
A Simple and Fast Approach for Predicting 1H and 13C Chemical
Shifts: Toward Chemical Shift-Guided Simulations of RNA
Aaron T. Frank,* Sean M. Law, and Charles L. Brooks, III*

Department of Chemistry and Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055,
United States

*S Supporting Information

ABSTRACT: We introduce a simple and fast approach for predicting RNA chemical
shifts from interatomic distances that performs with an accuracy similar to existing
predictors and enables the first chemical shift-restrained simulations of RNA to be
carried out. Our analysis demonstrates that the applied restraints can effectively guide
conformational sampling toward regions of space that are more consistent with
chemical shifts than the initial coordinates used for the simulations. As such, our
approach should be widely applicable in mapping the conformational landscape of
RNAs via chemical shift-guided molecular dynamics simulations. The simplicity and
demonstrated sensitivity to three-dimensional structure should also allow our
method to be used in chemical shift-based RNA structure prediction, validation, and
refinement.

■ INTRODUCTION

The recent realization of the important role played by
ribonucleic acids (RNAs) in regulating cellular processes1,2

has resulted in significant interest in characterizing the structure
of these molecules at atomic resolution. However, RNAs
possess significant conformational flexibility, which complicates
structure determination via X-ray crystallography and nuclear
magnetic resonance (NMR) spectroscopy. From a biophysical
standpoint, this conformational flexibility has significant
mechanistic implications on RNA function. For instance, in
the context of molecular recognition, a number of RNAs, most
notably the HIV-1 trans-activating response (TAR) element
RNA, bind ligands via a conformational capture mechanism in
which the ligand-free RNA samples a number of distinct
“bound-like” states.3−6 In the case of HIV-1 TAR, the
conformations of the RNA in complex with a number of
ligands closely resemble some of the conformations sampled in
the ligand-free state.6,7 As such, instead of a static RNA
structure, an ensemble representation that captures the entire
range of accessible conformations, along with their associated
population weights, is needed.
In principle, molecular dynamics (MD) simulations can be

used to map the landscape of any biomolecule in a
thermodynamically rigorous manner. However, the force fields
used to simulate the dynamics of biomolecules in MD
simulations are imperfect. This is particularly true for RNA
force fields, which, due to the protein-centric view that has been
prevalent up to this point, have been the subject of less
development than their protein counterparts. The use of
experimentally guided simulations has emerged as an alternative
to the often tedious and time-consuming reparameterizations of
force fields. In these guided simulation approaches, the force

field is augmented with a biasing term that ensures that the
system being simulated matches some experimental observ-
able(s).8−12 The use of experimentally guided simulations to
accurately map the conformational landscape of proteins is now
well-established.13−20

Of particular interest are approaches that use NMR chemical
shifts to guide MD simulations of biomolecules. Chemical shifts
have emerged as an attractive source of structural information
due to the fact that, in addition to being readily accessible and
being the most precisely measured NMR observable, they
exhibit exquisite sensitivity to structure.21−26 Advances in site-
specific labeling techniques27−30 and automated assignments
approaches31−35 means that chemical shifts are, and will
continue to become, increasingly accessible, not only for the
small RNAs (<40 nt) typically studied using NMR, but for
larger and more complex RNAs as well.30,36

A prerequisite for the use of chemical shifts-guided
simulations to map the conformational landscape of a
biomolecule is the availability of structure-based approaches
that allow chemical shifts to be predicted from the three-
dimensional (3D) coordinates of the molecule. In this regard,
empirical methods have been shown to be of great utility. In the
case of proteins, a plethora of such empirical structure-based
chemical shift predictors have been developed.37−42 In contrast,
only a few such methods exist for RNA. Two of these methods,
SHIFTS43 and NUCHEMICS,44 predict nonexchangeable 1H
chemical shifts, while the recently described RAMSEY45 is
capable of predicting both nonexchangeable 1H and protonated
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13C chemical shifts. In principle, the ability to predict both 1H
and 13C chemical shifts makes RAMSEY an ideal predictor to
be used in chemical shifts-guided simulations. However,
RAMSEY, which was developed using the random forest
approach, is a “black box” predictor, which automatically
precludes its direct incorporation into MD simulations because
no closed-form analytical solution can be obtained.
As a first step toward using chemical shifts to guide MD

simulations of RNA, we report on the development of
LARMORD (LARMOR for the Larmor frequency (ω) and D
for distance), a simple distance-dependent chemical shift
predictor that allows chemical shifts to be easily incorporated
into molecular simulations of RNA. In what follows we: (i)
describe the model and the approach used to parametrize
LARMORD; (ii) assess the accuracy of LARMORD; (iii)
demonstrate the sensitivity of LARMORD predicted chemical
shifts to RNA 3D-structure; and (iv) apply LARMORD enabled
chemical-shift guided MD simulations (CS-MD) to a model
RNA system. Collectively, our results indicate that in addition
to its simplicity and speed, LARMORD is accurate, sensitive to
RNA 3D structure, and enables effective biasing restraints to be
derived from experimental NMR chemical shifts.

