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Abstract

Statistical model-based reconstruction methods derive much of their advantage over traditional 

methods through more accurate forward models of the imaging system. Typical forward models 

fail to integrate two important aspects of real imaging systems: system blur and noise correlations 

in the measurements. This work develops an approach that models both aspects using a two-stage 

approach that includes a regularization deblurring operation followed by generalized penalized 

weighted least-squares reconstruction. Different reconstruction noise models including standard 

uncorrelated and correlated presumptions were explored. Moreover, different imaging systems 

were investigated in which blur was dominated by source effects, dominated by detector effects, 

or by a combination of source and detector blur. The proposed reconstruction approach that 

models the correlated noise demonstrated the best performance across all scenarios with the 

greatest benefits for increased source blur and for reconstructions with finer spatial resolution. 

This suggests potential application of the method for high resolution systems like dedicated flat-

panel cone-beam CT (e.g., head, extremity, dental, mammography scanners) where system 

resolution is limited by both source and detector blur effects and noise correlations in 

measurement data are traditionally ignored.

Index Terms

High spatial resolution CT; Model-based Reconstruction; Generalized Least-Squares Estimation

I. INTRODUCTION

Model-based tomographic reconstruction techniques have demonstrated better dose 

utilization and noise versus image quality tradeoff than traditional methods [1]. Such 

advantages are, in part, due to the integration of improved forward models that more 

accurately represent the physics and noise processes of acquisition and detection. Forward 

models of varying complexity can be designed to incorporate different imaging system 

characteristics, such as source and detector blur [2][3]. While recent studies [4] suggest that 

blur modeling may not yield substantial improvements for current diagnostic CT scanners 

and scan protocols, the advantages of blur modeling are dependent on target spatial 

resolutions and system geometries. For example, degradations in spatial resolution are 

potentially much more important in systems like dedicated flat-panel cone-beam CT that has 
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been developed for high spatial resolution applications (e.g., temporal bone, extremity, 

dental imaging). The intrinsic spatial resolution in these systems is limited by both detector 

and source blurring effects. Detector blur tends to be dominated by light spread in the 

scintillator as opposed to detector aperture effects, since the pixel size tends to be small 

compared to the scintillator blur. Source blur is also often more pronounced in such systems 

due to the compact geometries (short source-to-detector distances) and the use of fixed 

anode sources with focal spots that are larger than their rotating anode counterparts.

Thus, higher fidelity forward models like those in [2][3] that incorporate system blur offer 

an opportunity to recover lost spatial resolution. However, those approaches and nearly all 

traditional model-based reconstruction methods make an important assumption about the 

underlying noise model that is potentially quite inaccurate for flat-panel systems that use 

indirect detection. Specifically, the conversion of primary quanta to secondary quanta in the 

scintillator of an indirect detector imparts spatial correlations in the measurement noise. 

These correlations are visibly evident in gain scan acquisitions, yet the standard assumption 

for statistical model-based reconstruction is to presume that the measurements are 

independent. Despite this noise model mismatch, model-based approaches have 

demonstrated an advantage in cone-beam CT [1]. However, we hypothesize that additional 

advantages can be attained when more accurate noise modeling is integrated in the 

reconstruction, particularly in high spatial resolution applications in which system blur is 

also modeled.

Previous work [5] has shown that integrating a correlated noise model into the 

reconstruction process allows for improved tradeoffs between noise and resolution. In [5], a 

linearization of the data that included a deblurring operation followed by penalized 

generalized weighted least-squares reconstruction was introduced and applied to an imaging 

system with equal amounts of source and detector blur. The work presented here further 

generalizes the methodology of [5] to consider regularized deblurring of projection data and 

extends the investigations to systems with varying degrees of source and detector blur. 

Specifically, we consider scenarios where source blur is dominated by source effects, or 

dominated by detector effects, or is a mixture of source and detector effects to find where 

blur and correlated noise modeling yields the greatest advantage. Understanding this 

relationship has important implications for hardware design in cone-beam CT systems, 

including choices in the system geometry, focal spot size, scintillator thickness, etc.

