Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Apr 25;92(9):3908–3912. doi: 10.1073/pnas.92.9.3908

Prenatal monocular enucleation induces a selective loss of low-spatial-frequency cortical responses to the remaining eye.

S Bisti 1, C Trimarchi 1, K Turlejski 1
PMCID: PMC42071  PMID: 7732005

Abstract

During early development, interactions between the two eyes are critical in the formation of eye-specific domains within the lateral geniculate nucleus and the visual cortex. When monocular enucleation is done early in prenatal life, it induces remarkable anatomical and functional reorganizations of the visual pathways. Behavioral data have shown a loss in sensitivity to low-spatial-frequency gratings in cats. To correlate the behavioral observations with a possible change in the analysis of contrast at the level of primary visual areas we recorded visual evoked potentials at the 17/18 border in two cats enucleated prenatally (gestational age at enucleation, 39-42 days), three neonatal, two control animals, and one animal with a surgical removal of Y-ganglion fibers. Our results show a strong attenuation in the amplitude of response at all contrast values for gratings of low spatial frequency in prenatally enucleated cats, whereas neonatally enucleated and control animals present responses of comparable amplitude. We conclude that the behavioral results reflect the reduced sensitivity for low frequencies of visual cortical neurons. In addition, we define a critical period for the development of the contrast-sensitivity function that seems to be limited to the prenatal gestation period. We suggest that the prenatal interruption of binocular interactions leads to a functional elimination of the Y-ganglion system.