■ METHODS AND MATERIAL

The Chemical Shift-Structure Database. To generate
LARMORD, we compiled a training set consisting of RNAs for
which NMR structures were available via the Protein Data Bank
(PDB: http://www.pdb.org) and chemical shifts were available
via either the Biological Magnetic Resonance Bank (BMRB:
http://www.bmrb.wisc.edu/) or the literature (Supporting
Information, Table S1). Excluded from the database were
RNAs: (i) that were known and verified to contain systematic
13C referencing errors;45,46 (ii) whose corresponding chemical
shifts were assigned at temperatures <290 K; (iii) that were
bound to small molecules and/or proteins; and (iv) that
contained modified residues. In total, the compiled chemical
shift-structure training set contained data from 35 RNAs. In
addition to the training set, a testing set was compiled. The
testing set consists of chemical shifts and structures for 28
RNAs, 17 of which were known and verified to contain 13C
referencing errors (Supporting Information, Table S2). The
testing set served two purposes: (i) it allowed us to test
whether the LARMORD predictors, specifically, the 13C
predictors, were accurate enough to detect known systematic
referencing errors, and (ii) after correcting for identified
systematic referencing errors, it allowed us to independently
assess the accuracy of both 1H and 13C chemical shift predictors.
For both data sets, we carried out outlier analysis by examining
the distributions of reported chemical shifts for each unique
nucleus (i.e., each unique combination of 1H and 13C nuclei
and residue types). Outliers were identified as entries that were
greater than the median by more than three standard deviations
(i.e., the 3σ rule). The outliers comprised <1% of the combined
data set and, for completeness, the entries identified as outliers
are listed in Supporting Information, Table S3. The final
training set (excluding outliers) contained 5505 and 2924 1H
and 13C chemical shifts, respectively, and the testing set
(excluding outliers) contained 5520 and 3745 1H and 13C
chemical shifts, respectively.
For each RNA entry in the training and testing sets, the

interatomic distances, rij (see eq 1), that were to be used to
predict chemical shifts were extracted from the NMR bundle of

the corresponding RNA using the following approach. First, to
generate a representative model, the member of the NMR
bundle that was closest (i.e., had smallest structural root-mean-
square deviation (RMSD)) to the average structure of the
bundle was selected and then briefly minimized using the
steepest-descent gradient method. For every nucleus for which
1H or 13C chemical shifts were available, the distance between
that nucleus and all heavy atoms were measured from the
coordinates of the representative model. All distances were
determined using the MDAnalysis47 python module.

Distance-Based Chemical Shift Prediction Model. In
our model, the chemical shift, δi

pred, for a given RNA nucleus i,
is expressed as a function of interatomic distances,40,41 that is:
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=
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Here, δi
ref is the reference chemical shift for nucleus i, N is the

total number of heavy atoms in the RNA, rij is the interatomic
distance between atoms i and j, and αij is a parameter that
depends on the atom type of i, and the atom and residue type
associated with j (Figure 1). For each nonexchangeable 1H

(H1′, H2′, H3′, H4′, H5′, H5″, H2, H5, H6, H8) and
protonated 13C (C1′, C2′, C3′, C4′, C5′, C2, C5, C6, C8)
nucleus, the set {αij} that minimized the objective function χ2,
which quantifies the error between measured and predicted
chemical shifts, was determined using a genetic algorithm (GA)
optimization approach. Here,
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where δi
meas and wi are the measured chemical shift and

weighting factor, respectively, and for a given nucleus i. The
summation runs over the set of NCS chemical shifts in the
training set. All GA optimizations were carried out with a
population size of 10, and the number of evolution cycles was

