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Abstract

Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific ‘‘avirulent’’ pathogen
effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like
receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed
Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1),
function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-
LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for
transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery
of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele
(RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to
constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-
mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the
genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity
(sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a
complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using
an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is
required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type
RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light on mechanisms
by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector.
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Introduction

Plant innate immunity relies on two layers of pathogen detec-

tion. Cell surface-localized pattern recognition receptors detect

pathogen-associated molecular patterns (PAMPs) of invading

microorganisms and activate PAMP-triggered immunity (PTI)

[1]. Successful pathogens must circumvent PTI to colonize plants,

and many bacterial pathogens use type III secretion (T3S) to

deliver effectors that suppress PTI into plant cells [1]. Effectors can

be detected directly or indirectly by plant disease resistance (R)

proteins, which then activate effector-triggered immunity (ETI)

generally together with a hypersensitive response (HR) of the

infected tissue [2]. Most intracellular R proteins are modular, with

an amino-terminal coiled coil (CC) or Toll/interleukin-1 receptor/

R protein (TIR) domain, a nucleotide binding (NB) domain and a

leucine-rich repeat (LRR) domain [3]. Some NB-LRR proteins

also carry an additional carboxyl-terminal extension, the function

of which is unknown [3]. In addition, NB-LRR protein function

generally requires an intact P-loop motif (GxxxxGKT/S) in the

NB domain, presumably for ATP binding and energy-dependent

conformational changes [3,4]. Plant NB-LRR proteins and

mammalian Nod-like receptors (NLRs) exhibit both structural

and functional similarities [5].

Signaling following TIR-NB-LRR protein activation requires

other key regulators such as Enhanced Disease Susceptibility 1

(EDS1), the EDS1-related proteins PAD4 and SAG101, and

biosynthesis of the plant hormone salicylic acid (SA) for full

immunity [6]. EDS1 was recently reported to interact with several

NB-LRR proteins [7,8]. Mis-regulation of R protein accumula-

tion, localization or activation can cause constitutive defense
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responses, which are usually deleterious or lethal. For instance, the

dwarf suppressor of npr1-1, constitutive 1 (snc1) mutant carries a

point mutation between NB and LRR domains of the TIR-NB-

LRR protein SNC1, which results in constitutive defense signaling

[9,10]. Suppression of the stunted snc1 phenotype in mos (modifier
of snc1) mutants allowed the identification of several genes

required for nuclear defense signaling [11–14].

Although most R proteins function to recognize a correspond-

ing avirulent effector (Avr), some NB-LRR proteins appear to act

downstream of R protein activation. The tobacco and tomato CC-

NB-LRR proteins, ‘‘N-required gene 1’’ (NRG1), and ‘‘NB-LRR

protein required for HR-associated cell death 1’’ (NRC1), are

required for TIR-NB-LRR protein N-mediated resistance to

tobacco mosaic virus and receptor-like protein Cf-4-mediated

resistance to tomato leaf mold pathogen, respectively [15,16].

Arabidopsis CC-NB-LRR Activated Disease Resistance 1 (ADR1)

family proteins are required for SA-dependent ETI [17]. The

Arabidopsis accession Col-0 downy mildew resistance locus RPP2
comprises two distinct closely linked NB-LRR genes RPP2A and

RPP2B, both of which are required for resistance [18]. The rice

Pia locus for blast (Magnaporthe) resistance comprises two

divergently transcribed CC-NB-LRR genes, RGA4 and RGA5,

again both required for resistance [19]. In mammals, the NLR

NAIP2 confers specific recognition of PrgJ, whereas NLRs NAIP5

and NAIP6 confer responses to flagellin. However, the NLR

NLRC4 is required for defense responses to both PrgJ and flagellin

[20,21]. NLRC4 association with either NAIP2 or NAIP5/6, upon

provision of PrgJ or flagellin respectively, is required for defense

activation [20,21].

The T3S effectors AvrRps4 and PopP2 from Pseudomonas
syringae and Ralstonia solanacearum respectively, are recognized

by paired TIR-NB-LRR proteins RPS4 (resistance to P. syringae
4) and RRS1-R (resistance to R. solanacearum 1), and activate

ETI in Arabidopsis [22–24]. RRS1-R alleles, found in accessions

Ws-2, No-0 and Nd-1, confer recognition of PopP2; the RRS1-S

allele of Col-0 does not recognize PopP2, but does recognize

AvrRps4 [22–24]. Lack of AvrRps4 recognition in accession RLD

is due to non-synonymous mutations in RPS4, and RRS1-S in

Col-0 is truncated compared to RRS1-R because of an early stop

codon [24–26]. RPS4 and RRS1-R genetically function together,

as plants lacking RPS4, RRS1-R or both show similar enhanced

susceptibility to bacterial strains expressing AvrRps4 or PopP2

[25,26]. RRS1 (also annotated as WRKY52) is an atypical NB-

LRR protein that also carries a C-terminal WRKY DNA-binding

domain [22].

In this study, we delivered PopP2 using Pseudomonas T3S by

fusing it with the N-terminal region of AvrRps4 (AvrRps4N).

Pseudomonas-delivered AvrRps4N:PopP2 triggers RPS4- and

RRS1-dependent HR and immunity in resistant Arabidopsis

genotypes when tagged with a nuclear localization signal (NLS)

but not when tagged with a nuclear exclusion signal (NES). We

show that the delivery of PopP2, or an inactive PopP2C321A

variant, from a Pseudomonas fluorescens strain (Pf0-1) that lacks

other effectors [27], results in the induction of ETI-specific genes

that overlaps substantially with previously reported AvrRps4-

regulated genes [28,29].

The presence of a single amino acid (Leu) insertion in the

WRKY domain of RRS1-R (RRS1SLH1 hereafter) causes the

recessive lethal phenotype of the sensitive to low humidity 1 (slh1)

mutant in No-0 [30]. RRS1SLH1-induced lethality is associated

with enhanced defense gene expression and high SA accumula-

tion. Similarly to other mutants displaying spontaneous cell death,

slh1 mutant growth can be restored to wild type phenotype at

28uC [30–32]. In contrast to snc1, the slh1 mutant allele is

recessive and heterozygotes show no constitutive defense activa-

tion [30]. RRS1 is also recessive and an RRS1-R/RRS1-S

heterozygote is unable to recognize PopP2 [22,23].

Here, we used the conditional RRS1SLH1-mediated lethal

phenotype to gain insights into RPS4/RRS1 gene pair function.

Transcriptional profiling of the slh1 mutant shows that genes

induced during RRS1SLH1-mediated defense activation in the

absence of Avr overlap with those induced by AvrRps4- or PopP2-

triggered immunity. Genetic screening for mutations that suppress

slh1-triggered aberrant immunity reveals the critical role of RPS4

in RRS1SLH1-mediated activation of defense signaling. Transient

expression of RPS4 and RRS1SLH1 in tobacco results in HR in the

absence of AvrRps4 or PopP2, which can be suppressed by co-

expression of wild type RRS1-R, consistent with the recessive

nature of RRS1SLH1. Our study sheds new light on how paired R

proteins work cooperatively and illustrates the similarities between

auto-active and Avr-dependent defense signaling.

Results

PopP2 triggers RPS4 and RRS1-dependent immune
responses in Arabidopsis when delivered from
Pseudomonas strains

To compare AvrRps4- or PopP2-triggered HR and immunity,

we established the delivery of PopP2 via the Pseudomonas T3S.

We engineered pEDV6, a Gateway-compatible version of pEDV3

[33], to carry full-length or N-terminally truncated PopP2 variants

(Figures 1A and S1A–B). pEDV6 enables expression of a

translational fusion between the N-terminal part of AvrRps4

(137 first amino acids; hereafter, AvrRps4N) and an effector of

interest. We used a non-pathogenic Pseudomonas fluorescens Pf0-

1 engineered to carry a functional T3S system (hereafter, Pf0-

1(T3S)) in HR assays because unlike Pseudomonas syringae pv.

tomato (Pto) DC3000, Pf0-1(T3S) does not elicit non-specific tissue

collapse. When delivered from Pf0-1(T3S) or Pto DC3000,

PopP21–488 (full-length) or PopP2149–488 triggered HR and

immunity in Arabidopsis accession Ws-2, whereas the PopP2

variants that were further truncated did not (Figure S1C–D).

Interestingly, the N-terminal 148 amino acids of PopP2 that

Author Summary

How plant NB-LRR resistance proteins and the related
mammalian Nod-like receptors (NLRs) activate defense is
poorly understood. Plant and animal immune receptors
can function in pairs. Two Arabidopsis nuclear immune
receptors, RPS4 and RRS1, confer recognition of the
unrelated bacterial effectors, AvrRps4 and PopP2, and
activate defense. Using delivery of PopP2 into Arabidopsis
leaf cells via Pseudomonas type III secretion, we define
early transcriptional changes upon RPS4/RRS1-dependent
PopP2 recognition. We show an auto-active allele of RRS1,
RRS1SLH1, triggers transcriptional reprogramming of de-
fense genes that are also reprogrammed by AvrRps4 or
PopP2 in an RPS4/RRS1-dependent manner. To discover
genetic requirements for RRS1SLH1 auto-activation, we
conducted a suppressor screen. Many suppressor of slh1
immunity (sushi) mutants that are impaired in RRS1SLH1-
mediated auto-activation carry loss-of-function mutations
in RPS4. This suggests that RPS4 functions as a signaling
component together with or downstream of RRS1-activat-
ed immunity, in contrast to earlier hypotheses, significantly
advancing our understanding of how immune receptors
activate defense in plants.