In the following sections, the generalized reconstruction approach with system blur and a 

correlated noise model is introduced and investigated. Three different noise models - white 

noise, uncorrelated noise with unequal variances, and generalized correlated noise - are 

compared in simulated CT studies, and the improved performance using the correlated noise 

model is demonstrated
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II. METHODS

A. Forward Model and Correlated Noise Model

The system model for a general CT system with indirect detection is illustrated in Figure 1. 

The mean measurement model that we adopt for development of the reconstruction 

algorithm has the following form:

(1)

which uses a monoenergetic formulation of Beer's law where the image volume is denoted 

by μ, the projection operation is represented by the system matrix A, and the diagonal matrix 

G denotes a gain associated with each detector ray (i.e. x-ray fluence). (The notation D{·} 

denotes the operator that puts the vector operand onto the diagonal elements of a diagonal 

matrix.) Two linear blur operators are included that model the effects of source blur, Bsand 

detector blur Bd separately. This model is an approximation, particularly for source blur, 

since source effects are depth-dependent. However, for objects that are relatively thin 

(without a substantial change in magnification across the volume) this is a convenient and 

reasonable approximation.

The propagation of noise through the imaging system is also illustrated in Figure 1. Photons 

generated at the x-ray source are presumed to be independent with a variance equal to their 

mean (e.g., a Gaussian approximation to a Poisson distribution) yielding a diagonal 

covariance matrix. Some x-ray photons are attenuated in the object modifying these 

variances by their survival probabilities as well as spatial spreading due to source blur; 

however, the noise remains uncorrelated at this point. In the detector, individual x-ray 

photons are converted to many light photons, which spread spatially (detector blur) and 

correlate the noise. Lastly, photodiodes convert light photons to a digital signal with possible 

readout noise (presumed independent and Gaussian with standard deviation equal to σro). 

This results in the following model for the distribution of noise in the measurements:

(2)

with the following covariance matrices: Kq represents predetection uncorrelated quantum 

noise, Kr denotes uncorrelated readout noise, and Ky is the covariance associated with the 

measurement vector y.

As in [5], rather than trying to solve the generalized nonlinear least-squares reconstruction 

problem, we choose to transform the measurements to obtain a linear least-squares objective 

function. Specifically, we may compute estimated line integrals using the follow equation

(3)

This transformation includes the familiar normalization (G−1) and logarithm operations, but 

also includes a deblurring of projection data represented by B−1.
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Ideally, this deblurring would remove spatial resolution losses associated with both the 

source and detector blur suggesting that

(4)

Unfortunately, such an inverse may not exist, or the inverse is highly ill-conditioned, 

yielding computational difficulties and potential noise amplification. Instead, we adopt the 

following regularized pseudo-inverse

(5)

This transformation allows for regularized inversion of the source and detector blurs and 

includes a parameter λ to control the strength of the regularization. (Here, we have adopted a 

magnitude regularization scheme, but other options, including pairwise roughness penalties, 

could also be applied.)

Applying the linearization in (3) suggests the following generalized penalized weighted 

(linear) least-squares reconstruction objective function:

(6)

which encourages a fit between the line integral estimates and the projected image volume 

estimate. In this case, we have adopted a quadratic regularization term which leads to a 

closed form solution with penalty strength governed by the scalar parameter β. Central to the 

data fitting is a weighting by the inverse of the covariance associated with the estimated line 

integrals. Thus, an expression Kl is required. As in [5], propagating the measurement 

covariance Ky through the transformation in (3), one can show that the covariance of the line 

integral estimates may be approximated as

(7)

While the estimator in (6) is fully specified with the definitions in (5) and (7), there are a 

number of practical concerns in performing this optimization.

B. Practical Implementation

For typical CT systems, it is impractical to store and invert most of the matrices defined 

above. Thus, the action of the matrices is implemented functionally. This includes projection 

and backprojection functions, shift-invariant blur functions implemented using Fourier 

methods, and computation of Kl through serial application of each of its components. The 

measured data were used as an approximation for ȳ in (7), and Kq in (2) was approximated 

from measurements by D{B−1y}.
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The matrix inverses require special treatment as well. For shift-invariant blur functions, (5) 

may be computed directly using Fourier domain division. The action of the remaining three 

matrix inverses in (6) are computed using conjugate gradient (CG) based approximation.

Noting that (6) can be rewritten as

(8)

(9)

(10)

we see that the inverse in (9) can be approximated with one CG loop, whereas 

approximating (8) requires a nested loop with an inner CG loop to estimate the inverse in 

(10) and an outer CG loop to solve (8).

