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Abstract

Leukemia therapeutics are aiming for improved efficacy by targeting molecular markers 

differentially expressed on cancerous cells. Lymphocyte function-associated antigen-1 (LFA-1) 

expression on various types of leukemia has been well studied. Here, the role and expression of 

LFA-1 on leukemic cells and the possibility of using this integrin as a target for drug delivery is 

reviewed. To support this rationale, experimental results were also included where cIBR, a cyclic 

peptide derived from a binding site of LFA-1, was conjugated to the surface of polymeric 

nanoparticles and used as a targeting ligand. These studies revealed a correlation of LFA-1 

expression level on leukemic cell lines and binding and internalization of cIBR-NPs suggesting a 

differential binding and internalization of cIBR-NPs to leukemic cells overexpressing LFA-1. 

Nanoparticles conjugated with a cyclic peptide against an accessible molecular marker of disease 

hold promise as a selective drug delivery system for leukemia treatment.
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FUNCTION OF LFA-1 AND ITS ROLE IN DISEASES

Leukocyte function associated antigen-1 (LFA-1) is a heterodimeric protein comprised of 

alpha (Mw = 180 kDa) and beta (Mw = 95 kDa) subunits. It is a member of the integrin 

family constitutively expressed on all immune cell subsets including leukocytes (1–4). 

LFA-1 plays a role in many immunological response processes including adhesion and 
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transmigration of leukocytes through endothelium and participates in the immunological 

synapse between T cells and antigen presenting cells in T cell activation (2, 5). The 

activation of T cells can induce proliferation and differentiation of T cells (2, 6). The major 

binding ligand of LFA-1 is intercellular adhesion molecule-1 (ICAM-1)(7). LFA-1 

activation is tightly regulated through intracellular signaling (inside-out signaling) and it is a 

prerequisite for ligand binding (2). The binding of LFA-1 to its ligand triggers intracellular 

signaling leading to conformational change of LFA-1 from a low affinity to a high affinity 

form which has a greater accessibility to its ligand and allows tighter binding(2). In addition 

to the high affinity conformation, the binding of LFA-1 to its ligand may also be enhanced 

by clustering of LFA-1 (2, 8). The cluster formation is initiated by multivalent binding of 

LFA-1 to ICAM-1, hence strengthening cell-cell adhesion.

The interaction between LFA-1 and ICAM-1 plays an important role in the regulation of a 

variety of immune responses(9). LFA-1 is important for leukocyte endothelial adhesion and 

extravasation to inflammatory sites. It also plays a key role in co-stimulation required for T 

cell activation. Accordingly, the functions of LFA-1 are relevant to most immunological 

diseases or symptoms such as inflammation, autoimmune diseases and graft rejection after 

organ transplantation (1, 10). The diseases are often typified by overexpression or deficiency 

of LFA-1. Several molecules including antibodies, peptides and small molecules have been 

developed to block the binding of LFA-1 and ICAM-1 (10). Efalizumab(Raptiva®), a 

recombinant anti-human LFA-1 antibody was a prescribed medication used as an 

immunosuppressive agent in psoriasis (11). However, Raptiva® has been associated with an 

increased risk of progressive leukoencephalopathy(PML) which is a fatal disease of the 

central nervous system, therefore; it was withdrawn from the market in mid-2009 (12). Both 

monotherapy of anti-LFA-1 and combination therapy with anti-ICAM-1 antibody were 

effective in promoting long-term survival of islet, cardiac, small bowel and nerve allografts 

in animal models (1, 13–17). Treatment with anti-LFA-1 antibodies has shown disease 

prevention in animal models with autoimmune encephalomyelitis and autoimmune diabetes 

and has shown benefits in lupus and inflammatory arthritis (1, 18–22).

LEUKEMIA AND TARGETED DRUG DELIVERY

Leukemia is a malignant disease originating in the bone marrow. An abnormal proliferation 

of blood cells leads to an excess of these cells entering the blood stream (23). Leukemia has 

a higher mortality rate than other types of cancer among children and young adults under the 

age of 20 (24). Currently, most forms of leukemia are treated with pharmaceuticals, 

typically by combination chemotherapy regimens. Patients may also be treated with 

radiation therapy or bone marrow transplantation, however, these treatments are generally 

more invasive(25). Drug discovery for treating leukemia is focused on enhancing efficacy, 

while minimizing therapy-related toxicity. A promising therapeutic strategy is selective 

targeting of molecular markers of malignant cells, which are not expressed or are expressed 

to a lesser extent on normal human hematopoietic stem cells or lymphocytes (25).

Progress in therapeutic interventions leading to improved disease outcomes is primarily a 

result of the continued development of improved anticancer drugs. The effectiveness of 

these drugs is linked to the capability to selectively target cancer cells while minimizing 
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toxicity to normal cells. As a result, specifically targeting potent drugs to cancer cells is a 

key to successful treatment of leukemia. There are various agents that have been 

investigated for targeted therapy including monoclonal antibodies against cell surface 

antigens, kinase inhibitors, signaling molecule inhibitors, and proteasome inhibitors (25). 