RPS4 Is Required for RRS1SLH1-Mediated Immunity
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Figure 1. PopP2 triggers RPS4/RRS1/EDS1-dependent hypersensitive response and immunity when delivered from Pseudomonas.
(A) AvrRps4N-PopP2 fusion construct. (B) Pseudomonas fluorescens Pf0-1(T3S)-delivered AvrRps4N:PopP2149–488 triggers an EDS1-dependent
hypersensitive response (HR) in resistant Arabidopsis accessions. Five week-old Arabidopsis leaves were infiltrated with Pf0-1(T3S) strains expressing
indicated avirulence proteins. Empty vector (EV) indicates AvrRps4N encoded by pEDV5 (see Figure S1). The photograph was taken at 24 hours post-
infection (hpi). The red asterisks indicate the leaves showing HR. (C) Pf0-1(T3S)-delivered AvrRps4N:PopP2149–488 triggers an RPS4/RRS1-dependent HR
in Ws-2 accession. (D) Pseudomonas syringae pv. tomato (Pto) DC3000-delivered AvrRps4N:PopP2149–488 triggers RPS4/RRS1-dependent immunity in

RPS4 Is Required for RRS1SLH1-Mediated Immunity
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include a nuclear localization signal (NLS) are dispensable in our

assay. Based on this finding, we used the PopP2149–488 (hereafter,

PopP2) variant for the rest of our experiments.

To verify that Pseudomonas-delivered PopP2 confers genotype-

specific avirulence, we investigated the responses of Arabidopsis

natural variants to PopP2. When delivered from Pf0-1(T3S),

PopP2 and AvrRps4 triggered HR in accessions Nd-0 and Ws-2

whereas Col-0 and RLD showed no symptoms at 24 hours post-

infection (hpi) (Figure 1B). Col-0 RRS1-S confers HR-deficient

disease resistance to Pst DC3000 delivered AvrRps4 but not to

PopP2 [22,34]. In addition, transgenic expression of Ws-2 RRS1-

R in Col-0 confers strong HR in response to Pseudomonas-
delivered AvrRps4 [35]. HopA1 was used as an additional control;

it triggers HR in Nd-0, Ws-2 and RLD, but not in Col-0, as

expected. Next, we tested if Pf0-1(T3S)-delivered PopP2 triggers

RPS4- and RRS1-dependent HR in Arabidopsis. Pf0-1(T3S)-

delivered PopP2 triggered strong HR in wild type Ws-2 whereas

Ws-2 rrs1-1, rps4-21, rrs1-1/rps4-21 or eds1-1 mutants did not

show any response (Figure 1C). In contrast, Pf0-1(T3S)-delivered

AvrRps4 triggered weak but robust HR even in the absence of

RPS4 or RRS1 in Ws-2 (Figure 1C). When delivered from Pto
DC3000, AvrRps4 triggered immunity in wild type Ws-2, rrs1-1,

rps4-21 or rrs1-1/rps4-21 mutants because AvrRps4 recognition

leads to RPS4/RRS1-dependent and -independent immunity

(Figure 1D) [26]. To test if Pseudomonas-delivered PopP2 can

trigger RPS4/RRS1-dependent immunity in Arabidopsis, we

engineered a virulent Pto DC3000 to deliver PopP2. Pto
DC3000 (PopP2) showed reduced virulence in wild type Ws-2

but not in rrs1-1, rps4-21 or rrs1-1/rps4-21 mutants compared to

Pto DC3000 (pEDV5) indicating that Pseudomonas-delivered

PopP2 triggers only RPS4/RRS1-dependent immunity (Fig-

ure 1D), consistent with previously reported Ralstonia-delivery

assay results [26]. By contrast, HopA1-triggered immunity was not

affected in rrs1-1, rps4-21 or rrs1-1/rps4-21 mutants compared

with wild type Ws-2 (Figure 1D). All tested Pto DC3000 strains

showed unrestricted growth in the eds1-1 mutant compared to

other genotypes. Taken together, these data indicate that

AvrRps4N-mediated delivery of PopP2 from Pseudomonas can

trigger RPS4/RRS1-dependent HR and immunity in Arabidopsis.

We further tested if Pseudomonas-delivered PopP2 recognition

requires a specific subcellular localization, as reported for AvrRps4

[8]. We engineered a PopP2149–488 variant lacking the native NLS,

to carry a NLS or a nuclear export signal (NES) tag at the C-

terminus. The avirulence activity of these PopP2 variants was

tested in two resistant transgenic Arabidopsis lines, RLD (RPS4Ler)

and Col-0 (RRS1Ws-2). Pf0-1(T3S)-delivered PopP2NES, failed to

trigger HR in both transgenic lines and in wild type Ws-2, despite

being expressed during plant infection, indicating that nuclear

localization of PopP2 is required to trigger RPS4/RRS1-

dependent HR (Figure S2A, S2E and S3). The PopP2NES variant

induced a response comparable to PopP2C321A, an enzymatically

inactive variant that does not trigger RPS4/RRS1-R-dependent

immunity [36] in wild type Ws-2 when HR-inducing activity was

quantified by ion leakage measurements (Figure S2B). We could

also show that PopP2NES, in contrast to PopP2NLS, could not

restrict the virulence of bacteria when delivered from Pto DC3000,

nor trigger expression of defense genes when delivered from Pf0-

1(T3S) (Figures S2C and S2D). As these data suggest that PopP2

triggers HR and immunity in the nucleus, we independently

assessed previously reported AvrRps4 variants [8]. Unexpectedly,

both AvrRps4NLS and AvrRps4NES variants triggered HR and

elevated ion leakage in the Ws-2 accession when delivered from

Pf0-1(T3S) (Figure S2B and S2E).

Pseudomonas-delivered PopP2 induces RRS1-R- and
acetyltransferase activity-dependent transcriptional
changes early after bacterial infiltration

RRS1 is a TIR-NB-LRR protein with a WRKY DNA binding

domain, which belongs to Group III of the WRKY superfamily

[37]. RRS1SLH1, which carries a leucine insertion near the

WRKY motif, shows strongly reduced DNA binding by its WRKY

domain [30]. This reduced DNA binding correlates with auto-

immunity of the slh1 mutant, suggesting a critical role of RRS1 in

transcriptional regulation of defense genes. Delivery of PopP2

from Pseudomonas via T3S, combined with the RPS4/RRS1-R

dependence of this PopP2-triggered HR, enables direct assessment

of RRS1-R-dependent transcriptional regulation. To identify

PopP2-triggered and RPS4/RRS1-dependent early transcription-

al responses, genome-wide expression profiling was carried out

using EXPRSS, an Illumina sequencing based method [38]. Wild

type Ws-2 and rrs1-1 plants were infiltrated with Pf0-1(T3S)

delivering PopP2WT or PopP2C321A. The infiltrated leaf tissues

were collected at 2, 4, 6 and 8 hpi for total RNA extraction, as

onset of HR began at 8 hours after bacterial infiltration in an

incompatible interaction (PopP2WT/Ws-2).

For differential expression analysis, PopP2WT-infiltrated Ws-2

samples were compared either to PopP2C321A mutant on Ws-2 or

PopP2WT on rrs1-1. Essentially complete overlap was observed

between the differentially regulated genes in the two comparisons

(Figure 2A), consistent with our results showing that Pf0-1(T3S)-

delivered PopP2 triggers RRS1- and acetyltransferase activity-

dependent immunity (Figures 1 and S2). In total, 719 genes were

differentially expressed in an RRS1- and acetyltransferase activity-

dependent manner in at least one of the time points surveyed

(Table S1). Gene ontology enrichment analysis using ATCOECIS

[39] showed that most of the up-regulated genes are involved in

defense, while most of the down-regulated genes are involved in

photosynthesis and enriched in chloroplast-localized genes (Table

S2). Interestingly, the majority of genes differentially expressed at 4

and 6 hpi were up-regulated, while many down-regulated genes

were observed at 8 hpi (Figure 2A). The early (4 and 6 hpi) up-

regulated genes, such as SID2, FMO1, NudT7, PBS3 and PAD4,

have previously been implicated in plant defense (Table S3).

Further analysis of mean expression of genes induced at 4 and 6

hpi (Table S3) showed that there was greater gene induction in

Ws-2 infiltrated with PopP2WT (,20–100 fold) than in Ws-2

infiltrated with PopP2C321A or in rrs1-1 infiltrated with PopP2WT

(,2–10 fold). For simplicity, we interpret genes induced by

PopP2C321A as induced by the repertoire of PAMPs in Pf0 (thus,

PTI-induced), and by PopP2WT as PTI+ETI-induced. To validate

our transcriptional expression profiling results, we performed

quantitative RT-PCR (qRT-PCR) verification of EDS5, NudT6,

WRKY18 and WRKY40 with the cDNA used for Illumina

libraries. Expression of EDS5 and NudT6 but not WRKY18 and

WRKY40 was specifically regulated by ETI in our expression

profiling data. In qRT-PCR experiments, PopP2 but not

PopP2C321A variant delivered from Pf0-1(T3S) induced EDS5
and NudT6 in an RRS1-dependent manner, while expression of

accession Ws-2. Five week-old Arabidopsis leaves were infiltrated with Pto DC3000 strains and samples were taken at 4 dpi to recover bacteria from
infected leaves. The results presented are the mean and standard error of the number of bacterial colonies recovered. Means labeled with the same
letter are not statistically different at the 5% confidence level based on Tukey’s test.
doi:10.1371/journal.pgen.1004655.g001

RPS4 Is Required for RRS1SLH1-Mediated Immunity
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WRKY18 and WRKY40 was induced in the absence of ETI

(Figure S4).

AvrRps4- and PopP2-dependent transcriptional changes in

resistant plants have been investigated previously [28,29,40]. We

compared these available micro-array and RNA-seq data with our

results. To minimize the effects of experimental and technical

differences from the AvrRps4/Ws-2 data [28], genes altered in

expression at 6 hpi due to mock treatment were subtracted from

the comparison; similarly, only the GMI1000/GMI1000DPopP2-

infected Nd-1 data were used from the Hu et al. [40] study. For

Figure 2. Pseudomonas-delivered PopP2 induces RRS1- and acetyltransferase activity-dependent transcriptional changes early after
bacterial infection. (A) Hierarchical clustering of RRS1- or PopP2-dependent gene expression. Fold-change values of 719 genes (differentially
expressed at least in one time point) from all time points show the predominance of gene induction at early time points. Black, red and green colours
indicate no change, up-regulated and down-regulated, respectively. C321A, an inactive PopP2 variant carrying an Alanine mutation at one of the
catalytic core residues, Cysteine 321 (B) Confirmation of selected PopP2-induced genes by qRT-PCR. Five week-old plants were infiltrated with Pf0-
1(T3S) expressing the indicated AvrRps4, HopA1 or PopP2 variants. Samples were taken at 8 hpi for total RNA extraction. The numbers on the Y-axis
indicate fold induction compared to mock treated samples.
doi:10.1371/journal.pgen.1004655.g002

RPS4 Is Required for RRS1SLH1-Mediated Immunity
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comparative analysis the differential expression from PTI, PTI+
ETI and ETI responses were combined for data presented in this

study (Table S1) and the data from Howard et al. [29]. A summary

of these comparisons is presented in Figure S5 and details of genes

from comparative datasets are presented in Table S4. Transcrip-

tional changes upon AvrRps4 infection on Col-0 and Ws-2 [28,29]

considerably overlapped with PopP2-regulated genes identified

both in our study and the GMI1000/GMI1000DPopP2 study [40]

(Figure S5). The majority of early PTI+ETI-induced genes

detected in our study were also found to be AvrRps4-responsive

[28,29] (Figure S5 and Table S4).

We next tested the expression of four PopP2-responsive genes

PBS3, SARD1, FMO1 and PR1 by qRT-PCR in Ws-2, rps4-21
and eds1-1. At 8 hpi, Pf0-1(T3S)-delivered AvrRps4WT, HopA1 or

PopP2WT triggered similar levels of induction of the four genes in

Ws-2 (Figure 2B). Induction of all four genes was strictly

dependent on EDS1 and abolished when non-functional variants

of the effectors (AvrRps4KRVY-AAAA, AvrRps4E187A and PopP2C321A)

were delivered. PTI+ETI-induction of all four genes in response to

PopP2 was reduced to PTI-induced levels in both rps4-21 and in

rrs1-1 mutants, confirming RPS4/RRS1-R-dependence of PopP2-

induced transcriptional changes. AvrRps4-triggered induction of all

four genes was reduced but not abolished in the rps4-21 mutant,

likely due to RPS4-independent recognition of AvrRps4 in Ws-2

[26,41]. These expression profiling data thus reveal the genes

specifically regulated at very early stages of PopP2-triggered, RPS4/

RRS1-dependent immunity in Arabidopsis. Moreover, these ETI

transcriptional changes are very similar after AvrRps4 or PopP2

recognition.

Expression profiles of RPS4/RRS1-dependent responses
to AvrRps4 or PopP2, and of Arabidopsis RRS1SLH1

mutant temperature shift, substantially overlap
To compare slh1 aberrant defense responses to effector-

triggered RPS4/RRS1-mediated immunity, we conducted tran-

scription profiling of the slh1 mutant over a time course after

shifting plants from 28uC to 19uC, using Illumina tag sequencing

[38]. A total of 1821 genes showed temperature-dependent

differential expression in RRS1SLH1 after 24 hours (h) compared

to wild type No-0 (Figure 3A). We confirmed the temperature-

dependent regulation of 3 genes with differential induction in slh1
by qRT-PCR. PR1, PBS3 and CBP60g transcript accumulation

was induced in slh1 plants between 9 and 24 h after the shift from

28uC to 19uC whereas it was unaltered in temperature-shifted No-

0 plants (Figure 3B).

We compared the slh1/No-0 temperature-shift transcriptional

dataset to the PopP2/RRS1-time course dataset by analyzing the

pairwise overlap of genes differentially expressed in both

experiments (Figure 4). Each time course response was categorized

according to the mode of elicitation as PTI, ETI, temperature

shift, auto-immunity, or corresponding combinations (e.g. PTI+
ETI). We found that most (,83%) of the PopP2/RRS1 ETI genes

were differentially expressed in slh1 auto-immune and tempera-

ture shift responses, while up to 54% of ETI genes were also

differentially expressed in the auto-immune response but not by

temperature shift (Figure 4, black box). Similarly, more than 55%

of auto-immune genes were also differentially expressed in PTI

and PTI+ETI (Figure 4, dotted block box). Most ETI genes were

also differentially expressed in PTI+ETI (more than 85%) and in

PTI (up to 70%). However, less than 10% of the PTI genes were

differentially expressed during ETI (Figure 4, blue box). This

strongly suggests that many ETI responses involve potentiation of

a subset of PTI responses, with few genes solely regulated by

effector recognition. The ETI-specific genes that are regulated in

PopP2 acetyltransferase activity- and RRS1-dependent manner

include nucleotide/ATP-binding protein encoding genes such as

NB-LRRs (Table S1).

Similarly, we found that most temperature shift-regulated genes

(up to 83%) (Table S5) were also differentially expressed by PTI or

PTI+ETI, but only 25% were specifically affected by ETI, and less

than 5% of the PTI-responsive genes were differentially expressed

by temperature shift (Figure 4, green box). Up to 50% of PTI or

PTI+ETI genes were also differentially expressed by temperature

shift and auto-immune response, while about 25% of PTI or PTI+
ETI genes were differentially expressed by auto-immune response

(Figure 4, green box). These results indicate that PTI broadly

activates genes responsive to heat, auto immunity and ETI.

These analyses indicate that slh1 auto-immunity overlaps

strongly with PopP2- and RPS4/RRS1-R-dependent ETI. Thus,

RRS1SLH1-induced transcriptional reprogramming results in

similar gene expression changes to those observed in AvrRps4-

or PopP2-triggered immunity, indicating that the slh1 lethal

phenotype mimics RPS4/RRS1-dependent ETI at the transcrip-

tional level.

Identification of sushi (suppressor of slh1 immunity)
mutants

Lethality of slh1 at 21uC is correlated with constitutive activation

of defense responses including high expression of Pathogenesis
Related (PR) genes and SA accumulation [30]. We hypothesized

that mutations that affect RRS1SLH1-mediated signaling compo-

nents or RRS1SLH1 expression would suppress slh1 lethality. To

identify genetic components required for RRS1SLH1-dependent

immunity, we conducted a suppressor screen. slh1 seeds were

incubated with ethyl methanesulfonate (EMS), ,7,000 M1 plants

were grown at 28uC and M2 seeds were harvested. By screening

,500,000 M2 mutant plants at 21uC, we identified 83 families with

a suppressor of slh1 immunity (sushi) mutant phenotype. Among

them, 69 and 14 could rescue the slh1 lethal phenotype to a wild

type-like and an improved morphology, respectively. We further

analyzed the progeny of 7 selected fully rescued sushi mutants for

morphological development and defense marker gene expression in

the M3 generation (Figure 5). Growth of sushi mutants at 21uC was

similar to wild type No-0, whereas slh1 plants did not develop

beyond the first true leaf stage (Figure 5A). PR1, PBS3 and FMO1
expression was elevated in slh1 mutants grown constantly at 21uC
or 24 h after shift from 28uC to 21uC, but not in fully rescued sushi
mutants (Figures 5B and S6).