In this work, the inner loop Kl inversions in (10) were performed using a maximum of 100 

CG iterations, and the outer loop inversion in (8) used a maximum of 250 CG iterations. The 

inversion in (9) used a maximum 1000 CG updates. All optimization code was written in 

Python with calls to external GPU libraries for fast projection and backprojection operations.

C. Simulation Experiments

To investigate the performance of the proposed reconstruction approach, simulation 

experiments were conducted using the phantom in Figure 2. The system geometry used a 

100x100 axial image reconstruction with 0.1 mm voxels and a 1D detector array of 150 

pixels with 0.14 mm pitch. The source-to-detector distance was 400 mm and source-to-axis 

distance was 200 mm. Projection data were obtained for 360 angles over 360°. Predetection 

quantum noise was simulated using a Gaussian distribution with a constant 105 photons in 

the unattenuated beam (with variance equal to mean). For these initial studies, readout noise 

variance was set to 0.

We compared reconstructions using the generalized penalized weighted least-squares 

approach of (6) using three different noise models: 1) The correlated noise model described 

in (7); 2) a white Gaussian noise model; and 3) an uncorrelated Gaussian model that 

presumed each measurement had a variance equal to its mean (approximating a Poisson 

random variable). Additionally, we consider three different blur scenarios with Gaussian 

source and detector blurs. Specifically, three imaging systems were modeled with: 1) 

detector dominated blur (2.121 pixels FWHM detector, 0.001 pixels FWHM source blur); 2) 

equally distributed blur, (1.5 pixels FWHM source and detector blur); and 3) source 

dominated blur (0.001 pixels FWHM detector, 2.121 pixels FWHM source blur). We 

performed a dual parameter sweep (β and λ) for each noise model and blur scenario 

combination.

To compare images, bias and variance were calculated for each reconstruction. Bias was 

calculated using a reconstruction of noiseless data according to the following:
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(11)

The variance was calculated as the spatial variance over a flat part of a reconstruction 

(indicated with dashed line in Fig. 2).

III. RESULTS

Fig. 3. shows plots of bias versus variance for each of the reconstruction noise models and 

each of the three different blur scenarios. In particular this investigation shows the relative 

performance of different methods across a wide range of regularization strengths for the 

deblurring operation (λ) and for reconstruction (β ). Within each plot of Fig. 3 there are five 

curves representing the bias versus variance performance for a fixed value of λ and varying 

β. In the case of detector dominated blur, there was little or no benefit from using a 

regularized de-blur. It appears that the added bias due to increased λ did not improve the 

noise tradeoff, and the added bias becomes a detriment at higher values of λ.

Similar trends are evident in the case of equal source and detector blurs. That is, the 

regularization in the deblurring step does not appear to improve the bias-variance tradeoff 

and at higher λ, this added regularization is detrimental.

The situation is different for the case of source dominated blur. In this case, increased 

regularization in the deblurring step improves the bias-variance tradeoff. However, the 

relationship is more complex and depends on the noise model in the reconstruction. For the 

white noise and uncorrelated noise models, λ=0.01 is optimal over much of the bias range; 

however, the optimal λ decreases at lower bias levels (as induced by small β values). For the 

correlated noise model, there appears to be a single optimal λ value over the range with 

λ=0.001. The correlated noise plots also show unusual behavior for very low β values when 

λ is also low. Specifically, lower β appear to increase bias. This is likely due to ringing in 

the reconstruction for (nearly) unregularized solutions.

To compare the three noise models with each other, we consolidated the above sweeps into a 

single curve for each noise model by selecting the (λ,β) pair that achieves the best 

performance for each bias level. These results are summarized in Fig. 4.

When the blur is dominated by the detector, the overall image quality is better than the other 

blur scenarios, and the three noise models perform similarly. Equivalence between the white 

and correlated models is not unexpected since correlations are due to detector blur and the 

deblurring preprocessing operation decorrelates the noise, making the noise model white. 

However, it is somewhat surprising that the incorrect uncorrelated noise model with 

nonuniform variances performs similarly, suggesting relatively low variations in mean 

measurements for this small object.