Figure 1. Illustration of the approach used to predict RNA chemical
shifts. For a given nucleus (red sphere), chemical shifts are predicted
as a function of the distances between that nucleus and all heavy atoms
in the RNA (cyan lines; eq 1).
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set to 4000 using the Pyevolve python module.48 Each GA
optimization was initialized with {αij} = 0∀j (i.e., for some
nucleus i, δi

pred = δi
ref (eq 1)) and wi = 1∀i throughout the

optimization. Using these GA settings, all optimizations were
converged, and the fitted errors ((χ2)1/2) were near the
expected ranges; for protons and carbons, the average (χ2)1/2

was ∼0.19 and 1.09 ppm, respectively. By comparison
RAMSEY has prediction errors of ∼0.16 and 0.90 ppm for
protons and carbons, respectively.45

Chemical Shift-Guided MD Simulation. To carry out
chemical shift-guided MD simulations (CS-MD), LARMORD

was implemented into the CHARMM macromolecular
mechanics package.49 CS-MD simulations were then carried
out using the hybrid energy approach50 in which the total
energy associated with a conformer X, E(X), is given by

β
χ= +X X XE

N
E( )

2
log ( ) ( ).CS 2

CHARMM
(3)

Here, ECHARMM(X) and β are the CHARMM force-field energy
of X and 1/kBT (kB = Boltzmann constant), respectively, and χ2

is the expression noted above (see eq 2). In this case, however,
the weighting factors (wi) were used to account for the
differential accuracy of the predictors. Specifically,

=w
1

MAEi
i (4)

where MAEi is the estimated mean absolute error between
measured and LARMORD predicted chemical shifts for the
nucleus type associated with i. Here the MAEi were estimated
using the testing set. In addition to accounting for the
differential accuracy of the predictors, wi scales the error such
that nuclei with different dynamic ranges can contribute
similarly to the χ2 (for example 1H and 13C nuclei). The
hybrid energy with a log-harmonic restraint term was
introduced by Habeck et al. and is a Bayesian-inspired marginal
hybrid energy51 that has the special feature that it does not
include a “force constant” scaling factor for the restraint term−
in typical hybrid energy schemes, an ad hoc force constant that
scales the contribution of the restraint term relative to the
physical energy (here ECHARMM(X)) must be specified.
As a proof of concept, chemical shift-guided MD (CS-MD)

simulations were carried out on the U6 intramolecular stem-
loop (ISL) RNA.52 In solution, the U6 ISL RNA exists in
different conformational states at pH 5.7 and at 7.0. At pH 5.7,
U80 is extrahelical, whereas at pH 7.0 it is intrahelical (Figure
3B). CS-MD simulations of the U6 ISL were initiated from the
pH 5.7 conformation (model 1; PDB: 1SYZ53), and measured
chemical shifts assigned at pH 7.0 (BMRB: 537154) were used
to guide the simulations using eq 3. As a control, conventional
unrestrained MD simulations were also carried.
To prepare for simulations, model 1 from PDBID: 1SYZ was

solvated in a 67 Å cubic box of TIP3 waters.55 The system was
then charge neutralized with sodium counterions and relaxed
with 100 steepest-descent, followed by 1000 adopted basis
Newton−Raphson minimization steps. Prior to production
runs, the RNA was heated from 250 to 325 K over 20 ps.
During this phase the heavy atoms of the RNA were
harmonically restrained using a force constant of 2.0 kcal/
mol/Å. Production runs were then initiated from the resulting
systems. For each independent simulation, the heating phase
was initiated with different velocities by supplying distinct
random number seeds. For both CS-MD and MD simulations,

10 independent production runs were carried, each 2 ns long
and simulated in the NPT ensemble (325 K and 1 atm). All
simulations were carried out using the CHARMM3656 nucleic
acid force field. SHAKE was used to constrain hydrogen-
containing bonds.57 The van der Waals potential was truncated
using a switching function between 10 and 12 Å. Long-range
electrostatics was calculated using particle-mesh Ewald (PME)
with a fourth-order B-spline used for interpolation.58

■ RESULTS AND DISCUSSION
For chemical shifts to be incorporated as structural restraints
that guide MD simulations, the method used to predict
chemical shifts from 3D coordinates must be (i) fast, (ii)
accurate, and (iii) sensitive to RNA 3D structure. By design,
LARMORD’s simple dependence on interatomic distances

Figure 2. Detecting chemical shift referencing errors using
LARMORD: comparison between LARMORD predicted referencing
errors and those estimated using the approach of Aeschbacher et al., in
which the chemical shift signature of the terminal G:C base pair is
compared to expected values for correctly referenced chemical shifts.
Results are shown for RNAs (identified by the PDBIDs) in the testing
set.