To exclude any contamination with wild type seeds, we

confirmed the presence of the slh1 mutation in 72 of the 83 M3

individual sushi mutants identified using a cleaved amplified

polymorphic sequences (CAPS) marker [30]. Next, we carried out

Sanger sequencing of RRS1 and RPS4 coding regions in these

mutants. As expected from the complete suppression of the slh1
phenotype, we identified 6 sushi intragenic suppressor mutants

that carry an early stop codon in RRS1SLH1 and 8 other non-

synonymous mutations (Table S6). Surprisingly, non-synonymous

mutations were also identified throughout the RPS4 coding region

in 34 rescued sushi mutants (Table S6). Most of the altered amino

acid residues have not previously been shown to be required for

RPS4 function [24]. However, sushi52 and sushi22 harbour non-

synonymous mutations at positions R28 and E88 that are

important for RPS4TIR+80-triggered HR in tobacco [42], further

verifying the crucial role of the RPS4 TIR domain function in

RRS1SLH1-mediated defense activation.

It was previously reported that mutations in SID2/ICS1/

EDS16 or SID1/EDS5 result in suppression of the RRS1SLH1

mutant phenotype [30]. We sequenced the coding region of these

RPS4 Is Required for RRS1SLH1-Mediated Immunity
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genes in the non-RRS1, non-RPS4 mutants, and found one sushi
mutant that carried a mutation in SID2/ICS1/EDS16 (sushi70,

Table S6), and no mutants that carry mutations in SID1/EDS5.

Similarly to Arabidopsis accession Col-0, wild type No-0 carries

two copies of EDS1. Therefore, EDS1 coding sequence was not

verified in the sushi lines. The 23 remaining unassigned SUSHI
mutations are now subjected to further analysis to identify new

signaling components of RRS1SLH1-mediated immunity.

Figure 3. Low temperature-dependent transcription profiling of the slh1 mutant. (A) Hierarchical clustering of No-0 and slh1 temperature-
dependent differential gene expression. Fold-change values of 5611 genes (differentially expressed at least in one time point) are shown. The
numbers on top of the heat map indicate the time (h) after temperature shift. Black, red and green colours indicate no change, up-regulated and
down-regulated, respectively. (B) qRT-PCR analysis of selected RRS1SLH1-regulated genes following the temperature shift (28uC to 19uC) in 4 week-old
No-0 and slh1 plants. Transcript accumulation is presented relative to No-0 before temperature shift (28uC).
doi:10.1371/journal.pgen.1004655.g003
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RPS4 is required for activation of RRS1SLH1-mediated
immunity

Homo- or hemizygous, but not heterozygous, No-0 plants

carrying RRS1SLH1 display a stunted phenotype at 21uC due to

elevated immunity [30]. To verify that RPS4 is required for

RRS1SLH1 function, we crossed 7 sushi lines carrying mutations in

RPS4 (sushi17, 64, 24, 12, 41, 58 and 32) to rrs1-1 and rrs1-1

rps4-21 knockout mutants [26]. The resulting F1 individuals from

both crosses were hemizygous RRS1SLH1/rrs1 for RRS1 locus

(Figure S7) and either RPS4sushi/RPS4WT or RPS4sushi/rps4 at the

RPS4 locus. As expected, the F1 plants derived from a cross

between the sushi and rrs1-1 were stunted and showed elevated

PR1 expression level (Figure 6A–C). These phenotypes were both

completely suppressed in the F1 plants derived from a cross

Figure 4. Percentage pairwise overlap of genes differentially expressed during the time course of PopP2 or PopP2C321A on Ws-2
and rrs1-1 and the time course of temperature shift on No-0 and slh1. Each time course response is categorized based on underlying
response (PTI, ETI, temperature shift, auto-immunity and combinations). Each cell represents percentage of genes differentially expressed from the
column experiment that were also differentially expressed in the row experiment. Green boxes highlight genes regulated by heat stress and PTI, PTI+
ETI responses; blue box highlights genes regulated by PTI, ETI and PTI+ETI; black boxes highlight genes regulated by auto-immunity, heat stress and
by PTI, ETI and PTI+ETI. The number of gene differentially expressed in each time course is indicated on the right. PTI, PopP2C321A-regulated genes;
ETI, PopP2WT- but not PopP2C321A-regulated genes; temperature shift, temperature shift-regulated genes in No-0 wild-type; auto-immunity,
temperature shirt-regulated genes in slh1 mutant but not in No-0 wild-type.
doi:10.1371/journal.pgen.1004655.g004
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between sushi mutants in RPS4 and rrs1-1 rps4-21 double

mutant. This result confirms that RPS4 is required for RRS1SLH1-

mediated activation of immunity.

To further verify the functional requirement for RPS4 in

RRS1SLH1-mediated immunity, we recapitulated RRS1SLH1-

mediated defense activation in Nicotiana tabacum. As shown

recently [39], Agrobacterium-mediated transient co-transformation

(hereafter, agroinfiltration) of RPS4-HA, RRS1-His-Flag and wild

type AvrRps4-GFP or PopP2-GFP induced strong HR within 3

dpi (Figure S8A). The specificity of recognition was further verified

by comparing functionally characterized mutant variants of

AvrRps4 or PopP2 to wild type. As expected, AvrRps4E187A,

AvrRps4KRVY-AAAA and PopP2C321A variants did not induce

RPS4/RRS1-dependent HR in tobacco (Figure S8A). We have

also verified that AvrRps4 and PopP2 recognition in tobacco

activate defense genes orthologous to those that are regulated by

RRS1 in Arabidopsis. The transcripts of the defense genes

NtWRKY51 and NtNudT7 were highly up regulated when

PopP2-GFP was co-expressed with RPS4-HA and RRS1-His-

Flag in tobacco (Figure S8B). Agroinfiltration of GFP or

PopP2C321A-GFP with RPS4-HA and RRS1-His-Flag induced

significantly lower accumulation of defense gene transcripts

compared to wild type PopP2 (Figure S8B). Taken together, these

results further demonstrate that our transient agroinfiltration assay

can also be used to investigate RPS4/RRS1 regulated immunity.

Agroinfiltration of epitope-tagged RRS1SLH1-His-Flag and

RPS4WT-HA triggered HR in tobacco leaf cells, whereas RRS1SLH1

co-expressed with GFP or RPS4K242A (P-loop mutant) did not

(Figures 6D and 8B). Consistent with our Arabidopsis genetic data

(Figure 6B), agroinfiltration of RRS1SLH1 with each RPS4SUSHI

variant did not trigger HR in tobacco (Figure 6D). Protein

accumulation of the 7 tested RPS4SUSHI variants was comparable

to that of RPS4WT, indicating that the lack of HR was not due to low

protein expression levels (Figure S9). Moreover, as expected from

our genetic analysis, RPS4SUSHI variants did not have a dominant

negative effect on RPS4WT function, when both were co-expressed

with RRS1SLH1 (Figure S10). We then tested whether SUSHI
mutant alleles of RPS4 confer RRS1-dependent recognition of

AvrRps4 or PopP2. Agroinfiltration of RRS1WT, RPS4WT and

either AvrRps4 or PopP2, triggered RPS4 P-loop-dependent HR in

infiltrated tobacco leaf sectors [43] (Figure 6D). Importantly,

agroinfiltration of the 7 RPS4SUSHI variants did not confer

responsiveness to AvrRps4 or PopP2 (Figure 6D). Taken together,

these data show that RPS4 is required for RRS1SLH1-mediated and

Avr-triggered/RRS1-dependent defense signaling activation. Re-

cently, we showed the physical interaction of RRS1 and RPS4 [43].

We hypothesized that RPS4SUSHI variants may have lost their ability

to interact with RRS1SLH1. However, RPS4SUSHI-HA variants and

RPS4WT-HA were co-immunoprecipitated by RRS1SLH1-Flag or

RRS1WT-Flag (Figure S9A-B). This result suggests that RPS4-RRS1

interaction is insufficient for signaling activation.

We identified six additional sushi mutants that carry mutations

in the TIR domain of RPS4, the structure of which is known [43].

The stunted growth and elevated defense transcript accumulation

of slh1 at 21uC were considerably suppressed in sushi52 (R28H),

14 (A38V), 22 (E88K), 71 (L101F), 89 (P105L) and 29 (G120R)

(Figure S11). The RPS4 TIR domain structure suggests that side-

chains from R28 and A38 are surface exposed, while the side-

chains of the other mutated residues are buried (Figure 7A).

RPS4TIR expression is sufficient to trigger HR in tobacco after

agroinfiltration (Figure 7B) [42]. Therefore we introduced these

six SUSHI mutations into an RPS4TIR construct (amino acids 1 to

250) to test their individual effect on RPS4 TIR domain signaling.

Strikingly, all six mutations suppressed this response, suggesting

that each of these residues is important for RPS4 TIR domain

defense activation either through interaction with downstream

partners or by maintaining the correct signalling-competent

structural conformation, as the protein stability/accumulation

was not significantly altered when expressed as GFP fusions in

tobacco (Figure S12D). Intriguingly, when SUSHI mutations were

tested in the RPS4 full-length context by co-expression in tobacco

with RRS1 and the effectors, A38V and L101F did not suppress

RRS1SLH1- nor AvrRps4- and PopP2-triggered HR (Figure 7C).