Full text

PDF
3908

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bisti S., Carmignoto G. Monocular deprivation in kittens differently affects crossed and uncrossed visual pathways. Vision Res. 1986;26(6):875–884. doi: 10.1016/0042-6989(86)90145-8. [DOI] [PubMed] [Google Scholar]
  2. Bisti S., Trimarchi C. Visual performance in behaving cats after prenatal unilateral enucleation. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11142–11146. doi: 10.1073/pnas.90.23.11142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bisti S., Trimarchi C. Visual performance in behaving cats after prenatal unilateral enucleation. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11142–11146. doi: 10.1073/pnas.90.23.11142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burke W., Dreher B., Michalski A., Cleland B. G., Rowe M. H. Effects of selective pressure block of Y-type optic nerve fibers on the receptive-field properties of neurons in the striate cortex of the cat. Vis Neurosci. 1992 Jul;9(1):47–64. doi: 10.1017/s0952523800006362. [DOI] [PubMed] [Google Scholar]
  5. Chalupa L. M., Williams R. W. Organization of the cat's lateral geniculate nucleus following interruption of prenatal binocular competition. Hum Neurobiol. 1984;3(2):103–107. [PubMed] [Google Scholar]
  6. Chalupa L. M., Williams R. W. Organization of the cat's lateral geniculate nucleus following interruption of prenatal binocular competition. Hum Neurobiol. 1984;3(2):103–107. [PubMed] [Google Scholar]
  7. Dreher B., Michalski A., Cleland B. G., Burke W. Effects of selective pressure block of Y-type optic nerve fibers on the receptive-field properties of neurons in area 18 of the visual cortex of the cat. Vis Neurosci. 1992 Jul;9(1):65–78. doi: 10.1017/s0952523800006374. [DOI] [PubMed] [Google Scholar]
  8. Dreher B., Michalski A., Cleland B. G., Burke W. Effects of selective pressure block of Y-type optic nerve fibers on the receptive-field properties of neurons in area 18 of the visual cortex of the cat. Vis Neurosci. 1992 Jul;9(1):65–78. doi: 10.1017/s0952523800006374. [DOI] [PubMed] [Google Scholar]
  9. Fernald R., Chase R. An improved method for plotting retinal landmarks and focusing the eyes. Vision Res. 1971 Jan;11(1):95–96. doi: 10.1016/0042-6989(71)90207-0. [DOI] [PubMed] [Google Scholar]
  10. Garraghty P. E., Shatz C. J., Sretavan D. W., Sur M. Axon arbors of X and Y retinal ganglion cells are differentially affected by prenatal disruption of binocular inputs. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7361–7365. doi: 10.1073/pnas.85.19.7361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maddox J. Immunology made accessible. Nature. 1984 Jul 19;310(5974):183–183. doi: 10.1038/310183a0. [DOI] [PubMed] [Google Scholar]
  12. Maffei L., Fiorentini A. Spatial frequency rows in the straite visual cortex. Vision Res. 1977 Feb;17(2):257–264. doi: 10.1016/0042-6989(77)90089-x. [DOI] [PubMed] [Google Scholar]
  13. Morrone M. C., Burr D. C., Fiorentini A. Development of infant contrast sensitivity to chromatic stimuli. Vision Res. 1993 Dec;33(17):2535–2552. doi: 10.1016/0042-6989(93)90133-h. [DOI] [PubMed] [Google Scholar]
  14. Morrone M. C., Burr D. C., Fiorentini A. Development of infant contrast sensitivity to chromatic stimuli. Vision Res. 1993 Dec;33(17):2535–2552. doi: 10.1016/0042-6989(93)90133-h. [DOI] [PubMed] [Google Scholar]
  15. Rakic P. Development of visual centers in the primate brain depends on binocular competition before birth. Science. 1981 Nov 20;214(4523):928–931. doi: 10.1126/science.7302569. [DOI] [PubMed] [Google Scholar]
  16. Rakic P. Development of visual centers in the primate brain depends on binocular competition before birth. Science. 1981 Nov 20;214(4523):928–931. doi: 10.1126/science.7302569. [DOI] [PubMed] [Google Scholar]
  17. Reese B. E., Guillery R. W., Marzi C. A., Tassinari G. Position of axons in the cat's optic tract in relation to their retinal origin and chiasmatic pathway. J Comp Neurol. 1991 Apr 22;306(4):539–553. doi: 10.1002/cne.903060402. [DOI] [PubMed] [Google Scholar]
  18. Reese B. E., Guillery R. W., Marzi C. A., Tassinari G. Position of axons in the cat's optic tract in relation to their retinal origin and chiasmatic pathway. J Comp Neurol. 1991 Apr 22;306(4):539–553. doi: 10.1002/cne.903060402. [DOI] [PubMed] [Google Scholar]
  19. Shatz C. J., Luskin M. B. The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex. J Neurosci. 1986 Dec;6(12):3655–3668. doi: 10.1523/JNEUROSCI.06-12-03655.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shook B. L., Maffei L., Chalupa L. M. Functional organization of the cat's visual cortex after prenatal interruption of binocular interactions. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3901–3905. doi: 10.1073/pnas.82.11.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shook B. L., Maffei L., Chalupa L. M. Functional organization of the cat's visual cortex after prenatal interruption of binocular interactions. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3901–3905. doi: 10.1073/pnas.82.11.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sretavan D. W., Shatz C. J. Prenatal development of cat retinogeniculate axon arbors in the absence of binocular interactions. J Neurosci. 1986 Apr;6(4):990–1003. doi: 10.1523/JNEUROSCI.06-04-00990.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sretavan D. W., Shatz C. J. Prenatal development of cat retinogeniculate axon arbors in the absence of binocular interactions. J Neurosci. 1986 Apr;6(4):990–1003. doi: 10.1523/JNEUROSCI.06-04-00990.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sur M. Development and plasticity of retinal X and Y axon terminations in the cat's lateral geniculate nucleus. Brain Behav Evol. 1988;31(4):243–251. doi: 10.1159/000116592. [DOI] [PubMed] [Google Scholar]
  25. White C. A., Chalupa L. M., Maffei L., Kirby M. A., Lia B. Response properties in the dorsal lateral geniculate nucleus of the adult cat after interruption of prenatal binocular interactions. J Neurophysiol. 1989 Nov;62(5):1039–1051. doi: 10.1152/jn.1989.62.5.1039. [DOI] [PubMed] [Google Scholar]
  26. Williams R. W., Chalupa L. M. Prenatal development of retinocollicular projections in the cat: an anterograde tracer transport study. J Neurosci. 1982 May;2(5):604–622. doi: 10.1523/JNEUROSCI.02-05-00604.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES