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Abstract

The hallmark of Alzheimer's disease (AD) is declarative memory loss, but deficits in semantic 

fluency are also observed. We assessed how semantic fluency relates to cortical atrophy to identify 

specific regions that play a role in the loss of access to semantic information. Whole-brain 

structural magnetic resonance imaging (MRI) data were analyzed from 9 Normal Control (NC)

(M=76.7, SD=5.6), 40 Mild Cognitive Impairment (MCI) (M=74.4, SD=8.6), and 10 probable AD 

(M=72.4, SD=8.0) subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). They 

all were administered the Category Fluency (CF) animals and vegetables tests. Poorer semantic 

fluency was associated with bilateral cortical atrophy of the inferior parietal lobule (Brodman 

areas (BA) 39 and 40) and BA 6, 8, and 9 in the frontal lobe, as well as BA 22 in the temporal 

lobe. More diffuse frontal associations were seen in the left hemisphere involving BA 9, 10, 32, 

44, 45, and 46. Additional cortical atrophy was seen in the temporoparietal (BA 37) and the right 

parastriate (BA 19, 18) cortices. Associations were more diffuse for performance on vegetable 

fluency than animal fluency. The permutation-corrected map-wise significance for CF animals 

was pcorrected=0.01 for the left hemisphere, and pcorrected=0.06 for the right hemisphere. The 

permutation-corrected map-wise significance for CF vegetables was pcorrected=0.009 for the left 

hemisphere, and pcorrected=0.03 for the right hemisphere. These results demonstrate the profound 

effect of cortical atrophy on semantic fluency. Specifically, tapping into semantic knowledge 

involves the frontal lobe in addition to the language cortices of the temporoparietal region.
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1. Introduction

Alzheimer's disease (AD) pathology is characterized by loss of neurons and synapses in the 

cerebral cortex and a build-up of amyloid plaques and neurofibrillary tangles in the brain. 

Cortical atrophy is one of the hallmark features of AD. The typical progression begins in the 

mesial temporal region and spreads to the rest of the temporal and parietal lobes and 

eventually to the frontal lobes (Braak and Braak 1995; Thompson, Hayashi et al. 2003). In 

the early stages of AD, the most common symptom is declarative memory loss; however, 

deficits in language, executive, and visuospatial function are also frequently reported.

Verbal fluency tests are commonly used to assess language and can be categorized as 

measuring phonetic fluency (generation of words specific to certain letters) and semantic 

fluency (generation of words specific to certain categories). Semantic fluency is a sensitive 

measure for distinguishing between normal subjects and those with early cognitive decline 

who proceed to AD (Canning, Leach et al. 2004; Grundman, Petersen et al. 2004; Clark, 

Gatz et al. 2009). There is growing interest in the prodromal stages of AD and how best to 

predict conversion to AD from the intermediate cognitive state known as mild cognitive 

impairment (MCI). MCI is characterized by early AD symptoms with intact daily 

functioning; in the ADNI cohort patients diagnosed with MCI progressed to AD at a rate of 

16.5% per year (Petersen, Aisen et al. 2010). Given the pattern of cortical atrophy beginning 

in the temporal region in AD, semantic fluency deficits may play a key role in identifying 

MCI, and as such, it is vital to understand the neuroanatomical correlates of semantic 

fluency loss.

Many investigations into the linguistic correlates of AD have been conducted with 

functional neuroimaging(Welsh, Hoffman et al. 1994; Hirono, Mori et al. 2001; Teipel, 

Willoch et al. 2006; Schonknecht, Hunt et al. 2011). Fewer studies of the linguistic 

correlates of AD have been conducted using structural neuroimaging. A study evaluating 

language networks in clinical and preclinical AD found associations between performance 

on the Category Fluency (CF) animals test and lower grey matter density in the posterior 

superior and middle frontal gyri, the somatomotor cortex (SMA), the anterior cingulate, and 

the posterior left temporal lobe association areas (Apostolova, Lu et al. 2008). A second 

study of regional atrophy rates and cognitive decline over a 2-year period found associations 

between performance on the CF animals and vegetables tests and higher cortical atrophy 

rates within the left lateral temporal, right lateral temporal, left anterior cingulate, and left 

prefrontal lobar regions (McDonald, Gharapetian et al. 2012).