This discrepancy was not due to inconsistent level of protein

Figure 5. Identification of sushi (suppressor of slh1 immunity)
mutants. Fully rescued sushi mutant (M3), wild type No-0 and slh1
plants were grown at 21uC under short-day condition for four weeks. (A)
Plant morphology. (B) qRT-PCR analysis of selected RRS1SLH1-regulated
genes. Transcript accumulation is presented relative to No-0.
doi:10.1371/journal.pgen.1004655.g005
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accumulation (Figure S12E) but might illustrate a limitation of the

transient expression system in tobacco, or subtle differences

between defense activation by RPS4TIR, and by the activated

RPS4/RRS1 complex.

RPS4 and RRS1 properties required for RRS1SLH1-
mediated hypersensitive response in tobacco

As nuclear localization of RPS4 is necessary for AvrRps4-

triggered immunity [41], we investigated the role of RPS4 nuclear

localization in RRS1SLH1-mediated cell death. Co-expression of

RRS1SLH1 with RPS4WT or RPS4NLS induced HR (Figure 8A).

However, RPS4NES did not induce HR when co-expressed with

RRS1SLH1, indicating the importance of RPS4 nuclear localiza-

tion for RRS1SLH1 function, consistent with a previous report [41].

Nucleotide binding to the invariant Lys residue of the P-loop motif

in the NB domain of R proteins is critical for conformational

change and immunity activation [4,44,45]. Agroinfiltration of

RPS4WT, but not the P-loop mutant RPS4K242A, triggered HR

when co-expressed with RRS1SLH1 (Figure 8B). However,

RPS4K242A does interact with RRS1SLH1 and RRS1WT (Figure

S9C). Therefore, a functional RPS4 P-loop motif is required for

activation of RRS1SLH1-induced defense but is not an absolute

requirement for RPS4-RRS1 interaction. Surprisingly, introduc-

tion of the P-loop mutation (K185A) in the RRS1SLH1 protein

sequence did not affect HR-inducing activity when co-expressed

with RPS4WT (Figure 8B). Thus, P-loop motif-dependent confor-

mational change may not be required for defense activation by

RRS1SLH1, consistent with the functionality of an RRS1 P-loop

mutant in AvrRps4 or PopP2 recognition [43].

Structural analysis of RPS4 and RRS1 TIR domains revealed

an ‘‘SH motif’’ in regions that mediate heterodimerization

between RPS4 (S33 and H34) and RRS1 (S25 and H26) [43].

Moreover, RPS4 or RRS1 variants carrying a mutated SH motif

(SH-AA) cannot recognize AvrRps4 or PopP2 in tobacco

agroinfiltration [43]. To investigate if TIR-TIR domain hetero-

dimerization is also required for RRS1SLH1 function, SH-AA

mutations were introduced in RPS4WT and RRS1SLH1 variants.

Agroinfiltration of RRS1SLH1 and RPS4SH-AA, or RRS1SLH1/SH-AA

Figure 6. RPS4 is required for RRS1SLH1-mediated activation of immunity. (A) Schematic presentation of SUSHI mutations in RPS4. The
asterisk indicates premature stop codon. (B) The RRS1SLH1-induced growth restriction phenotype of sushi mutants is RPS4-dependent. The F1 hybrids
between rrs1-1 or rrs1-1 rps4-21 and sushi were grown for five weeks at 21uC before the photograph was taken. (C) Growth restriction of F1 hybrids
(shown in (B)) correlates with PR1 transcript accumulation as determined by qRT-PCR. PR1 transcript accumulation is presented relative to rrs1-1 and
rrs1-1 rps4-21 respectively. (D) RPS4SUSHI variants do not confer RRS1SLH1-induced hypersensitive response or recognition of AvrRps4 or PopP2 when
transiently expressed in tobacco leaf cells. Photographs were taken 3 days after agroinfiltration.
doi:10.1371/journal.pgen.1004655.g006
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and RPS4WT did not induce HR in tobacco suggesting that TIR-TIR

domain heterodimerization between RRS1 and RPS4 is required for

RRS1SLH1-dependent defense activation (Figure 8B). However, in

the context of the full-length proteins the RRS1SLH1/SH-AA variant

could still interact with RPS4WT (Figure S9C).

Co-expression of RRS1 with RPS4/RRS1SLH1 suppresses
HR, consistent with the recessive nature of RRS1SLH1

RRS1SLH1-dependent lethality is recessive [30]. In agreement,

agroinfiltration of RRS1WT but not of GFP interfered with HR

induced by co-expression of RRS1SLH1 and RPS4WT in tobacco

(Figure 8C–D). Interestingly, the RRS1K185A variant did not

interfere with RRS1SLH1-induced HR whereas the RRS1SH-AA

variant did (Figure 8C), indicating that nucleotide-binding func-

tion but not RPS4/RRS1 TIR-TIR domain interaction is

required for RRS1-mediated interference with RRS1SLH1-induced

HR. These agroinfiltration data are consistent with our transcrip-

tomic and genetic analyses and demonstrate the striking similarity

of RRS1SLH1 and Avr-triggered/RRS1-dependent defense acti-

vation.

As RRS1SLH1/RPS4-dependent constitutive HR is prevented

by co-expression of RRS1WT, we tested if RRS1SLH1 interferes

with RRS1WT recognition of AvrRps4 or PopP2. Interestingly, in

the presence of both RRS1 variants and RPS4, AvrRps4- or

Figure 7. Functional analysis of SUSHI mutations in the RPS4 TIR domain. (A) SUSHI mutations within the RPS4 TIR domain structure (PDB ID
4c6r) in cartoon (top) and surface (bottom) representation (figures were generated using PyMOL (Delano Scientific)). Molecules are rotated 90u
around the y-axis from left to right. Mutated residues are labelled R28 (Blue – sushi52), A38 (Teal – sushi14), E88 (Green – sushi22), L101 (Lime –
sushi71), P105 (Orange – sushi89) and G120 (Red – sushi29). (B) The SUSHI mutations abolish RPS4 TIR-induced HR in tobacco agroinfiltration assay. (C)
Analysis of the full-length RPS4 variants carrying SUSHI mutations in the TIR domain for recognition of AvrRps4 or PopP2 in tobacco agroinfiltration
assay. The photographs were taken 3 days after agroinfiltration.
doi:10.1371/journal.pgen.1004655.g007
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PopP2-triggered HR is still observed suggesting that RRS1SLH1 did

not completely abolish RRS1WT function (Figure 8D). However,

AvrRps4-triggered HR was attenuated considerably compared to

PopP2-triggered HR under the same conditions (Figure 8D).

Discussion

Although both AvrRps4 and PopP2 are recognized by RPS4

and RRS1, a thorough comparison of immune responses,

particularly of early transcriptional changes, has been difficult

due to the distinct infection modes of the bacterial pathogens from

which AvrRps4 (Pseudomonas syringae) and PopP2 (Ralstonia
solanacearum) originate. Root infection of Arabidopsis plants with

R. solanacearum causes wilting within 2 weeks, whereas Pseudo-
monas-delivered AvrRps4 triggers HR in Arabidopsis Ws-2 leaf

cells within 24 hours. PopP2 delivery from Pf0-1(T3S) allowed us

to compare the transcriptional reprogramming caused by recog-

nition of AvrRps4 or PopP2 at the earliest stages and has resulted

in the identification of a set of similarly regulated ETI-specific

genes. It is interesting that the NLS is dispensable for the

avirulence activity of PopP2 in our assays. It was shown that

removal of the N-terminal NLS renders localization of PopP2 and

co-expressed RRS1-S/R variants nuclear-cytoplasmic [46]. How-

ever, the significance of this PopP2 NLS-dependent relocalization

of RRS1 is not known, as there have been no studies showing ETI

phenotypes triggered by PopP2 lacking the NLS. As shown in

Figure S2, a PopP2 variant lacking an N-terminal NLS shows

similar levels of avirulence compared to wild type. Thus, PopP2

NLS-dependent relocalization of RRS1 may not be significant in

PopP2-triggered immunity. Alternatively, the portion of RRS1

that is localized in the nucleus with the NLS lacking PopP2 might

be sufficient to activate ETI.

It is intriguing to find that AvrRps4NES and AvrRps4NLS are

comparable in their ability to elicit HR in Arabidopsis Ws-2 (Figure

S2E). AvrRps4NES triggers a slightly lower ion leakage level than

AvrRps4NLS (Figure S2C). We conclude that regardless of AvrRps4

contribution to defense activation in the cytoplasm, its major role is

in the nucleus via interactions with the RPS4/RRS1 complex.

