors, and confidence intervals in addition to p-values. These estimates can, 

e.g., be used to combine results from different case-parent trio studies as well as in meta-

analyses of case-parent trio with population-based case-control studies (see, e.g., Ludwig et 

al., 2012). By contrast, both the allelic TDT and the score test corresponding to the Wald 

test in the conditional logistic regression model only provide (scores and) p-values.

A disadvantage of the genotypic TDT, in particular in genome-wide association studies, 

over the allelic TDT and the score test was its high computation time, as the likelihood of 

the conditional logistic regression model had to be maximized by employing an iterative 

procedure to obtain the test statistic of the Wald test, and hence, the genotypic TDT statistic. 

However, it has recently been shown that when testing SNPs individually an analytic 

solution for the maximum-likelihood estimator in this model, and thus, for the genotypic 

TDT statistic exists, no matter whether an additive, dominant, or recessive mode of 

inheritance is assumed (Schwender et al., 2012). Therefore, this drawback has been 

eliminated, and genome-wide applications of the genotypic TDT are as fast as analyses with 

the allelic TDT or the score test (see, in particular, Table 4 in Schwender et al., 2012).
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These closed-form solutions of the genotypic TDT also allow the analytic determination of 

the power and sample size of the genotypic TDT (and the score test) assuming different 

modes of inheritance. This hence avoids the need for time-consuming computations of 

required sample sizes or power based on simulation studies. In this article, we derive 

equations for these power and sample size determinations and compare the sample sizes 

required by the genotypic TDTs to reach a certain power with the ones needed by the 

corresponding score tests. This comparison also includes the allelic TDT proposed by 

Spielman et al. (1993) assuming a multiplicative mode of inheritance, since this test is 

equivalent to a score test assuming an additive mode of inheritance (cf. Schaid and Sommer, 

1994).

For the allelic TDT under general modes of inheritance, equations for the approximations of 

power and sample sizes have already been devised by Knapp (1999). An alternative 

approach to the one of Knapp (1999) for power and sample size calculations for studies with 

a dichotomous outcome have been proposed by Lange and Laird (2002). Their procedure 

covers the wide range of general FBATs (Family-Based Association Tests) as suggested, 

e.g., by Laird et al. (2000) and Rabinowitz and Laird (2000) for different family-based 

designs and different situations in which, e.g., the genotypes of one or both parents are 

missing. This also includes the original TDT (i.e. the allelic TDT) proposed by Spielman et 

al. (1993). This method, however, does not cover the genotypic TDT, and hence, does not 

provide the possibility for analytic power calculation for the genotypic TDT. Moreover, a 

related approach has been devised by Lange et al. (2002) for power and sample size 

determinations for general FBATs considering quantitative traits.

This article is organized as follows: We first describe the analytic determination of the 

genotypic TDT statistics in Section 2. Afterwards, we derive in Sections 3 and 4 equations 

for power and sample size calculations, respectively, for the genotypic TDT. We focus in 

these sections on an additive mode of inheritance. Equations for power determinations for 

the dominant and recessive mode of inheritance as well as their derivation can be found in 

Appendix A.1. In Section 5, we furthermore present concise equations for the test statistics 

of the score test, assuming an additive mode of inheritance that can – analogously to the 

genotypic TDT statistics – be used for power and sample size calculation. Score tests for a 

dominant or a recessive mode of inheritance are discussed in Appendix A.2. In Section 6, 

the required sample sizes of these tests are compared with each other and with the ones of 

the allelic TDT determined based on the approach of Knapp (1999). Finally, we conduct a 

simulation study in Section 7 to validate the equations for the statistical power 

determination.

All the closed-form solutions for performing sample size and power calculation are 

implemented in the R-package trio freely available at http://www.bioconductor.org.

2 Analytic solution to the genotypic TDT

To test under a specified mode of inheritance (e.g., an additive, dominant, or recessive mode 

of inheritance) whether a SNP is associated with disease, the genotypic TDT assesses 

whether a genotype of this SNP is preferentially transmitted from the parents to their 
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affected offspring. The genotypic TDT is based on a conditional logistic regression model 

consisting only of one explanatory variable X coding for the specified mode of inheritance. 