We examined the relationship between cortical atrophy and semantic fluency. We analyzed 

1.5 T structural magnetic resonance imaging (MRI) data using a cortical pattern matching 

technique to control for inter-subject anatomical variability. This method uses sulcal-based 

cortical alignment to identify disease specific cortical atrophy and analyze the associations 

between structure and, in this study, one key aspect of language function. This tool has been 

validated through the efforts of several disciplines that include neurodegenerative, 

psychiatric, and developmental research (Sowell, Thompson et al. 2001; Sowell, Peterson et 

al. 2003; Sowell, Thompson et al. 2003; Thompson, Hayashi et al. 2003; Ballmaier, O'Brien 

et al. 2004; Ballmaier, Sowell et al. 2004; Thompson, Hayashi et al. 2004; Apostolova, Lu et 
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al. 2006; Apostolova, Steiner et al. 2007). We hypothesized that we would find associations 

between verbal fluency and cortical atrophy in several brain regions known to sub-serve 

language processing. The hypothesized regions included the temporal and parietal cortices, 

which are associated with phonological and semantic representations and retrieval of word 

forms (Bookheimer 2002; Martin 2003).

2. Subjects and Methods

Subjects

We examined MRI data from a cohort of 9 Normal Control (NC), 40 Mild Cognitive 

Impairment (MCI), and 10 probable AD subjects who were enrolled and scanned as part of 

the Alzheimer's Disease Neuroimaging Initiative (ADNI). Although ADNI assessed 818 

subjects, all with MRI and neuropsychiatric data, we focused on these specific subjects as 

they also had available Pittsburg compound B (PiB)-PET scans. PiB-PET was administered 

in only a subset of those scanned with MRI. Initially, this PIB data set was comprised of 101 

MRI scans with time-matched PIB-PET scans. This subset of 59 subjects represents the first 

in a series of analyses to be conducted on the larger data set that will include PIB analyses in 

the future. ADNI inclusion criteria can be examined in detail at http://www.adniinfo.org/

Scientists/ADNIGrant/ProtocolSummary.aspx. To summarize, all ADNI subjects are 

between 55-90 years of age and must have a study partner who is capable of providing 

information regarding the subjects' daily functioning. NC subjects have a Mini Mental State 

Exam (MMSE) score between 24 and 30 (inclusive) and a global clinical Dementia Rating 

(CDR) of 0. MCI subjects have MMSE scores between 20 and 30 (inclusive), a subjective 

memory complaint, objective memory loss as determined by the Wechsler Memory Scale 

Logical Memory II, a global CDR of 0.5, preserved activities of daily living, and an absence 

of dementia. AD subjects have MMSE scores between 20 and 26 (inclusive), a global CDR 

between 0.5 and 1.0, and meet the NINCDS/ADRDA criteria for probable AD. Written 

informed consent was obtained from all participants.

Neuropsychological Testing

All subjects were administered the CF animals and vegetables tests within one month of the 

MRI. For these tests, subjects are asked to name as many animals or vegetables as possible 

within one minute, respectively (Benton 1989). These tests are commonly used to measure 

semantic fluency and tap into semantic representation, semantic judgment, and semantic 

retrieval.

Image Acquisition and Processing

Subjects were scanned with a standardized high-resolution MRI protocol on scanners from 

one of three manufacturers (General Electric Healthcare, Siemens Medical Solutions, or 