Pseudomonas T3S delivery of PopP2 provides a useful tool to

investigate RPS4/RRS1-dependent transcriptional regulation at

an early stage of ETI. In addition, by comparing non-functional

variants of AvrRps4 and PopP2 to wild type proteins, we could

Figure 8. Characterization of RRS1SLH1-induced hypersensitive response. RRS1 (R1), RPS4 (R4), AvrRps4 (A4) and PopP2 (P2) were C-
terminally epitope-tagged with His-Flag, HA, GFP and GFP, respectively. The photographs were taken 3 days after agroinfiltration. (A) The nuclear
localization of RPS4 is required for RRS1SLH1-induced HR. NES and NLS indicate nuclear export signal and nuclear localization signal, respectively. (B)
RRS1SLH1-dependent HR requires RPS4 P-loop (K242A) and TIR-TIR domain heterodimerization (SH-AA) but not RRS1 P-loop (K185A). (C) The
interference of RRS1SLH1-induced HR by wild type RRS1 requires the P-loop but not the SH-motif. (D) RRS1SLH1 does not fully interfere with AvrRps4 or
PopP2 recognition by wild type RRS1.
doi:10.1371/journal.pgen.1004655.g008
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identify the genes whose transcriptional changes were specific to

Avr function. As Pf0-1(T3S) carries a mutated HopA1 gene which

is unable to trigger RPS6-dependent immunity in Arabidopsis, the

gene expression change in rrs1-1 infiltrated with PopP2WT or in

Ws-2 infiltrated with PopP2C321A can be considered as PTI

resulting from perception of the Pf0-1 PAMP repertoire. We thus

report defense gene expression changes as PTI vs. PTI+ETI

(Table S3). Gene ontology enrichment has shown that the majority

of early up-regulated genes are involved in plant defense.

Comparative analysis with previously published microarray

data shows that many PopP2-triggered early gene expression

changes overlap substantially with AvrRps4-triggered transcrip-

tional regulation [28,29]. It is interesting to note that PopP2-

regulated genes also overlap substantially with previously reported

PopP2-induced genes at a later stage of infection when delivered

from R. solanacearum [40]. Our discovery of early responding

genes will allow us to test if they are directly regulated by RPS4/

RRS1. It has been recently shown that WRKY18 and WRKY40

positively contribute towards AvrRps4-triggered immunity [47].

Consistent with this, WRKY18 and WRKY40 were highly

induced at 3 and 6 hpi by AvrRps4 (Table S4). However, our

experimental design enabled us to show that both WRKY18 and

WRKY40 are primarily induced due to PTI (Figure S4). PTI+ETI

and PTI induction of WRKY40 expression are indistinguishable.

There is slightly higher PTI+ETI-induced expression of WRKY18

in response to PopP2WT in Ws-2 at later time points (6 and 8 hpi)

compared to PTI elicited by PopP2C321A in Ws-2 or PopP2WT in

rrs1-1 (Figure S4), but this could be due to elevated SA levels that

we presume are responsible for strong PR1 induction at 8 hpi.

It is interesting to note that AvrRps4-induced regulation of ETI

genes only partially requires RPS4. This is consistent with

AvrRps4 recognition being conferred by both RPS4/RRS1-

dependent and -independent mechanisms. Identification of an R
gene(s) that confer RPS4/RRS1-independent immunity will

enable comparative analysis of how AvrRps4-induced ETI genes

are transcriptionally regulated by different R genes. It was

remarkable to observe that AvrRps4, PopP2 and HopA1 induced

common genes at early stage of defense activation, suggesting a

possible EDS1-dependent conserved gene activation mechanism

in ETI.

Several auto-active alleles of NB-LRR genes have been found

[9,10,30,48,49], though unlike the recessive slh1, all others are

dominant or semi-dominant. Plants carrying an auto-active R
gene typically show temperature-dependent lethality and en-

hanced resistance to virulent pathogens [30–32]. However, in

many cases the overlap between elevated disease resistance that is

conferred by an auto-active R gene allele and by Avr-triggered

immunity is poorly defined. Unlike most other auto-active R gene

alleles, RRS1SLH1 carries a single amino acid insertion in the

WRKY-DNA binding domain that reduces its DNA-binding

affinity [30]. To address the role of RRS1 in transcriptional

activation or repression, we tested whether RRS1SLH1-induced

transcription changes overlap with AvrRps4- or PopP2-triggered

transcription changes. Based on previously reported expression

profiling data and the present study, we propose that the genes

whose transcripts were differentially regulated by RRS1SLH1, and

by AvrRps4 and PopP2 are directly regulated by RRS1 upon Avr

detection. As exons 6 and 7 of RRS1SLH1 show reduced binding to

a W-box in vitro, RRS1 may act as a transcriptional repressor of

plant immunity, or at least as a repressor of RPS4 function, and

this repression may be relieved upon Avr perception [30].

However, RRS1 could act both as repressor and activator of

defense gene transcription, as has been found for other plant

transcription factors [50]. Loss of RRS1-DNA binding may be

part of the activation of defense transcription, but paradoxically,

rrs1 knockout lines do not show enhanced immunity.

Identification of RPS4 mutant alleles among the SUSHI
mutations was unexpected, as we had anticipated that RRS1 might

act downstream of RPS4 to regulate defense gene transcription

directly. Notably, it would have been difficult to recover recombi-

nants between RRS1SLH1 and an adjacent mutant allele of RPS4, so

without a genetic screen, this discovery might not have been made.

Based on the genetic requirement of RPS4 for RRS1SLH1-induced

defense gene transcription, we now hypothesize that RPS4 is

required to form a functional immune receptor complex with

RRS1. This hypothesis is further supported by the fact that RPS4

and RRS1 interact with each other, in part but not solely by forming

a TIR-TIR domain heterodimer [43]. In addition, the requirement

of a functional P-loop motif for RPS4 but not for RRS1 function

suggests that RPS4 contributes to defense activation by providing

ATP-dependent conversion of a repressive immune receptor

complex to an activated state. PopP2 interacts with RRS1 [46], as

does AvrRps4 [43]. We hypothesize that RPS4 activates defense

upon recognition of perturbations in RRS1 by effectors, and that

RRS1SLH1 mimics the results of effector action upon RRS1. Can

this be reconciled with the observation that a 35S:RPS4
constitutive defense phenotype partially requires RRS1 [51]?

Conceivably, RRS1 might also play a chaperone-like role in

facilitating conversion of RPS4 from an inactive to an active form,

and RRS1SLH1 has enhanced activity in facilitating this conversion.

The TIR domain of RPS4 induces cell death when transiently

overexpressed in tobacco. Several amino acid residues were shown

to be required for RPS4 TIR domain auto-activity [42]. Among

the 33 single amino acid polymorphisms of RPS4 that we

identified in sushi mutants, two residues, R28 and E88, were

previously implicated as being required for RPS4 TIR domain-

induced auto-activity in tobacco. R28H and E88K mutations are

unlikely to alter the overall structure of RPS4 TIR domain,

judging from the crystal structure of RPS4/RRS1 TIR domain

heterodimer [43]. A study on RPS4 natural variants identified

Y950 as an important residue for function as a susceptible RLD

allele of RPS4 carries a Y950H mutation, and a Y950H

substitution in the functional Ler allele of RPS4 abolishes its

AvrRps4-recognition capability [24]. Interestingly, we identified

several mutations (S914F, G952E and G997E) in this C-terminal

domain (CTD) of RPS4. Although the function of the RPS4 CTD

remains unclear, it appears to be important for immune signaling.

Conceivably, the sushi-mutated residues found in the TIR domain

(R28, E88, P105L and G120R) and in the CTD (S914F, G952E,

and G997E) are involved in the interaction with RRS1 or other

yet unknown partner(s).

AvrRps4 and PopP2 interact directly with RRS1 [43,46].

Conceivably, after interaction of AvrRps4 or PopP2 with RRS1,

dissociation of the activated RPS4/RRS1 immune complex from

target DNA induces RPS4 P-loop-dependent de-repression/

activation of defense gene transcription, perhaps via WRKY18

and WRKY40 [47]. There may be multiple WRKY transcription

factors that can replace the transcriptional repression function of

RRS1, but not its Avr-recognition function. However, the Ws-2

RRS1SLH1 allele may make additional contributions to assembling

a defense-activating complex beyond vacating W-boxes.

An intriguing feature of RRS1 is that it is the only known

recessive NB-LRR-encoding R gene. Consistent with this obser-

vation, the slh1 mutation is also recessive. We were able to

recapitulate this feature by transiently co-expressing RRS1 with

RPS4 and RRS1SLH1 and suppressing RPS4/RRS1SLH1-triggered

HR. This suppression is abolished if the RRS1-R carries a

mutation in its P-loop motif. Intriguingly, this result suggests that
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the RRS1-R P-loop is not required for RPS4-dependent HR

activation, but potentiates assembly of an inactive, poised

complex. Thus, we suggest that the recessive nature of RRS1 in

the Col-0(S)/Nd-0(R) or Col-0(S)/Ws-2(R) cross is the result of the

Col-0 allele encoding a protein that can interfere in trans with

PopP2 responsiveness and thus acts as a ‘‘poison subunit’’.

There are nine TIR-NB-LRR gene pairs reported in the

Arabidopsis Col-0 genome [26]. It is important to better understand

how paired R proteins have evolved and recognize effectors. It is

interesting to note that all three TIR-NB-LRR-WRKY encoding

genes (At5g45260, At5g45050 and At4g12020) found in Arabidop-

sis are paired with TIR-NB-LRR genes [26]. This suggests that at

least some other paired R proteins may function cooperatively in the

nucleus by directly regulating transcriptional processes.

In conclusion, the deployment of a Pseudomonas T3S delivery

of PopP2 allowed a detailed comparison of AvrRps4- and PopP2-

triggered RPS4- and RRS1-dependent transcriptional regulation.