In this model, the genotype of the affected child is compared with the three not transmitted 

genotypes that would have also been possible given the genotypes of the parents.

As an example assume that at a specific SNP one parent shows the homozygous reference 

genotype A1A2, and the other the heterozygous genotype A3G (where the indices are only 

used to differ between the different alleles). Since each parent transmits one of these alleles 

to their offspring, it will exhibit one of the genotypes A1A3, A1G, A2A3, and A2G (cf. first 

two columns of Table 1). In the conditional logistic regression model, the genotype of this 

offspring is considered as case and the other three not transmitted genotypes are used as 

pseudo-controls, where the dependency structure is taken into account by forming one 

stratum for each case-parent trio.

Denoting the value of X for the affected offspring in case-parent trio i = 1, …, n, by xi0, and 

the values for the corresponding three pseudo-controls by xik, k = 1, …, 3, the maximum-

likelihood estimate for the parameter γ corresponding to X is determined by the value γ̂ 

maximizing the conditional likelihood

(1)

of the conditional logistic regression model. The test statistic of the genotypic TDT is then 

given by the Wald statistic

(2)

The likelihood (1) has to be maximized over the n weights 

of the n trios. Considering the above example trio and assuming that the offspring shows one 

of the heterozygous genotypes, the weight of this case-parent trio under an additive mode of 

inheritance (in which case, X codes for the number of minor alleles) is given by

However, there only exist ten possible genotype combinations for case-parent trios, and 

thus, (at most) ten different weights (see Table 1). Since three of these genotype 

combinations have weights not depending on γadd, only seven of them – namely the ones 

comprising at least one heterozygous parent – contribute to the maximization of (1). In this 

situation, the logarithm of the conditional likelihood (1), therefore, reduces to a sum over 

seven numbers  of trios showing the respective genotype combination weighted by w 

(γadd), where c, p1, p2 ∈ {0, 1, 2} with p1 ≤ p2 are the numbers of minor alleles of the 
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children and their parents in the respective trios. Using these numbers and the weights from 

Table 1, the reduced log-likelihood is thus given by

(3)

Noticing that

(4)

is the total number of heterozygous parents and

(5)

is the total number of more frequent alleles not transmitted from the heterozygous parents to 

their affected offspring – or analogously, the total number of minor alleles transmitted by the 

heterozygous parents – the first derivative of (3) is given by

(6)

Setting (6) to zero and solving it for γadd, the maximum-likelihood estimator for γadd is 

given by

(7)

The variance of γ̂
add can then be estimated by the value of the negative inverse of the second 

derivative
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(8)

at γadd = γ̂
add, i.e. by

For a more detailed discussion of the analytic solution for the genotypic TDT, see 

Schwender et al. (2012).

Analogously, closed-form solutions for the genotypic TDT statistic (2) can be derived for 

the dominant and the recessive mode of inheritance (for these derivations, see Schwender et 

al., 2012), where in the dominant case the coding variable X is set to 0 if the subject shows 

the homozygous reference genotype, and to 1 otherwise. For a recessive mode of 

inheritance, X is set to 1 if both chromosomes show the minor allele, and to 0 otherwise. In 

both cases, the maximum likelihood estimate for γ takes the form

where, e.g., in a dominant model a and h are given by

(9)

and

(10)

respectively.

3 Power calculation for the genotypic TDT

For the additive mode of inheritance, the power of the genotypic TDT can be determined by 

an approach analogous to the one used by Knapp (1999) for calculating the power of the 

allelic TDT. For this, we consider the random vector Zhet = (Z1, …, Z7)T consisting of 

random variables Zj, j = 1, …, 7, for the seven numbers of trios corresponding to the 

genotype combinations that influence the maximization of the log-likelihood (3). This 

random vector is a subvector of Z = (Z1, …, Z8)T, where Z additionally contains the random 

variable Z8 specifying the total number of trios belonging to the other three genotype 

combinations without heterozygous parents. This random vector Z is thus multinomially 

distributed with n observations (here, trios) and probability vector q = (q1, …, q8)T.
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We further define u = (u1, …, u7)T and v = (v1, …, v7)T as the vectors containing the 

numbers uj and vj of more frequent alleles transmitted and not transmitted, respectively, 

from the heterozygous parents to their offspring in trios with the j-th genotype combination. 

