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Abstract

Most biological rhythms are generated by a population of cellular oscillators coupled through 

intercellular signaling. Recent experimental evidence shows that the collective period may differ 

significantly from the autonomous period in the presence of intercellular delays. The phenomenon 

has been investigated using delay-coupled phase oscillators, but the proposed phase model 

contains no direct biological mechanism, which may weaken the model's reliability in unraveling 

biophysical principles. Based on a published gene regulatory oscillator model, we analyze the 

collective period of delay-coupled biological oscillators using the multivariable harmonic balance 

technique. We prove that, in contradiction to the common intuition that the collective period 

increases linearly with the coupling delay, the collective period turns out to be a periodic function 

of the intercellular delay. More surprisingly, the collective period may even decrease with the 

intercellular delay when the delay resides in certain regions. The collective period is given in a 

closed-form in terms of biochemical reaction constants and thus provides biological insights as 

well as guidance in synthetic-biological-oscillator design. Simulation results are given based on a 

segmentation clock model to confirm the theoretical predictions.

I. Introduction

Rhythms are fundamental to biological activities. With periods ranging from seconds in 

glycolytic oscillations to years in reproduction, these rhythms are among the most 

conspicuous properties of living systems [1], [2]. Underlying biological rhythms are 

networks of interacting cellular oscillators. These cellular oscillators can synchronize 

rhythms with a certain collective period, yet it remains an exciting challenge to understand 
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the mechanism of how collective oscillation period arises from autonomous cellular 

oscillations.

Although it has been generally believed that the collective period is determined by the 

average of cell-autonomous periods, it is recently reported that in the presence of 

intercellular delays the collective period will be greatly altered from the averaged 

autonomous periods. This has been experimentally substantiated for coupled semiconductor 

lasers [3] and in the zebrafish segmentation clock [4]. This phenomenon is of fundamental 

importance in the study of biological rhythms, given the prevalence of time delays in 

biological interactions. One source of delay is a threshold effect, i.e., the concentration of an 

effector must exceed or fall below a certain value before the affected value is altered [5]. 

Both nonlinear chemical reaction kinetics and hysteresis can act like thresholds, even when 

the threshold values are not sharp. Secondly, there are known delays in transcription and 

translation associated with mRNA and protein processing in the nucleus and cytoplasm, 

respectively [6]. Finally, there are delays in the transport of intermediates between cellular 

compartments [6].

Based on phase oscillators, the authors in [3], [4], [7], [8] studied the collective period of 

delay-coupled oscillators. However, the phase oscillator model may be too 

phenomenological to reveal underlying principles, because it contains no direct biological 

mechanism for the cellular clock. In this paper, we analyze the influence of intercellular 

delay on the collective period using a gene regulatory biophysical clock model. To our 

knowledge, no analytical results have been reported on the collective period of delay-

coupled mechanism-based gene regulatory oscillators to date. In our study, we use an 

oscillator model in which oscillations are induced by the direct autorepression of a gene by 

its own protein product. Biological rhythms as diverse as cell-cycles in bacterial [9], 

segmentation clocks in vertebrates [10], and circadian rhythms in mammals [11] depend 

heavily on autorepression. Following the same principles, we model the intercellular 

interaction as co-repression based on the fact that mutual repression between a pair of 

oscillators comprises a positive feedback loop between the oscillators, which has been 

reported to synchronize various biological oscillators [12]. This model is also inspired by the 

fact that intercellular repression is widespread in sensory pyramidal neurons [13], visual 

thalamus [14], and insulin secretion [15], to name a few examples.

We use the multivariable harmonic balance (MHB) technique to analyze the collective 

period of delay-coupled gene regulatory oscillator networks. The MHB technique, although 

approximate, has been shown to be reliable for the analysis of biochemical oscillating 

systems [16], [17], and can provide an effective way to characterize the frequency, 

amplitude, and phase of coupled oscillators [16], [18], [19], [20]. Due to multi-cellular 

structure, the solution to harmonic balance equations is very difficult to obtain. Here we 

circumvent the problem by restricting our attention to solutions corresponding to 

synchronized oscillations since we are interested in the collective period. The main 

contributions are as follows: 1) the collective period of delay-coupled gene regulatory 

oscillators is derived in terms of biochemical parameters, which gives insights into the basic 

mechanism of biological oscillations; 2) it is proven that the collective period is a periodic 

function of the intercellular delay in contrast to the linear function assumed in the existing 
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literature (e.g., [10]); and 3) the region in which the collective period is larger/smaller than 

the autonomous period (oscillation period of isolated oscillators) and, the region in which 

the collective period increases/decreases with the intercellular delay are given explicitly.