Figure 3. Assessing accuracy of LARMORD: (A) Bar plots of the mean
absolute error (MAE) between measured and (gray) LARMORD and
(light gray) RAMSEY predicted 1H (left) and 13C (right) chemical
shifts. (B) Bar plots of the Pearson correlation coefficient (R) between
measured and LARMORD and RAMSEY predicted 1H (left) and 13C
(right) chemical shifts. Results are shown for RNAs in the testing set.
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guarantees that it can rapidly predict chemical shifts for 3D
coordinates, and indeed, profiling of its predictions confirms
this (Supporting Information, Table S4). We therefore focus
our assessment of LARMORD on its accuracy and then its
sensitivity to RNA 3D structure.
LARMORD Can Detect Referencing Errors in 13C Data

Sets. Before assessing the accuracy of individual LAR-
MORD 1H and 13C chemical shift predictors, we investigated
whether (i) 13C chemical shifts data set with known referencing
errors could be detected and (ii) reliable estimates for the
magnitude of these errors could be determined using
LARMORD. Unlike many other experimental observables,
NMR chemical shifts are relative measurements. As such, any
data set of chemical shifts is susceptible to issues related to
inconsistent referencing, which complicates the establishment
of reliable structure−chemical shifts relationship.59

In the case of proteins it was found that a significant number
of data sets deposited in the BMRB contained 13C and 15N
referencing errors.59,60 Wishart and co-workers have addressed
this using a structure-based approach in which a predictor,
trained on chemical shift data known to be correctly and
consistently referenced, is used to predict chemical shifts for a
target protein from its solved X-ray or NMR structure.
Systematic errors can be identified by comparing the predicted
chemical shifts to the measured chemical shifts.60

Similar to those of proteins, RNA chemical shifts, in
particular 13C chemical shifts, are known to also contain
referencing errors. Aeschbacher et al. recently described an
approach that utilizes the chemical shift signatures of terminal
G-C base pair to detect referencing errors.46 Application of

their approach indicated that a number of the entries in our
testing set contained systematic referencing errors (ΔδGC).
To test whether LARMORD can detect referencing errors, it

was used to predict 13C chemical shifts for each RNA in the
testing set, and then the absolute median error between
measured and predicted chemical shifts was determined and
used as an estimate of the systematic error (Δδpred). As shown
in Figure 2, 17 of the 27 entries in testing set that contained 13C
shifts exhibited large systematic error (i.e., Δδpred >1.0 ppm).
Remarkably, Δδpred were in excellent agreement with ΔδGC
suggesting that LARMORD was not only able to identify
referencing errors in 13C chemical shift data sets but was also
able to provide reliable estimates of the magnitude of these
errors. Immediately, LARMORD could be incorporated into an
automated procedure that allows referencing errors in RNA
chemical shifts to be detected, corrected, and then made
available to the scientific community via a secondary database,
as has been done for proteins.60

Despite Its Simplicity, LARMORD Accurately Predicts
Chemical Shifts. Given the simple model used by LARMORD,
a critical question is how accurate are the predicted chemical
shifts. We answered this question for individual 1H and 13C
nuclei by calculating the mean absolute error (MAE) and the
Pearson correlation coefficient (R) between experimentally
measured and LARMORD predicted chemical shifts in the
testing set. Prior to assessing their accuracy, 13C chemical shifts
were re-referenced where necessary. The MAE for 1H nuclei
ranged between 0.09 and 0.24 ppm, with a mean of 0.15 ppm.
For 13C the range was 0.53 and 1.09 ppm, and the mean was
0.81 ppm (Figure 3B). By comparison, RAMSEY45 exhibited
MAE that ranged between 0.08 and 0.18 ppm (mean of 0.14
ppm) for 1H and between 0.57 and 1.14 ppm (mean of 0.83
ppm) for 13C (Figure 3B). The accuracy for LARMORD is
therefore similar to RAMSEY. A similar picture emerged when
examining Rfor 1H and 13C, the mean value was 0.51 and
0.57, respectively, for LARMORD, compared to 0.59 and 0.53,
respectively, for RAMSEY (Figure 3C).
In general, RAMSEY appears to predict 1H chemical shifts