We found that an auto-active allele of the TIR-NB-LRR-WRKY

protein RRS1, RRS1SLH1, induces immune responses comparable

to Avr-triggered immunity. The suppressor of slh1 immunity
screening enabled us to uncover the critical role of RPS4 in

RRS1SLH1-mediated defense activation. Furthermore, we defined

additional properties of RPS4 and RRS1 that are essential for

function, and these results significantly enhance our understanding

of NB-LRR protein function in plants.

Materials and Methods

Plant materials and growth conditions
Arabidopsis plants were grown in short day conditions (10 h

light/14 h dark) at 21uC or 28uC. Nicotiana benthamiana and

Nicotiana tabacum ‘Petit Gerard’ plants were grown in long day

conditions (16 h light/8 h dark) at 24uC. No-0 and slh1 are

described in [30]; Ws rrs1-1 and Ws rrs1-1 rps4-21 are described

in [26].

Plasmid constructions
To create pEDV6 (gateway destination variant of pEDV3), the

nucleotide sequence encoding the HA epitope tag was inserted at

SalI site of pEDV3 [33] that resulted in AvrRps4N(1-137aa):-

HA:ClaI:BamHI (pEDV5). Subsequently, pEDV5 was digested

with ClaI and BamHI, treated with T4 DNA-polymerase to

generate blunt ends and ligated with EcoRV digested Gateway

reading frame cassette B (RFB) (Invitrogen) to create pEDV6.

Construction of pBBR1MCS-5:avrRps4 was described previously

[35]. The NES- or NLS-tagged avrRps4 variants were kindly

provided by Jane Parker laboratory and the cloning procedure was

described previously [8]. To generate pEDV6:popP2 variants, full-

length or truncated popP2 fragments were amplified from Ralstonia
solanacearum genomic DNA by polymerase chain reaction and

cloned in the Gateway entry vector, pCR8 (Invitrogen). Introduc-

tion of popP2 fragments in pEDV6 was performed according to

manufacturer’s instructions by using LR recombinase II (Invitro-

gen). The pBin19:RPS4:HA construct was described previously

[52]. To obtain C-terminally GFP tagged AvrRps4 or PopP2

variants, avrRps4 or popP2 coding regions were PCR amplified and

cloned at ClaI and BamHI sites of EpiGreenB5:GFP. Construction

of 35S:RRS1:His-Flag is described in [43]. Wild type and mutant

variants of AvrRps4 and PopP2 were PCR amplified from

previously reported plasmid constructs [35,53]. The resulting

PCR fragments were cloned in pCR8 (Invitrogen) and correct

sequences were confirmed. These pCR8 constructs were used for

LR reaction with the Gateway destination vector pK7FWG2 (35S

promoter and C-GFP) to generate C-terminally GFP-tagged

AvrRps4 and PopP2 variants. Wild type and SH-AA mutant

variants of RPS4-HA and RRS1-His-Flag are described in [43].

Introduction of SLH1 and SUSHI mutations in RRS1 and RPS4,

respectively, was achieved by using Quikchange II XL site-directed

mutagenesis kit (Agilent). The C-terminally GFP-tagged RPS4

constructs were generated by inserting ClaI/BamHI digested RPS4

in EpiGreenB5-GFP-WT/NES/NLS.

Bacterial strains, culture conditions and manipulations
Escherichia coli DH5a was used for maintaining plasmid

constructs and bacterial conjugation. For hypersensitive response

assay and in planta bacterial growth assay, Pseudomonas
fluorescens Pf0-1(T3S) and Pseudomonas syringae pv. tomato
(Pto) DC3000 strains were used, respectively. To introduce various

constructs carrying avrRps4, popP2 or hopA1 in Pf0-1(T3S) and

Pto DC3000, standard triparental mating method was used by

using E. coli HB101 (pRK2013) as a helper strain as previously

described [33]. For transformation of Agrobacterium tumefaciens
strain AGL1, standard electroporation method was used.

Plant pathology experiments
For hypersensitive response assay, freshly grown Pf0-1 (T3S)

strains on King’s B agar plates containing appropriate antibiotics

were harvested in 10 mM MgCl2. The final concentration of

bacterial suspensions was adjusted to A600 = 0.2. Leaves of five

week-old Arabidopsis plants were hand-infiltrated by using 1 mL

needless syringes and kept 20–24 h further for symptom develop-

ment. For ion leakage assays, leaf discs were sampled at 0.5 hpi,

floated on water for 30 minutes (with gentle shaking at room

temperature) and transferred to fresh water (1 hpi sample). Ion

leakage was measured at 24 hpi using a conductivity meter. For in
planta bacterial growth assays, Pto DC3000 strains were grown

and harvested as for Pf0-1(T3S). Leaves of five week-old

Arabidopsis plants were hand-infiltrated with bacterial suspensions

(A600 = 0.001) by using 1 mL needless syringes and kept 3–4 days

further before sampling. Infected leaf samples were ground in

10 mM MgCl2, serially diluted, spotted on L agar plates

containing appropriate antibiotics and kept at 28uC for 2 days

before counting colonies to estimate bacterial population in

infected leaves.

Agrobacterium-mediated transient transformation of
Nicotiana benthamiana and Nicotiana tabacum

Agrobacterium tumefaciens AGL1 strains carrying the different

constructs were grown in liquid L-medium supplemented with

adequate antibiotics for 24 h. Cells were harvested by centrifuga-

tion and re-suspended at OD600 0.5 in infiltration medium

(10 mM MgCl2, 10 mM MES pH 5.6). For co-expression,

bacterial suspensions were mixed in 1:1 ratio before infiltration

with needleless syringes in 5 week-old N. benthamiana or N.
tabacum leaves. Tobacco hypersensitive response was generally

observed and photographed 2 to 3 days after infiltration.

EXPRSS library, Illumina sequencing and transcriptional
profiling analysis

EXPRSS tag-seq cDNA library construction and data analysis

was carried out as described previously [38]. The sequence data

presented in this publication have been deposited in NCBI’s Gene

Expression Omnibus [54] and are accessible through GEO Series

accession number GSE48247 and GSE51116. Tag to gene

associations were carried out using uniquely mapped reads, with

the considerations described previously [38]. Bowtie v0.12.8 [55]

was used to map short reads to TAIR10 genome and Novoalign
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v2.08.03 (http://www.novocraft.com/) was used to align remain-

ing reads to TAIR10 cDNA sequences. Differential gene expres-

sion analysis was performed using the R statistical language

(v2.11.1) with the Bioconductor package [56], edgeR v1.6.15 [57]

with the exact negative binomial test using tagwise dispersion and

selected genes with false discovery rate (FDR) ,0.01. From RNA-

seq data for avrRps4 on Col-0 [29], uniquely mapped read counts

to genes were used for reanalysis using edgeR and selected gene

with FDR ,0.05.

Microarray data files from Pto DC3000 (AvrRps4) infiltration

(Array Express E-MEXP-546, [28]) and Interaction of Arabidopsis
thaliana and Ralstonia solanacearum (NASCARRAYS-447, [40])

were used. Data analysis was performed using the R statistical

language as described previously [38,58]. Differentially expressed

genes were identified using the rank products method with FDR ,

0.05 [59]. As Pto DC3000 (AvrRps4) data has only one replicate,

differential expression analysis was carried out with untreated and

MgCl2 infiltrated 3 hpi samples as controls and compared against

3 and 6 hpi of avrRps4 and 6 hpi of MgCl2. For GMI1000/

GMI1000DPopP2 data, only Nd-1 samples were used.

Marker gene expression analysis by qRT-PCR
Total RNAs were extracted from 4 to 5 week-old Arabidopsis

plants using the TRI reagent (Invitrogen) according to the

manufacturer’s instructions. First-strand cDNA was synthesized

from 5 mg RNA using SuperScriptII Reverse Transcriptase

(Invitrogen) and an oligo(dT) primer, according to the manufac-

turer’s instructions. cDNA was amplified in triplicate by quanti-

tative PCR using SYBR Green JumpStart Taq ReadyMix (Sigma)

and the CFX96 Thermal Cycler (Bio-Rad). The relative expres-

sion values were determined using the comparative Ct method and

Ef1a (At5g60390) as reference. Primers used for quantitative PCR

are described in Table S7.

slh1 genotyping and candidate genes coding region
sequencing

The presence of the slh1 mutation in sushi M3 generation and

F1 individuals resulting from the genetic cross with rrs1-1 or rrs1-
1 rps4-21 was assessed using the CAPS marker described in [30].

For sequencing of candidate genes on sushi mutants genomic

DNA, 10, 6, 4 and 4 couples of primers respectively were used to

amplify regions of RRS1, RPS4, EDS16 and EDS5 coding

sequence (see Table S7). PCR products were purified on

Sepharose and sequences were analyzed using the Vector NTI

assembly software (Invitrogen).