Philips Medical Systems) with protocols optimized for the best contrast to noise in a feasible 

acquisition time (Leow, Klunder et al. 2006; Jack, Bernstein et al. 2008). Raw data with an 

acquisition matrix of 192 × 192 × 166 and voxel size 1.25 × 1.25 × 1.2 mm3 in the x-, y-, 

and z-dimensions was subjected to in-plane, 0-filled reconstruction (i.e., sinc interpolation) 

resulting in a 256 × 256 matrix and voxel size of 0.9375 × 0.9375 × 1.2 mm3. Image quality 

was inspected at the ADNI MRI quality control center at the Mayo Clinic (in Rochester, 
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MN, USA) (Jack, Bernstein et al. 2008). Phantom-based geometric corrections were applied 

to ensure that spatial calibration was kept within a specific tolerance level for each scanner 

involved in the ADNI study (Gunter 2006). Additional image corrections included 

GradWarp correction for geometric distortion due to gradient nonlinearity (Jovicich, 

Czanner et al. 2006), a “B1-correction” for image intensity non-uniformity (Jack, Bernstein 

et al. 2008), and an “N3” bias field correction, for reducing intensity inhomogeneity (Sled, 

Zijdenbos et al. 1998).

A computational anatomy-based cortical thickness technique was applied to the structural 

MRI scans. To do this, the scans were aligned to International Consortium on Brain 

Mapping 53 (ICBM53) space with a 9-parameter linear transformation method (Collins, 

Neelin et al. 1994). The MRI images were skull stripped automatically using Brainsuite 

(Shattuck, Sandor-Leahy et al. 2001), visually inspected, and manually corrected as needed. 

Following 3D hemispheric reconstruction, 38 sulci per hemisphere were manually traced 

and averaged across all 59 subjects. Cortical surfaces were parameterized, flattened, and 

warped; allowing for explicit matching of cortical topography prior to averaging across 

subjects. Cortical thickness, defined as the 3D distance from the gray/white matter to the 

gray matter/cerebrospinal fluid interfaces, was computed at each hemispheric surface point 

andmapped onto the corresponding hemispheric model in exact spatial correspondence. 

Individual test scores were entered as covariates in a general linear model that predicted 

cortical thickness at each cortical point for individual subjects. The results of these 

regression analyses were then presented as significance (p-value) and correlation or beta 

coefficient maps. The overall significance of the statistical maps was corrected for multiple 

comparisons using permutation methods with a threshold p<0.01. These methods have been 

used in many other investigations and have become standard practice in imaging analysis.

3. Results

One-way analysis of variance (ANOVA) was conducted to test for any significant 

differences in age and education in our sample. The NC, MCI, and AD groups did not differ 

significantly in age [F(2, 56)=0.65, p=0.53] or education [F(2, 56)=1.28, p=0.29]. The 

groups did not differ significantly in sex distribution [X2 (2, N=59) = 2.68, p =0.26]. These 

demographic data are displayed in Table 1.

ANOVA was conducted to examine differences between diagnostic categories in 

performances on the CF animals and vegetables tasks. There were statistically significant 

differences at the p<0.01 level in the CF animals scores [F(2, 56)=8.15, p=0.001]. Post-hoc 

comparison using a Tukey post-hoc test indicated that the mean score for NC (M=22, 

SD=7.68), MCI (M=16.45, SD=5.48), and AD (M=11.5, SD=4.09) groups were all 

significantly different from one another. As expected, AD subjects performed worse on 

semantic fluency than both the MCI and NC groups, and the MCI subjects performed worse 

than the NC subjects. There were also statistically significant differences at the p<.01 level 

in the CF vegetables test [F(2, 56)=7.33, p=0.001]. Once again as expected, AD subjects 

performed worse on semantic fluency than both the MCI and NC groups, and the MCI 

subjects performed worse than the NC subjects. However, post hoc comparisons indicated 

that while the mean scores for the NC (M=14.67, SD=5.96) and MCI (M=11.1, SD=3.81) 
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groups were significantly different from the AD (M=7.5, SD=3.03), the MCI group mean 

did not differ significantly from the NC group mean (p=0.055). These data are displayed in 

detail in Table 2.

The global permutation-corrected map-wise significance for CF animals was pcorrected=0.01 

for the left hemisphere, and pcorrected=0.06 for the right hemisphere. The global permutation-

corrected map-wise significance for CF vegetables was pcorrected=0.009 for the left 

hemisphere, and pcorrected=0.03 for the right hemisphere.