with slightly greater accuracy than LARMORD. Because 1H
chemical shifts are known to be more highly sensitive to ring-
current effects, we investigated whether accounting for ring-
current effects when predicting 1H chemical shifts would result
in more accurate predictions. For 1H nuclei, we generated a set
of new predictors by repeating the parametrization (see eq 1),
but this time including an additional ring-current term
(calculated using the Johnson−Bovey model61) in eq 1. For
these predictors, however, we did not observe any noticeable
improvements in the accuracy (data not shown). Direct
comparison with SHIFTS and NUCHEMICS, two empirical
predictors capable of also predicting 1H chemical shifts,
revealed LARMORD to be more accurate. SHIFTS and
NUCHEMICS predict chemical shifts with an MAE of 0.37
and 0.21 ppm, and an R of 0.38 and 0.46, respectively, as
compared to 0.15 ppm and 0.51, respectively, for LARMORD

(Supporting Information, Table S5). Together, these results
suggest that without explicitly accounting for hydrogen bonding,
base−base stacking, ring current, magnetic anisotropies, and
bond polarization effects, the simple distance-based approach
used here is sufficient to enable LARMORD predictions of both
1H and 13C chemical shifts with good accuracy relative to the
currently available empirical structure-based approaches.

LARMORD Predicted Chemical Shifts Are Sensitive to
RNA 3D Structure. For chemical shifts to be used to guide

Figure 4. Assessing the ability of LARMORD chemicals shifts to
resolve 3D structure of the SRL RNA: MCSYM was used to predict
the structure of the sarcin−ricin loop (SRL) from sequence. The
MCSYM conformational pool contained 8000 models. After using
LARMORD to predict chemical shifts for each model in the MCSYM
conformational pool, models with the lowest chemical shift errors were
identified. This figure shows the cartoon overlays comparing the X-ray
structure (PDB: 430D; white) of SRL RNA with the six MCSYM
models that exhibited lowest error between measured and LARMORD

predicted chemical shifts (blue).
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MD simulations, it is essential that the predictor used to back-
predict chemical shifts from atomic models is sensitive to RNA
structure. To assess its sensitivity to 3D structure, LARMORD

was used to predict the chemical shifts for each model in a
conformational pool that contained 8000 putative models of
the sarcin−ricin loop (SRL) RNA.62 These models were
generated from its sequence using the RNA structure
prediction software MCSYM63 and correspond to structures
consistent with the nine lowest-energy secondary structures as
predicted by the program MC-fold.49,63 In Figure 4 the six
models with the lowest error between measured and
LARMORD predicted chemical shifts are overlaid with the X-
ray structure. As can been seen the low-error models are in
excellent agreement with the solved structure. Further, we
found that 24 of the 30 models with the lowest chemical shift
error had an RMSD < 2.0 Å. These results indicate that
LARMORD predicted 1H and 13C chemical shifts are indeed
sensitive to RNA 3D structure. LARMORD should therefore be
useful in the context of chemical shift-guided MD simulations.
Additionally, the demonstrated sensitivity to RNA 3D structure
strongly suggests that LARMORD can be employed in RNA
structure prediction either as a postprocessing structural filter
to identify representative models (as was demonstrated for SRL
RNA here) or to construct a penalty term to guide
conformational exploration in structure prediction approaches
a ̀ la CS-Rosetta-RNA.26

LARMORD Predicted Chemical Shifts Effectively
Guides MD Simulations of RNA. As the focus of this work
was the development of a chemical shifts predictor that enabled
NMR chemical shifts to be easily incorporated into molecular
simulations of RNA, we conclude our study by implementing
the LARMORD-based chemical shifts restraint functionality
into the CHARMM macromolecular mechanics package49 and
then carrying out chemical shift-restrained MD (CS-MD)
simulations on a model system. Specifically, CS-MD
simulations were carried out on the U6 intramolecular stem-
loop (ISL) RNA52 (Figure 5A,B). At pH 5.7, the U80 base of
U6 ISL is in an extrahelical position, whereas at pH 7.0, U80 is
intrahelical (Figure 5B). Base flipping is ubiquitous in RNA
structural dynamics and in many cases acts as a switching
mechanism between conformational states of an RNA.64−67

Together with its relatively small size (27 nt), this makes the
U6 ISL an excellent benchmark system for our CS-MD
simulation approach.
Starting from the pH 5.7 coordinates (PDB: 1SYZ;53 model

1), we carried out CS-MD simulations using reference chemical
shifts assigned at pH 7.0 (BMRB: 537154). If the chemical shifts
restraints are effective then, in comparison to the unrestrained
simulation, the conformations along the trajectory of the CS-
MD simulation should more closely resemble the intrahelically
stacked pH 7.0 conformation; this despite the fact that the
simulations were initiated from the extrahelical pH 5.0
conformation.