II. Model description

We adopt the well-established Hill-type auto-repression model of cellular oscillators [10], 

[21]:

(1)

where m(t) ≥ 0 is the instantaneous concentration of a mRNA which codes for a protein with 

instantaneous concentration p(t) ≥ 0. The protein acts as a repressor. The constants a > 0 and 

b, c > 0 denote production and decay rates, respectively. Tm > 0 denotes the time delay 

between the initiation of transcription and the arrival of the mature mRNA molecule in the 

cytoplasm. Tp > 0 denotes the time delay between the initiation of translation and the 

emergence of a complete functional protein molecule. f(p) is the rate of production of new 

mRNA molecules, and the constants k and p0 represent the action of an inhibitory protein 

that acts as a dimer. ν is the Hill coefficient, which describes the cooperativity of end 

product repression.

We use co-repression to establish the intercellular signaling [12]. This is based on the facts 

that 1) mutual repression between a pair of biological oscillators constitutes a positive 

feedback loop coupling between the oscillators, which is regarded as the most prevalent 

induction scheme of synchronization in homogeneous biological oscillators [12]; and 2) 

intercellular repression is widespread in gene regulatory networks [22]. The ith oscillator's 

dynamics is described by:

(2)

where  and  denotes index set {j = 1, 2, . . . , N, 

j ≠ i} and ; m0 is a constant; τ is the time delay in 

intercellular interaction. Since  is a decreasing function of mj(j ≠ i), the 

intercellular coupling between oscillator i and oscillator j is repressive.

Remark 1: It is worth noting that the intercellular signaling can be a complex cascade 

composed of many intermediate molecules. For example, in the zebrafish segmentation 

clock, the intercellular signaling is a cascade [10]: her1/her7 mRNA in cell 1 → Her1/Her7 

in cell 1 ⊣ delta mRNA in cell 1 → Delta in cell 1 → Notch in cell 2 → her1/her7 mRNA in 
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cell 2, where “→” denotes activation and “⊣” denotes repression (cf. Fig. 1). In this case, by 

using the subnetwork replacement technique [23], the interaction cascade can be replaced 

with “her1/her7 mRNA in cell 1 ⊣ her1/her7 mRNA in cell 2” without changing the 

qualitative characteristics of intercellular interaction [23]. Given this, (2) can be used to 

model many biochemical oscillator networks such as the insulin secreting pancreatic islets 

[12], ovulation regulation networks [12], and neural stem cell maintenance networks [24], to 

name a few.

III. The collective period

To facilitate analysis, we recast (2) in a matrix form:

(3)

where M(t) = [m1(t) m2(t) . . . mN(t) ]T, P(t) = [p1(t) p2(t) . . . pN(t) ]T, and 

.

The most biologically significant property of (1) is that it can have oscillating solutions, 

which is the focus of this paper. (Note that the HMB technique does not give a necessary 

and sufficient condition for such solutions [19], [20].) It is noteworthy that although the 

period of a single cellular oscillator has been studied [16], [17], no analytical results exist 

addressing the collective period of repressively coupled gene regulatory oscillators. Building 

upon our recent study on delay-free coupled Goodwin oscillators [25], we propose to study 

delay-coupled oscillators using the MHB technique [18], [26]. Since multi-cellular structure 

leads to high-dimensional harmonic balance equations, it is very difficult to derive the 

solution. Here we are interested in the collective period, so we restrict our attention to 

solutions corresponding to synchronized oscillations, which gives a way to solve the 

problem. The definition of synchronized oscillation is provided below. We assume that the 

parameters are chosen such that synchronized solution exists.

Definition 1: (2) is synchronized if  and 

for all 1 ≤ i, j ≤ N.

Theorem 1: Using harmonic balance technique, mi(t) and pi(t) can be approximated by (14) 

and (15) respectively, and the collective period of (2) (when synchronized) can be obtained 

as , where w is the minimum positive solution to

(4)

and
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(5)

In (5), κ denotes the ratio between the Fourier coefficients of  with respect to pi 

and , respectively (Due to the structure of , κ is independent of i 

and j). The value of κ (which is not needed in the analysis in this paper) can be calculated 

numerically [27].

The proof is given in the appendix.