As demonstrated in the significance and correlation maps of Figure 1, poor semantic fluency 

measured on the animals test was associated with cortical atrophy of the inferior parietal 

lobule (approximately corresponding to Brodmann's areas (BA) 39 and 40), the superior 

temporal gyrus (BA 22), and the premotor and dorsolateral prefrontal cortices (BA 4, 6, 8 

and 9), bilaterally. More diffuse associations were detected in the left hemisphere involving 

the lateral (BA 10, 44, 45 and 46) and medial (BA 9,10 and 32) frontal cortices. Cortical 

atrophy was also detected bilaterally in the temporo-occipital (BA 37) region of the right 

hemisphere.

Poor semantic fluency on the vegetables test was associated with cortical atrophy of the 

inferior parietal lobule (BA 39 and 40) and the premotor and dorsolateral prefrontal cortices 

(BA 4, 6, 8, 9 and 46) bilaterally (Figure 1). More diffuse associations were seen in the 

lateral frontal (BA 10, 44, 45), medial frontal (BA 4,6, 8, 9 and 32), lateral temporal (BA 

22), medial parietal (BA 31 and 7), and peristriate (BA 18,19) cortices on the left. 

Additional cortical associations were seen in the temporoparietal region (BA 37), and in the 

lateral visual association cortices (BA 19, 18) of the right hemisphere. Associations between 

cortical atrophy and CF performance were more diffuse for the vegetable fluency test than 

they were for animal fluency test scores.

4. Discussion

Alzheimer's disease is the most prevalent neurodegenerative disorder worldwide. It 

manifests with cognitive decline in multiple domains, including language, and provides us 

with an opportunity to study the relevance of various cortical areas to cognitive processing. 

In this study, we examined correlations between semantic fluency, as measured by the CF 

animals and vegetables tests, and cortical atrophy in normal control, MCI, and probable AD 

diagnosed subjects.

Correlations Between Semantic Fluency and the Left Hemisphere

Poor performance on both the CF animals and vegetables tests was associated with cortical 

atrophy in the left posterior temporal, parietal, cingulate, and prefrontal cortices. These 

cortical areas are linked to semantic and phonologic processing (McGraw, Mathews et al. 

2001). Functional neuroimaging investigations into the linguistic correlates of AD have 

found fluency performance correlated with metabolism in the inferior parietal lobule 

(Schonknecht, Hunt et al. 2011), left temporal and prefrontal cortices (Welsh, Hoffman et al. 

1994), temporoparietal and prefrontal cortices (Teipel, Willoch et al. 2006), and the left 

anterior cingulate (Hirono, Mori et al. 2001). These results correlate nicely with our own. In 
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another study relating CERAD language tests to More specifically, the literature has 

implicated the left premotor areas (BA 6, 44), the inferior frontal gyrus or Broca's area (BA 

44, 45, and 47), and the supplementary motor cortex (BA 8, 9) in language and semantic 

processing (Thompson-Schill, D'Esposito et al. 1997; Grabowski 2000; Bookheimer 2002; 

Gold and Buckner 2002). In addition to Broca's area, we found associations between poor 

semantic fluency and cortical atrophy in Wernicke's area (BA 22) and the angular and 

supramarginal gyri (BA 39, 40), which comprise the classic language network.

Correlations between Semantic Fluency and the Right Hemisphere

Poor performance on the CF animals and vegetables tests was associated with cortical 

atrophy in the right posterior temporal, temporo-occipital, parietal and prefrontal cortices. 

The right frontal lobe supports verbal episodic memory retrieval, as well as retrieval of 

semantic information (Grady 1999). Our results find less support in functional neuroimaging 

studies, however past studies have found fluency performance correlated to right middle and 

medial frontal gyri (Schonknecht, Hunt et al. 2011) and as well as the right parietal lobe 

(Welsh, Hoffman et al. 1994). Our additional findings may be the result of the sensitivity of 

the analytical methods used. Atrophy of the superior and middle temporal gyri, medial 

temporal region, middle and inferior frontal gyri, and the superior parietal lobule was found 

to be associated with poor semantic fluency in a cohort of Korean patients with AD or MCI 

(Ahn, Seo et al. 2011).