Protein extraction, immunoprecipitation and
immunoblotting

Protein samples were prepared from N. benthamiana 48 h after

Agrobacterium-mediated transformation. One infiltrated leaf was

harvested and ground in liquid nitrogen. Total proteins were

extracted in GTEN buffer (10% glycerol, 100 mM Tris-HCl

pH 7.5, 1 mM EDTA, 150 mM NaCl) supplemented extempo-

raneously with 5 mM DTT, 1% (vol/vol) plant protease inhibitor

cocktail (Sigma) and 0.2% (vol/vol) Nonidet P-40. Lysates were

centrifuged for 15 min at 5,000 g at 4uC and aliquots of filtered

supernatants were used as input samples. Immunoprecipitations

were conducted on 1.5 mL of filtered extract incubated for 2 h at

4uC under gentle agitation in presence of 20 mL anti-FLAG M2 or

EZview anti-HA affinity gel (Sigma). Antibodies-coupled agarose

beads were collected and washed three times in GTEN buffer, re-

suspended in SDS-loading buffer and denatured 10 min at 96uC.

Proteins were separated by SDS-PAGE and analyzed by

immunoblotting using anti-FLAG M2-HRP, anti-GFP-HRP or

anti-HA-HRP conjugated antibodies (Sigma, Santa Cruz and

Roche respectively).

Supporting Information

Figure S1 PopP2149–488 triggers Arabidopsis immunity when

delivered from Pseudomonas. (A) Construction of pEDV5 and

pEDV6 and functional analysis of N-terminally truncated PopP2

variants. (B) Schematic presentation of PopP2 protein. The

numbers indicate the corresponding amino acids of full-length

PopP2. Cys321 is required for acetyltransferase activity [36]. NLS:

nuclear localization signal. (C) Hypersensitive response (HR) assay

in Ws-2. Pseudomonas fluorescens Pf0-1(T3S) strains expressing

wild type or N-terminally truncated PopP2 variants were used for

inoculating leaves of five week-old Ws-2 plants. The photograph

was taken at 24 hpi. Red arrows indicate the leaves showing HR.

(D) Pseudomonas syringae pv. tomato (Pto) DC3000 strains

expressing indicated PopP2 variants were used for inoculating

leaves of five week-old Ws-2 plants. The results presented are the

mean and standard error of the number of bacterial colonies

recovered. Means labeled with the same letter are not statistically

different at the 5% confidence level based on Tukey’s test.

(TIF)

Figure S2 Nuclear localization of PopP2 and AvrRps4 is

sufficient to trigger RPS4/RRS1-dependent hypersensitive re-

sponse and immunity in Arabidopsis. (A) Hypersensitive response

(HR) assay in wild type and transgenic RLD or Col-0 expressing

RPS4Ler or RRS1Ws-2, respectively. Leaves of five week-old

Arabidopsis were infiltrated with Pf0-1(T3S) expressing

AvrRps4N:PopP2149–488 variants. The photograph was taken at

24 hpi. The red asterisks indicate the leaves showing HR. (B)

PopP2NLS triggers elevated ion leakage level in Ws-2. Infection

conditions were same as in (A). (C) Nuclear localization of PopP2 is

necessary and sufficient to trigger immunity. Pto DC3000

expressing AvrRps4N:PopP2149–488 variants were used for infec-

tion of five week-old wild type Ws-2 plants. Infected leaf samples

were taken at 4 dpi to measure bacterial numbers. Means labelled

with the same letter are not statistically different at the 5%

confidence level based on Tukey’s test. (D) Marker gene expression

analysis by qRT-PCR. (E) Nuclear localization of PopP2 is

required to trigger HR in Ws-2. Experimental conditions were the

same as in (A). NES and NLS indicate nuclear export signal and

nuclear localization signal, respectively.

(TIF)

Figure S3 Expression analysis of PopP2 variants in Pf0-1 (T3S).

Pseudomonas fluorescens Pf0-1(T3S) strains carrying the indicated

pEDV6:PopP2149–488 variant was freshly prepared and used for

infection of 4-weeks old Nicotiana benthamiana leaves (A600 = 2.0).

Samples for total protein extraction were taken at 10 hpi.

Experimental procedures used in this study were identical to

Williams et al. [43].

(TIF)

Figure S4 Verification of gene induction during PopP2-

triggered RRS1-dependent immunity. RRS1- and PopP2-depen-

dent gene expression was verified with qRT-PCR of EDS5,

NudT6, WRKY18 and WRKY40 on the cDNA used for Illumina

libraries. Induction of EDS5 and NudT6 was primarily due to

RPS4/RRS1-R recognition of PopP2, while expression of

WRKY18 and WRKY40 appears mainly due to PTI. Expression

values represent the mean from three biological replicates and

error bars indicate the standard error of the mean.

(TIF)
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Figure S5 Transcriptional profiling of PopP2-infected plants

shows significant overlap with AvrRps4-regulated genes. (A) Venn

diagram presenting the overlap between PopP2/Ws-2 (FDR ,

0.001), AvrRps4/Col-0 (FDR ,0.05), AvrRps4/Ws-2 (FDR ,

0.05) and GMI1000/Nd-1 (FDR ,0.05) differentially regulated

genes. (B) Pairwise comparison of differential gene expression

among the four experiments. Numbers of genes unique to each

data set are presented on the diagonal (a). Overlap is represented

as a number common between pairwise comparisons, below the

diagonal (c) and hypergeometric probability values of the overlap

are represented above the diagonal (b).

(TIF)

Figure S6 Defense marker gene expression is abolished in fully

rescued sushi mutants. Wild type No-0, slh1 and sushi mutant lines

were grown at 28uC for four weeks then plants were shifted at

21uC for 24 h. Transcript accumulation of defense marker gene

was determined by qRT-PCR and is presented relative to No-0

before temperature shift.

(TIF)

Figure S7 Heterozygosity at RRS1 locus in sushi 6 Ws rrs1-1
and sushi6rrs1-1 rps4-21 F1 individuals. slh1 CAPS marker [30]

was used for PCR amplification using the genomic DNA from

individual sushi 6 Ws rrs1-1 and rrs1-1 rps4-21 F1 shown in

Figure 6B, and digested with DdeI. Size (bp) of the uncleaved

(RRS1SLH1_352) and cleaved (RRS1WT_223 and 129) product is

shown on the left.

(TIF)

Figure S8 Recapitulation of RPS4/RRS1-dependent recogni-

tion of AvrRps4 and PopP2 in tobacco. (A) Recognition of

AvrRps4 or PopP2 in tobacco requires previously shown

properties. The photograph was taken 3 days after agroinfiltration.

(B) qRT-PCR analysis of selected defence genes in response to

PopP2 recognition in tobacco. Agroinfiltrated leaf samples were

taken at indicated times for total RNA extraction. Expression

results are mean from two biological replicates and error bars

indicate standard error of the mean.

(TIF)

Figure S9 RRS1 interact with RPS4 variants. Variants of

RRS1-His-Flag (RRS1SLH1, RRS1SH-AA, RRS1SLH1/SH-AA) and

RPS4-HA (RPS4K242A, RPS4SH-AA, RPS4sushi) were transiently

expressed in Nicotiana benthamiana and subjected to immuno-

precipitation. RPS4sushi variants interact with (A) RRS1WT or (B)

RRS1SLH1. (C) Mutations in RPS4 or RRS1 that affect the Avr-

recognition capacity do not alter the full-length RPS4-RRS1

interaction in co-immunoprecipitation assays.

(TIF)

Figure S10 RPS4sushi do not have a dominant negative effect on

RPS4WT. RPS4sushi variants cannot interfere with RPS4WT/

RRS1SLH1-mediated cell death in tobacco. Photographs were

taken 3 days after agroinfiltration.

(TIF)

Figure S11 RPS4TIR sushi mutant (M3), wild type No-0 and

slh1 plants were grown at 21uC for 25 days. (A) Plant morphology.

(B) qRT-PCR analysis of selected RRS1SLH1-regulated genes.

Transcript accumulation is presented relative to No-0.

(TIF)

Figure S12 Immunoblot analysis of transiently expressed

proteins. Leaf samples infiltrated with Agrobacterium strains were

taken at 2 dpi. Total protein extracts were used for immunoblot

analysis. (A) Expression of GFP-tagged AvrRps4 or PopP2149–488

proteins. (B) Expression of full-length RPS4K242A and RPS4SH-AA

variants is comparable to wild type RPS4-HA. (C) Expression of

variants of full-length RRS1-His-Flag. (D) Expression of RPS4TIR-

GFP variants carrying SUSHI mutations. (E) Expression of full-

length RPS4-HA variants carrying TIR SUSHI mutations.

(TIF)

Table S1 Details of genes differentially expressed in the RRS1-

PopP2 time course.

(XLSX)

Table S2 Details of GO enrichment analysis for genes

differentially expressed during the RRS1-PopP2 time course.

(XLSX)

Table S3 Mean expression (in Tag counts per million) of genes

differentially induced in the RRS1-PopP2 time course.

(XLSX)

Table S4 Details of genes differentially expressed in the Col-0-

AvrRps4 [29], Ws-2-AvrRps4 [28] and Nd-1-GMI1000 time

course [40].

(XLSX)

Table S5 Details of gene differentially expressed during the

slh1/No-0 temperature shift time course.

(XLSX)

Table S6 Candidate gene mutations found in sushi.
(DOCX)

Table S7 Primers used in this study.

(DOCX)
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