Figure 5. LARMORD enabled chemical shifts guided simulations of the U6 ISL RNA: (A) Secondary structure of the U6 intramolecular stem-loop
(ISL) RNA. Residues C67, A79, and U80 are highlighted in blue. Residues 65−69 and 76−82, which makes up the conformationally active region,
are circled. (B) Cartoon representation of the U6 ISL at pH 5.7 (model 1; PDB: 1SYZ) and pH 7.0 (model 1; PDB: 1SY4). Only the
conformationally active region is shown in the cartoons. (C) RMSD distribution over the set of 10 CS-MD (black) and MD (red) trajectories.
RMSDs were calculated relative to the pH 7.5. From each of the 10 CS-MD and 10 MD trajectories, the model with the lowest RMSD was extracted;
shown are the five models with the lowest RMSD extracted from the (D) CS-MD and (E) MD trajectories.
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We found that in the case of the CS-MD simulations, the
distribution of RMSDs relative to the pH 7.0 structure was
shifted toward lower RMSD values than in the control MD
simulations (Figure 5C; Supporting Information, Figure S1).
This indicates that the chemical shifts restraint, constructed
using chemical shifts assigned at pH 7.0, was effective in guiding
sampling away from the initial pH 5.7 conformation (Figure
5B; left) toward the pH 7.0 (Figure 5B; right). Five out of the
10 CS-MD simulations sampled conformations with RMSDs <
1.8 Å, compared to only one for the control simulations (Figure
5D,E and Supporting Information, Figures S1 and S2).
Similarly, three out of the 10 CS-MD simulations were able
to sample conformations within ∼1.3 Å of the flipped in and
stacked state, while the unrestrained simulations were limited to
RMSDs > 1.7 Å (Figure 5D; Supporting Information, Figure
S1). These results demonstrate that the LARMORD chemical
shift restraints are able to effectively guide conformational
sampling of U6 ISL, allowing chemical shifts to be used within
the context minimally biased12 and/or maximum entropy-
based11 approaches to map the conformational landscape of
RNA.
In addition to opening up the possibility of using chemical

shifts to map the conformational landscape of RNAs,68

chemical shift-guided simulations may be of utility in carrying
explicit solvent MD-based refinement of NMR structures.
Conventional NMR structure determination is typically carried
out without explicitly accounting for solvent effects (i.e., carried
out in vacuo) and using ad hoc treatment of nonbonded
interactions. Indeed, previous work has shown that structure
refinement using an accurate force field, while explicitly
accounting for solvent, resulted in structures that are sometimes
in better agreement with the original NMR data than the
structures solved using conventional in vacuo approaches.69

To facilitate the use of LARMORD, the parameters and the
source code implementing the predictor is made freely available
to academics (see the link shown in the Supporting
Information byline). In addition, the LARMORD-based
chemical shifts restraint module will be available in CHARMM.
Though RNA was the focus of the current work, the

implementation of LARMORD in the stand-alone predictor and
CHARMM follows a general design approach, so that in
principle they can be used for any molecular assembly, for
example, proteins, nucleic acids (NA), protein−protein,
protein−NA, and NA−NA complexes, provided, of course,
that the appropriate parameters are available, which is a
component of ongoing work.

■ CONCLUSION
In summary, we have developed LARMORD, a simple, fast, and
accurate method for predicting nonexchangeable 1H and
protonated 13C RNA chemical shifts based only on interatomic
distances. We showed that LARMORD was capable of resolving
RNA 3D structure, and more importantly for this study, we
demonstrated that LARMORD-based chemical shifts restraints
were effective in guiding conformational sampling during CS-
MD simulations. Future work will focus on developing and
validating robust CS-MD simulations protocols that will allow
chemical shifts to be used to map the conformational landscape
of RNAs, as well as protocols for using chemical shifts to refine
NMR structures of RNAs. In addition, we will also explore
more fully combining LARMORD with current state-of-the-art
prediction approaches to aid in RNA structure prediction. This
application would be particularly useful in cases where chemical

shifts are the only high-quality structural data available−as is
the case for transiently populated “invisible” states of RNAs
that can now be detected using chemical shifts relaxation
dispersion experiments.70,71
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