When blur is predominately due to the x-ray source, the overall image quality is worse, but 

the advantage in using the correlated noise model is highest. In this scenario, none of the 

noise is initially correlated, and the deblurring step introduces correlations in the data. The 
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uncorrelated noise model appears to be an improvement over the white noise model, with 

the advantage of the correlated noise model diminishing for higher bias levels. In this high 

bias regime there is less advantage to blur and correlation modeling when the reconstructed 

images have coarser spatial resolution. In effect, if a coarse resolution image is desired, it 

doesn't matter if the blur comes from intrinsic system blur or from regularization. The equal 

blur scenario falls in-between the other two scenarios for performance and interpretation. 

The rank ordering of methods is the same as the source blur dominated case, with a smaller 

difference between the three noise models.

Fig. 5 shows bias matched reconstructions generated using each noise model in each blur 

scenario. Bias was matched at approximately 0.4 mm−1 (indicated by the dotted lines in Fig 

3) and an optimal (λ,β) pair was applied for each noise model. These reconstruction results 

illustrate the trends in Fig 3. When blur is predominately attributed to the source, using the 

correlated noise model results in a substantial reduction in noise. The noise reduction is less 

when the blur is equally distributed between source and detector, and is marginal when the 

blur is caused predominately by the detector.

IV. DISCUSSION

In this work a generalized approach for reconstructing CT data with system blur and 

measurement correlations was introduced. The two step process involved a regularized 

deblurring step followed by a generalized penalized weighted least-squares reconstruction. 

Different noise models for the reconstruction were investigated including an approach that 

explicitly models the propagation of noise through the system and preprocessing. This 

explicit correlated model outperforms standard (uncorrelated) noise model choices. The 

benefits are greatest with more source blur, but are evident in a more typical scenario of 

balanced source and detector blur.

The proposed approach has potential application in tomographic systems that demand high 

spatial resolution and minimum noise/dose. Possible applications include flat-panel cone-

beam CT systems, including dedicated dental, head, extremities, and mammography 

systems.
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Fig. 1. 
System model for a generalized indirect detector cone-beam CT system. Following the 

generation and transit of photons (left to right), the mean number of quanta and the 

covariance associated with those quanta are modeled. Specifically, the mean distribution of 

x-ray photons at generation (g) is both attenuated by the object and undergoes spatial 

blurring due to the extended source. In the detector, additional blur due to light spread in the 

scintillator is modeled yielding the form for the mean measurement model. Noise undergoes 

a similar propagation through the system starting with independent photon noise with 

variance equal to the mean. Changes in the mean due to attenuation in the object modify 

these variances, which then exhibit spatial spreading (correlation) in the scintillator. Finally, 

these correlated measurements may be modified with the addition of (independent) readout 

noise.
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Fig. 2. 
Two-dimensional digital phantom used for performance investigations. The phantom 

comprises low and high-contrast targets and two sets of line pairs. A square region of 

interest in a uniform region of the phantom is indicated with a dashed line showing where 

variance in the reconstructed image is computed.
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Fig. 3. 
Plots of bias versus variance for the three noise models of reconstruction and the three 

system blur scenarios. The plots contain a summary of results from the two-dimensional 

parameter sweep over λ and β. Within each plot five separate curves for fixed λ are shown. 

Individual curves are generated by sweeps over β. The importance of regularization in the 

deblurring step is most important in the source dominated scenario where nonzero λ values 

improve the bias-variance relationship for each reconstruction noise model.
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Fig. 4. 
Bias-variance plots for each blur scenario with optimal selection of (λ,β). These plots 

illustrate the relative performance of each reconstruction noise model. In the detector blur 

dominated scenario, the three models perform comparably. In both the equal blur and source 

dominated blur scenarios, the correlated noise model shows the best performance and the 

white noise model shows the worst performance. The relative gain of the correlated noise 

model is greatest in the source blur dominated scenario.
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Fig. 5. 
Bias matched reconstructions for each blur scenario and reconstruction noise model. The 

bias of each reconstruction is shown in the top left (approximately 0.4 mm−1), and the 

relative variance (the ratio of the noise variance in the reconstruction relative to the 

correlated noise variance) is shown in the bottom left of each image. Improved image 

quality (i.e., reduced noise) for the correlated noise model is evident in the equal blur and 

source blur dominated cases.
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