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Audience

Interventionalists, and those interested in atherosclerosis and intravascular MR imaging.

Purpose

Current speeds for intravascular (IV) MRI and MRI endoscopy1 are limited to ∼2frames/s at 

3T, rendering high-resolution (∼100μm) images susceptible to degradation by physiological 

motion on the order of mm/ms. Here, using projection reconstruction we: (A) reduce 

sensitivity to motion from the time-scale of individual images, to the time-frame of each 

projection (TR) by frame-shifting each projection to the antenna, prior to reconstruction. In 

addition: (B) we apply compressed sensing to provide acceleration factors of up to four-fold. 

We present data acquired in phantoms (fruit), human vessel specimens and/or apply the 

methods to retro-actively acquired data as we move toward prospective acquisitions in vivo.

Methods

IV MRI with and without mechanical motion, is performed on a Philips 3T scanner using a 

2mm diameter 3T loopless antenna receiver, and radial k-space traversal. For motion 

correction (A), we note that in each projection, there is intense signal surrounding the probe, 

but the probe itself produces no signal. Further, there is a phase reversal that occurs at the 

probe (Fig. 1 a, d). These amplitude and phase singularities at the probe's location are 

detected using a signal derivative algorithm, and used to align all the projections (Fig. 1f). 

Images reconstructed from these, always have the probe at the center of the field-of-view. 

Compressed sensing (B), is performed on projection images using uniform under-sampling2, 

while variable-density random under-sampling is used on previously-acquired in vivo 
Cartesian data1. Images are reconstructed using “ℓ1-norm” minimization and wavelet 

transform2,3.

Results

Motion correction significantly reduces motion artefact compared to conventional 

reconstruction (Fig. 1b vs. 1c). Radial and Cartesian compressed sensing produced virtually 

indistinguishable images with only 1/4th to 1/3rd of the original data (Fig. 2, 3). Since the 
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motion correction algorithm acts on each projection, it was also applied to a radially under-

sampled data set (not shown).

Conclusions

3T IV MRI detectors are ideally suited to compressed sensing and motion correction 

strategies based on their intrinsically radial and sparsely-localized sensitivity profiles and 

high signal-to-noise ratios. The benefits are much faster IV MRI–approaching real-time 

(∼10 fr/s) and reduced motion sensitivity, while retaining the high-resolution (80-300μm) 

image information.
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Figure 1. 
(a) Transverse field of a loopless antenna detector p shows decreasing B1 with r and 

azimuthal variation in phase. (b) MRI of an orange shaken ± 3mm (2D radial GRE; 200 

spokes spanning 180°; 250μm in-plane resolution; TR/TE=15/6 ms) shows debilitating 

motion artifacts. (c) Projection shifting all but removes streaking, revealing the fruit's 

underlying structure. A 1/r intensity filter has been applied to aid visualization. (d-f) The 

motion correction algorithm consists of re-aligning every azimuthal projection on p.
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Figure 2. 
Fruit morphology using the complete data set (a), is retained in a four-fold under-sampled 

radial-compressed sense reconstruction (b).
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Figure 3. 
(a) Regular Cartesian MRI endoscopy of a rabbit aorta in vivo (3D GRE; TR/TE=250/12 

ms; in-plane resolution 80μm; 3.1 min/5 contiguous slices). (b) Three-fold under-sampling 

yields a virtually indistinguishable image (cropped for visualization) after compressed-sense 

reconstruction.

Hegde et al. Page 5

Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. Author manuscript; available in PMC 2014 October 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