Using these specifications, it can be derived from (4) and (5) that

(11)

are the random variables generating nhet and nnot, respectively. Therefore, the square root of 

the test statistic of the genotypic TDT can be rewritten as

with U = uTZhet/n and V = vTZhet/n. Note that under the null hypothesis H0 : γ = 0 G is 

standard normally distributed so that G2 is χ2-distributed with one degree of freedom.

Following the same arguments as Knapp (1999) based on the theoretic results presented in 

Rao (1973) and setting ũ = uT qhet and ṽ = vT qhet with qhet = (q1, …, q7)T, the test statistic 

G follows asymptotically a normal distribution with mean

and variance

Here, E1 (gadd) is the expected value of the genotypic TDT statistic for n = 1, Σ is a 7 × 7 

matrix with diagonal elements qj (1 − qj) and off-diagonal elements −qjqℓ, and the two 

derivatives are given by

The statistical power βadd of the genotypic TDT assuming an additive mode of inheritance is 

thus asymptotically given by

(12)

where Φ is the cumulative distribution function of the standard normal distribution and zα is 

the α-quantile of the standard normal distribution.
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In a case-parent trio study, the values qj, j = 1, …, 7, can be estimated, and thus, the power 

of the genotypic TDT can be determined for each SNP from the data. It is, however, often 

also of interest to compute the power for a given number n of trios, a type I error rate α, and 

a relative risk RR. Since under the assumption of Hardy-Weinberg equilibrium in the parents 

there exists a direct relationship between the relative risk and the probabilities qj for the 

different types of trios, qj, j = 1, …, 7, can be computed from the relative risk RR (see 

Schaid, 1999, for general equations for these probabilities).

For such a determination in an additive model, we set r0 = 1, r1 = RR, and r2 = 2RR − 1, 

where rc is the risk to get the disease with c minor alleles relative to the disease risk with no 

minor allele (Schaid, 1999). Further denoting the minor allele frequency by m, the 

probabilities for the different types of trios can be computed by

where p1 and p2 are the numbers of minor alleles of the parents (as defined in Section 2).

Equations for the statistical power of the genotypic TDT assuming either a dominant or 

recessive mode of inheritance can be devised in a similar way as for the additive model. For 

the derivation of these equations, see Appendix A.1.

4 Sample size calculation for the genotypic TDT

An equation for the required sample size for a given type I error rate α and power β can be 

derived from equation (12) for the statistical power in the standard way. If α is small and the 

relative risk is not too close to 1, either  or 

becomes virtually zero so that this term of (12) does only very slightly influence the 

statistical power. Due to the symmetry of these terms, the sample size n required to gain a 

desired power β and to control the type I error rate at α can in both situations be determined 

by

(13)

5 Power and sample size determination for the score tests

The test statistic of a score test for testing the null hypothesis H0 : γ = 0 against the 

alternative H1 : γ ≠ 0 is given by

with
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Assuming an additive mode of inheritance, these two derivatives are given by (7) and (8) so 

that the test statistic assuming an additive genetic model can be determined by

(14)

As shown by Schaid and Sommer (1994), this test statistic is equivalent to the test statistic of 

the allelic TDT (Spielman et al., 1993). Using our notation, this can be shown by noting that 

nhet = nA + na and nnot = nA, where nA and na are the numbers of the minor and the more 

frequent allele, respectively, transmitted from heterozygous parents to their offspring (cf. 

(11)). Therefore, (14) becomes

which is the test statistic of McNemar’s test, i.e. the allelic TDT. Power and required sample 

size of the score test assuming an additive mode of inheritance can hence be determined by 

exactly the same approach proposed for the allelic TDT assuming a multiplicative model by 

Knapp (1999).

For a discussion of the score tests assuming either a dominant or recessive mode of 

inheritance and the power calculation for these tests, see Appendix A.2.

6 Comparison of genotypic TDT and score test

Based on the approaches presented in the previous sections the sample sizes required by the 

genotypic TDTs to gain a certain power can be compared with the required sample sizes of 

the corresponding score tests.