Remark 2: Although the collective period of coupled oscillators has been studied based on 

the simple phase model in [3], [4], [7], [8], [28], to our knowledge, no analytical result exists 

addressing the collective period of delay-coupled gene regulatory oscillators.

From the proof of Theorem 1, one gets that the influence of intercellular coupling is 

represented by ξ. So by setting ξ = 0, one gets the autonomous period of a single gene 

regulatory oscillator, which is the same as the existing result in [17]:

Corollary 1: The autonomous period of gene regulatory oscillator (1) can be obtained as

(6)

where wA is the minimum positive solution to

(7)

Proof: The corollary can be easily obtained by setting ξ in (4) to 0.

IV. The influence of intercellular delay on the collective period

Although the system of equations in (4) and (5) cannot be solved analytically, it can be used 

to analyze the influence of intercellular delay τ on the collective period T:

Theorem 2: Define , then when the network in (2) is 

synchronized, the relationship between collective period T and intercellular delay τ is as 

follows:

1. when τ satisfies

(8)

T is identical to the autonomous period TA in (6);
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2. when τ satisfies

(9)

for some k = 2n–1, (n = 0, 1, 2, . . .), then T is smaller than the autonomous period 

TA;

3. when τ satisfies

(10)

for some k = 2n, (n = 0, 1, 2, . . .), then T is larger than the autonomous period TA;

Moreover,

1. when τ resides in the following region,

(11)

for some k = 0, 1, 2, . . ., then T increases with τ;

2. when τ resides in the following region,

(12)

for some k = 0, 1, 2, . . ., then T decreases with τ;

The proof is given in the appendix.

Remark 3: Theorem 2 is consistent with the simulation results in [29], which show that 

depending on its magnitude, intercellular delay can both increase and decrease the collective 

oscillation period of stellate cell networks. It is also reminiscent of the simulation results in 

[30], which show that the intercellular delay periodically regulates the collective period of 

inter-coupled Hodgkin-Huxley neurons. From a mathematical point of view, periodic 

regulation is also reasonable since any intercellular delay τ has the same effect as τ + nT (n 

= 1, 2, . . .) due to the periodic oscillation (repetition) of mi(t). Therefore, periodic regulation 

of the collective period by intercellular delay may be a general rule of delay coupled 

biochemical oscillator networks, and the results obtained in this paper can provide insights 

into biological oscillator network behavior understanding as well as guidance in synthetic 

biological oscillator network design.

V. Application to a segmentation clock model

We apply the obtained results to the segmentation clock model proposed in [10], [31]. The 

segmentation clock is a population of coupled cellular gene regulatory oscillators in the 

embryo that drive the sequential subdivision of the presomitic mesoderm into multicellular 

blocks termed somites. In [10], Lewis formulated each cellular oscillator of the zebrafish 

segmentation clock as a feedback loop in which Her1 or Her7 protein directly binds to the 

regulatory DNA of its own gene to inhibit transcription. Let mi(t) and pi(t) be the 

concentrations of her1/her7 mRNA and the corresponding protein in the ith (i = 1, 2, . . . , N) 
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cell at time t, then the dynamics of pi(t) and mi(t) in an isolated cell are governed by (1) with 

parameters given as follows [10]: b = c = 0.231, a = 4.5 protein molecules per mRNA 

molecule per minute, k = 33 molecules per diploid cell per minute, ν = 2, and p0 = 40 

molecules. Lewis modeled the intercellular coupling pathway from cell i to cell j as her1/

her7 mRNA in cell i → Her1/Her7 in cell i ⊣ delta mRNA in cell i → Delta in cell i → 

Notch in cell j → her1/her7 mRNA in cell j. According to Remark 1, the intercellular 

signaling reduces to her1/her7 mRNA in cell i ⊣ her1/her7 in cell j. So the interaction 

between any two oscillators is mutual repressive and the dynamics of the oscillator network 

can be formulated by (2).

Reference [10] gives an analytic approximation of the autonomous oscillation period, i.e.,

(13)

thus, we can compare it with our results in (7). The comparison under different values of Tm 

+ Tp is given in Fig. 2, where it can be seen that our result is more accurate.