CF Animals and Vegetables Variability

Interestingly, verbal fluency for vegetables showed more diffuse associations than for 

animals. This may be a function of the size of the animals category versus the vegetables 

category. The category “animals” has a greater number of items and multiple levels of 

semantic organization (e.g., primates, reptiles, etc.). As such, it may be easier to generate 

information from this category than vegetables - a subordinate semantic category with fewer 

items and levels of semantic organization (Hodges, Salmon et al. 1992; Azuma, Bayles et al. 

1997; Diaz, Sailor et al. 2004). AD patients show a disproportionate reduction in the 

generation of exemplars from lower order categories. This may be the result of storage 

degradation (Hodges, Salmon et al. 1992). With regard to the difference between cortical 

atrophy results in animals versus vegetables, our findings correspond to some degree with 

those of Ahn et al. (Ahn, Seo et al. 2011) who also found associations of semantic fluency 

with cortical atrophy in both hemispheres with a more diffuse association pattern for the 

supermarket category (more closely related to the vegetable category) as compared to the 

animals category. However, in our study, perhaps as a result of the more advanced analytic 

methods, we also find strong parietal and frontal cortices associations that were not reported 

by Ahn et al.

Our new findings on animal fluency also agree well with prior results from our group in a 

cohort of 19 AD and 5 MCI subjects who later converted to probable AD (Apostolova, Lu et 

al. 2008). While the previous research was based on similar cortical extraction methods, the 

stronger associations in the current study are likely due to both the larger sample size as well 

as the inclusion of cognitively normal subjects. Providing a greater range of cognitive 

performance strengthened the previously observed associations in the animal fluency results. 
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We further extended our previous work by examining cortical associations with vegetable 

fluency - a task that imposes greater cognitive demands than animal fluency, and therefore 

more diffuse patterns of cortical atrophy than our previous results.

5. Conclusion

Studies of neurodegenerative disorders are useful for testing our theoretical models of brain 

networks. Overall, our results show that poor semantic fluency is associated with cortical 

atrophy in brain regions previously thought to process lexical, phonologic, and semantic 

representations as well as those responsible for selection and retrieval of semantic and 

phonological knowledge. However, our study has some limitations. Our sample size was 

moderate but large enough to find significant associations between verbal fluency and 

cortical atrophy. Additional plausible limitation lies in the fact that in AD, there is also a 

global atrophy pattern that is disease-specific rather than task-specific, which might pose a 

challenge when investigating the anatomic correlates of specific cognitive processes. If that 

were the case however one would expect to see strong associations with the entorhinal/

perihippocampal cortex – the earliest cortical area that succumbs to cortical atrophy in AD. 

It is also important to note that the CF animals and vegetables tasks are language fluency 

measures. A task that more clearly differentiates semantic knowledge from basic language 

ability may further improve our understanding of the cortical areas responsible for semantic 

categorization and therefore the semantic component of verbal fluency. Our findings build 

on the data from other structural and functional imaging studies investigating the linkage 

between language and AD, and our results further the understanding of the neural correlates 

of semantic fluency. Our research demonstrates that cortical thickness is related to language 

performance in old age; preservation of gray matter is clearly a priority for future 

therapeutic research in AD.
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Figure 1. 
Statistical (top) and Correlation (bottom) maps demonstrating the associations between the 

Category Fluency Animals and Category Fluency Vegetables test scores to cortical thickness 

in a pooled sample of subjects diagnosed as Normal Controls, Mild Cognitive Impairment, 

or Probable Alzheimer's disease.
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Table 1
Demographic information

Variable (SD) NC (N=9) MCI (N=40) AD (N=10) p-value, ANOVA/Chi-Square

Age, yr 76.7 (5.6) 74.4 (8.6) 72.4 (8.0) 0.53

Education, yr 16.3 (2.9) 16.0 (2.6) 14.6 (2.8) 0.29

Gender, M:F 5:4 27:13 4:6 0.27
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