Using equation (13), we thus computed the required sample sizes for these tests assuming an 

additive, dominant, or recessive mode of inheritance, considering different values of the 

relative risk (RR = 1.05, 1.20, 1.30, 1.40, 1.50) lying in the range of the relative risks 

observed in association studies as well as different minor allele frequencies (MAF = 0.01, 

0.10, 0.20, 0.50) also considered by Knapp (1999) and Schaid (1999). As type I error rate 

we chose α = 5 × 10−8, which is often used to call (genome-wide) significance in genome-

wide association studies. Moreover, we considered a power of β = 0.80 often desired to be 

gained in a study.

The results of this comparison are summarized in Table 2. This table reveals that the sample 

size required by the score test is always slightly smaller than the one needed by the 

corresponding genotypic TDT. Compared to the total sample sizes, these differences are, 

however, virtually negligible. This table also supports the well-known fact that huge 
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numbers of subjects are required to detect with a high power genome-wide significant SNPs 

with a realistic relative risk.

We also compared the sample sizes required by the genotypic TDTs and the score tests with 

the ones determined by the approach proposed by Knapp (1999) for approximating the 

power of the allelic TDT for general modes of inheritance. The latter sample sizes were 

previously published in Table 3 of Knapp (1999). For this comparison, we computed the 

sample sizes required by the genotypic TDT and the score test using the same settings 

considered in Knapp (1999). These sample sizes are summarized in Table 3.

In particular in the recessive model, the required sample sizes for both the genotypic TDT 

and the score test are much smaller than ones computed for the allelic TDT based on the 

approach of Knapp (1999).

7 Simulation study

To validate the accuracy of the proposed sample size calculation, we performed a simulation 

study using the minor allele frequencies and the type I error rate considered in the previous 

section. Since the expected value of the estimate for the parameter γ in the conditional 

logistic regression model on which the genotypic TDT is based is the log relative risk 

(Schaid, 1996), we considered 1.05, 1.20, 1.30, 1.40, and 1.50 as values for exp(γ). For each 

combination of these minor allele frequencies and exp(γ), we simulated 105 case-parent trio 

data sets of the respective sample size determined in the previous section. The power was 

then estimated by the proportion of data sets for which the null hypothesis was rejected at 

the α = 5 × 10−8 level. Because of the huge sample sizes for the recessive model, we only 

considered genotypic TDTs and score tests assuming an additive or dominant mode of 

inheritance.

The results of this simulation study are summarized in Table 4, which shows that all 

estimated powers are very close to β = 0.80, the power used in Section 6. Therefore, the 

sample size and power equations derived in Sections 3–5 as well as the Appendix show up 

to be very accurate even for relative risks close to 1 and small minor allele frequencies.

8 Discussion

We have presented equations for determining the statistical powers and the required sample 

sizes for the genotypic TDT and the corresponding score test, assuming an additive, 

dominant, or recessive mode of inheritance. These approaches allow the determination of 

the power of the genotypic TDT for several relative risks, minor allele frequencies, etc., in 

less than a split second, and therefore, avoid very time-consuming simulation-based power 

and sample size estimations.

A comparison of the genotypic TDTs with the corresponding score tests showed that both 

require about the same sample size to gain the same power with a very slight advance for the 

score test. This comparison also implicitly contained the original allelic TDT, as this test 

(assuming a multiplicative mode of inheritance) is equivalent to the score test for an additive 

model.
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This comparison also reconfirmed the well-known fact that a huge number of samples is 

required to gain an acceptable power to detect genome-wide significant SNPs with typically 

small relative risks, where the required sample size rapidly increases with decreasing minor 

allele frequency. One of the reasons for this is that the smaller the minor allele frequency, 

the less trios contribute to the maximization of the conditional likelihood considered when 

performing the genotypic TDT, or more generally, when computing the Wald statistic.

The power and sample size determinations presented in this paper are implemented in the R 

package trio version 3.1.2 or later freely available at http://www.bioconductor.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A.1. Determination of the asymptotic normal distributions of genotypic TDT 

statistics

Equations for the statistical power of the genotypic TDT assuming either a dominant or 

recessive mode of inheritance can be derived in a similar way as for the additive model 

described in Section 3. In these cases, however, the number of components forming the 

genotypic TDT statistic cannot be reduced to two terms U and V as in the additive case, but 

four components have to be considered (e.g., in the dominant model presented in the Section 

2, just  and  can be combined). Denoting these components by b1, …, b4, the test 

statistic G of the genotypic TDT assuming either a dominant or recessive mode of 

inheritance also follows asymptotically a normal distribution with mean

and variance

(15)

where σik are the pairwise variances of these terms computed as described in Section 3 (see 

also Knapp, 1999).