Next we show that our analytical prediction is consistent with numerical simulation of the 

network of gene regulatory oscillators. We set N = 9 and m0 identical to p0, i.e., 40 

molecules. We fixed Tm and Tp to 7.1s and 1.7s, respectively, which gives an autonomous 

oscillation period TA = 33.07s. The results of simulating the network under different 

intercellular delays, τ, are given in Fig. 3. The collective period is represented by blue 

asterisks (when 0 < τ < 1.5 and 21.5 < τ < 33, the network did not synchronize, so there is 

no collective period under these delays). We can see that at  and 

 where , the collective period is identical to the 

autonomous period. This verifies Theorem 2, which predicts that if the network can be 

synchronized and the intercellular delay is expressed by  for k = 0, 1, 

2, . . ., then the collective period will be identical to TA. From the figure, we can also see that 

when  or , the 

collective period is smaller than TA, and otherwise it is larger than the autonomous period 

TA, which is also consistent with the statement in Theorem 2. Furthermore, the results in Fig. 

3 also roughly follow the monotonicity property prediction in Theorem 2, which states that 

when  and 

, the collective period decreases with 

τ, otherwise the collective period increases with τ (Note that since the prediction is based on 

the assumption that all oscillators are synchronized, there is a small prediction error when 

delay τ gets close to the non-synchronizable regions).

VI. Discussion

The collective period of coupled biological oscillators are attracting increased attention as 

more experimental evidence shows that it can differ significantly from the autonomous 

period. Existing analytical results are based on sinusoidally delay-coupled phase oscillators, 

which may be too phenomenological to reveal underlying mechanisms. In fact, from the 

numerical results in Fig. 3, it can be seen that the variation of the collective period with the 
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intercellular delay is quite different from a sinusoidal curve, which further substantiates the 

necessity of non-phase model based studies. However, to our knowledge, there are no 

existing analytical results addressing the collective period of delay-coupled oscillators based 

on biophysical regulatory models. Using a gene regulator oscillator model of the cellular 

oscillation in the segmentation clock, we study the collective period of delay-coupled 

cellular oscillators using the multivariable harmonic balance technique. Due to the multiple 

oscillator structure, the harmonic balance equations are very difficult to solve. We 

circumvent the problem by ignoring solutions corresponding to unsynchronized oscillations, 

which are not relevant to our study, but will greatly facilitate the analysis.

When there is an intercellular delay, we prove that the collective period is a periodic 

function of the intercellular delay. This argues against the existing assumption that the 

collective period increases linearly with the intercellular delay. More surprisingly, we prove 

that the collective period may even decrease with the intercellular delay when the delay 

resides in certain regions. The results are confirmed by numerical simulations on a published 

gene regulatory oscillator network model of the segmentation clock. The results are given in 

a closed-form expression in terms of the biochemical reaction constants and thus provide 

biological insight as well as guidance in synthetic-biological-oscillator design.
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Appendix: Harmonic balance investigation

The dynamics of the coupled gene regulatory oscillators in (3) can be transformed into the 

frequency domain as shown in Fig. 4.

According to the harmonic balance technique [26], since  and  in Fig. 4 are low pass 

filters, the higher order harmonics of oscillations in the closed-loop system in Fig. 4 can be 

safely neglected. Thus the wave forms of mi(t) and pi(t) can be approximated by their zero-

order and first-order harmonic components [26]:

(14)

(15)

where αi, xi and βi, yi denote the amplitudes of the zero-order and first-order harmonics, 

respectively, and w and ϕi, φi denote the oscillation frequency and the phases, respectively.

Again, because the higher order harmonics of oscillations in the closed-loop system can be 

safely neglected, g(•) in (2) can be approximated legitimately by its describing functions 

based on multivariable Fourier analysis [27]:
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(16)

where  denotes the index set {j = 1, 2, . . . , N, j ≠ i} and

(17)

(18)

(19)

The describing function ηi and ξi,j are the gains of g(•) when the inputs are two sinusoids of 

amplitudes βi and yj, respectively, and the output is approximated by the first-order 

harmonic [26], [27]. Combining (2) and (16) one gets that ξi,j denotes oscillator j's influence 

on oscillator i, namely, the influence of intercellular coupling.

Based on the harmonic balance technique [26], pi(t) (i = 1, 2, . . . , N) in Fig. 4 must satisfy:

(20)

where

(21)

In its present form, analytical treatment of equation (20) is very difficult. However, 

considering that we are interested in the collective period, we can restrict our attention to 

solutions that describe synchronized oscillations of the oscillator network. This provides a 

clue to simplify the dynamics: synchrony indicates that the phases of each oscillator ϕi and 

φi (i = 1, 2, . . . , N) are identical, respectively.