In the following, the derivatives , i = 1, …, 4, are determined for the dominant and the 

recessive mode of inheritance. To differ between these two cases, we use in the following 
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the notation di (instead of bi) for the numbers of trios when considering a dominant mode of 

inheritance and the notation ri in the recessive case (for the specification of these numbers, 

see Table 5).

A.1.1. Genotypic TDT assuming a dominant model

For the dominant mode of inheritance, the numerator and denominator of the genotypic TDT 

statistic  are determined from

(16)

with adom and hdom as specified by (9) and (10), respectively, as well as

The square root of the genotypic TDT statistic can, thus, be written as , 

and the first derivatives of gdom with respect to di, i = 1, …, 4, can, hence, be determined by

To devise the variance of the asymptotic normal distribution, we, therefore, need to compute 

 as well as , where in the dominant model the components d1, …, d4 are given 

by

(see Table 5).

Differentiating (16) with respect to di, i = 1, …, 4, leads to

(17)

where

More exactly,
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and

Setting c1 = c2 = 1 and c3 = c4 = 1/3 as well as

the first derivative of Vdom with respect to di, i = 1, …, 4, can then be derived as

A.1.2. Genotypic TDT assuming a recessive model

Under the assumption of a recessive mode of inheritance, the maxixmum likelihood 

estimator of γrec is given by

(18)

where

contain the four components

(see also Table 5). Further, the inverse Vrec of the variance of (18) can be determined by

(19)

Analogously to the dominant case, the variance of the asymptotic normal distribution can be 

derived by computing the first derivatives of γ̂
rec and V with respect to ri, i = 1, …, 4.
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Since γ̂
rec has the same form as γ̂

dom, its first derivatives are identical to (17), except that 

adom and hdom are replaced by arec and hrec, respectively. These first derivatives are thus 

given by

with

and

The same applies to the first derivatives of (19), which take the same form as the first 

derivatives of Vdom in the dominant model. Setting c1 = c2 = 1, c3 = c4 = 3, and again

the first derivative of (19) with respect to ri, i = 1, …, 4, is, thus, given by

A.2. Determination of the asymptotic normal distributions of score test 

statistics

The score test statistic is more complex when considering a dominant or a recessive mode of 

inheritance than when assuming an additive mode of inheritance. In the dominant case, the 

score test statistic is given by

For an recessive model, this test statistic can be determined by
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(for an alternative representation of these test statistics, see Schaid and Sommer, 1994).

Since these test statistics are concise, they can directly be differentiate with respect to the 

respective four components also considered in Appendix A.1 to derive the asymptotic 

normal distribution in the genotypic TDT. Setting

the first derivatives of sdom with respect to d1, …, d4 are given by

and the first derivatives of srec with respect to r1, …, r4 by

These derivatives can then be inserted into equation (15) to compute the variance of the 

asymptotic normal distribution of the square root S of the score test statistic.
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Table 1

Number of minor alleles shown by the affected offspring, their parents, and the corresponding pseudo-controls 

for the ten possible genotype combinations case-parent trios can show as well as the weights of the trios in the 

maximimization of the conditional likelihood assuming an additive mode of inheritance. The number of trios 

showing a specific genotype combination is denoted by  with c, p1, p2 ∈ {0, 1, 2} and p1 ≤ p2. This is a 

modified version of Table 1 from Schwender et al. (2012).

Number of
Trios

Number of Minor Alleles Weights in the
LikelihoodParents Offspring Pseudo-Controls

0, 1 0 0, 1, 1

0, 1 1 0, 0, 1

1, 2 1 1, 2, 2

1, 2 2 1, 1, 2

1, 1 0 1, 1, 2

1, 1 1 0, 1, 2

1, 1 2 0, 1, 1

0, 2 1 1, 1, 1

2, 2 2 2, 2, 2

0, 0 0 0, 0, 0
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