A. Proof of Theorem 1

Given that the cellular oscillators are homogeneous and the coupling is symmetric, the 

amplitudes of all oscillators βi and yi (i = 1, 2, . . . , N) are respectively identical, too. Since 
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ξi,j and ηi are determined by βi and yi, we further have ξ1,2 = . . . = ξ1,N = . . . = ξN–1,N = ξ 

and η1 = η2 = . . . = ηN = η. Using these properties, we can reduce (20) to:

(22)

where

(23)

It can be verified that H(jw) has two eigenvalues:

(24)

of multiplicity 1 and

(25)

of multiplicity N – 1, and only δ1 corresponds to eigenvectors with identical elements.

As analyzed above, when the network is synchronized, P and M are vectors of identical 

elements. Thus we have

(26)

According to (18), η is real, thus the item on the right hand side of (26) must be real, i.e., its 

imaginary part is zero.

Since  can be rewritten as

it follows that the imaginary part of the right hand side of (26) is zero given that (4) is 

satisfied. Denote the ratio between the Fourier coefficients of  with respect to pi 

and mj  respectively as κ (Note that due to the structure of , κ is 

independent of i and j, and its exact value—which is not needed in the analysis in this paper

—can be calculated numerically [27]), (5) is obtained from the equality of both sides of (26). 

Hence the theorem is proven.
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B. Proof of Theorem 2

When the oscillator network is synchronized, the collective period is determined by (4), 

which can be rewritten as

(27)

From trigonometric addition formulas, (27) is equivalent to

(28)

Eqn. (28) can be further transformed into

(29)

Setting

(30)

and using the linear combination rule of sine and cosine, we can recast (29) into

(31)

where .

It can be easily verified that g(wA) = 0. So we have

(32)

Therefore, when (8) holds, the collective period T is the same as the autonomous period TA.

Since w is the minimal positive value satisfying (7) and (4) from the harmonic balance 

technique [26], one can verify that  where . This 

is because when  the respective two sides of (7) and (4) have different 
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signs—excluding the possibility of solutions, whereas when , the 

respective two sides of (7) and (4) can be verified to have an intersection via trend analysis. 

(Note that: ① ξ < 0 holds since g(•) decreases with mi(t) and hence has a negative 

describing function [16], [27]; ②  holds due to the fact that the half lives of 

molecules,  and , need to be much smaller than Tm + Tp to guarantee sustained 

oscillations [32], [33].) Therefore, we have tan w(Tm + Tp) < 0 and bc–w2 > 0. Hence g(w) in 

(30) satisfies g(w) > 0 if and only if w > wA holds, and g(w) satisfies g(w) < 0 if and only if 

w < wA holds. Therefore, from (31), we have w > wA when sin(w(Tm+Tp–τ)+ϕ) > 0 is 

satisfied, and we have w < wA when sin(w(Tm + Tp – τ) + ϕ) < 0 is satisfied (notice that cos 

w(Tm+Tp) < 0 for  and ξ < 0). Using the properties of sinusoidal functions, 

we have w > wA when τ satisfies (9) for k = 2n – 1 (n = 0, 1, 2, . . .), and w < wA when τ 

satisfies (10) for k = 2n (n = 0, 1, 2, . . .).

Next we proceed to prove that when τ satisfies (11), the collective period T increases with τ, 

and when τ satisfies (12), the collective period decreases with τ.

It can be verified that g(w) is an increasing function of w for . Given that ξ 

< 0 and cos w(Tm+Tp) < 0 when , the right hand side of (31) increases 

with sin(w(Tm+Tp – τ)+ϕ), which is a decreasing function of τ when τ satisfies (11). So w is 

a decreasing function of τ when τ satisfies (11). Similarly, we can prove that the right hand 

side of (31) increases with sin(w(Tm + Tp – τ) + ϕ), which is an increasing function of τ 

when τ satisfies (12). So w is an increasing function of τ when τ satisfies (12). Recall that T 

is equal to  and hence is a decreasing function of w, we have the second part of Theorem 2.
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Fig. 1. 
Modeling the intercellular coupling in the segmentation clock [10]. Utilizing the subnetwork 

replacement technique [23], the cascade (the thin blue/pink arrows/bars) can be replaced 

with the repressive interaction (the thick blue/pink bar ⊣.
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Fig. 2. 
Comparison of estimated autonomous period with [10]. The actual period is calculated from 

direct numerical simulation of the model in [10].
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Fig. 3. 
Verification using a segmentation clock model described in [10].
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Fig. 4. 
Schematic diagram of the frequency domain formulation of (3). P(s) and M(s) are the 

respective element-wise Laplace transform of P(t) and M(t) in (3).
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