The use of antibodies for leukemic cell-targeted delivery of potent cytotoxic agents such as 

calicheamicin has also been investigated to overcome the dose limitations imposed by the 

side effects of non-targeted therapeutics (26).

Several targeted molecules are currently under intense investigation. CD33 is a glycoprotein 

up-regulated on normal myeloid cells during differentiation, which is expressed on the 

surface of leukemia cells in 85–90% of patients with acute myeloid leukemia(AML)(25, 27). 

Anti-CD33 antibody conjugated to calicheamicin has demonstrated response rates of 30–

35% in adults and children with relapsed or primary refractory AML (25, 27). CD22 is a B-

lymphoid lineage-specific glycoprotein that is highly expressed in B-cell lymphomas and B-

precursor acute lymphoblastic leukemia(ALL)(25–26, 28). A CD22-specific 

immunoconjugate of calicheamicin has demonstrated preferential cytotoxic effects against 

CD22+ tumor targets and is more potent than that of unconjugated calicheamicin against 

CD22+ malignant cells (26). BCR-ABL kinase inhibitors (Imatinib and Dasatinib) were 

developed as highly specific small molecules for targeted therapy (29). Imatinib has potent 

clinical activity in chronic lymphoblastic leukemia, however, the response was short-lived 

(2–3 months) and some patients relapsed due to resistance to the drug (25, 29). The new 

class ABL/Src kinase inhibitor, Dasatinib, could potentially improve the activity of Imatinib. 

Dasatinib is highly effective as a single agent for patients with Imatinib-resistant chronic 

myelogenous leukemia(CML) with minimal side effects (25). Other targeted therapies 

include the inhibition of FMS-like tyrosine kinase 3(FLT3) which is expressed in more than 

90% of AML patients (30). This proteasome inhibitor is part of a new class of drugs 

inhibiting the degradation of NF-κB, a transcriptional activator known to have anti-apoptotic 

activity. Mammalian Target of Rapamycin Complex-1 (mTOR), a serine/threonine kinase 

regulating cell growth, has been reported in more than 70% of AML patients (25). Inhibition 

of mTOR may be a useful therapeutic strategy for relapsed/refractory AML and ALL in 

children (25).

Actively targeting drugs using a drug carrier (e.g. polymer nanoparticle, liposome, 

dendrimer) may also differentially transport the therapeutically active molecule to the target 

cell. Molecular markers that are either uniquely expressed or overexpressed on leukemic 

cells may allow drugs or drug carriers to bind based on molecular recognition such as 

ligand-receptor or antigen-antibody interactions (30). On leukemic cells, several potential 

targets for drug carriers have emerged. For example, a current clinical trial is evaluating a 

peptide vaccination targeting different epitopes of the Wilms’ tumor gene 1 (WT1), the 

proteinase-3 derived epitope peptide (PR1), and the receptor for hyaluronic acid mediated 

motility (RHAMM/CD168) derived epitope R3 (30). Herceptin® was approved for women 

with breast cancer whose tumors have high level ofHER2 protein is the example of actively 

targeting drugs. Clinical experience with Herceptin® for the adjuvant treatment of HER2+ 

breast cancer began in 2000. In 2006, Herceptin® was approved for the adjuvant treatment 

of HER2+ breast cancer (31). Now, researchers are using Herceptin® to target potent 
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chemotherapeutics or toxins for breast cancer chemotherapy. Some of the antibodies being 

explored for treating leukemia may soon follow similar ‘carrier’ approaches.

Recently, lymphocyte function-associated antigen-1 (LFA-1), a primary cell adhesion 

molecule, has also been investigated for targeting nanoparticles to human leukemic cell line 

(30, 32). Lima et al. reported that certain leukemic cells expressed 5-fold more LFA-1 than 

normal leukocytes (32). Since LFA-1 is expressed only on leukocytes, it may be possible to 

also use LFA-1 as a target for drug carrier conjugated with LFA-1 ligands and perhaps to 

differentially target certain types of leukemic cells.

In leukemia, LFA-1 expression determines the clinical and biological behavior of lymphoid 

malignancies. In human lymphomas, differential LFA-1 expression is related to the different 

maturation stage, growth pattern, degree of clinical aggressiveness, and anatomic site of 

tumor in different types of leukemia (33). Ahsmann et al. have found the presence of LFA-1 

on tumor cells in low and medium grade malignant lymphomas but not on high grade 

malignant lymphomas(6). Since LFA-1 molecules play a role in cytolytic T cell-target cell 

conjugation, the absence of LFA-1 might contribute to an escape from 

immunosurveillance(6, 33–34). These trends suggest LFA-1 targeting may be preferred at 

earlier stages of cancer development.

Resting lymphocytes express the inactive form of LFA-1 but do not mediate firm adhesion 

to their ligands since the active form of LFA-1 can cause aggregation and clogging in blood 

vessels(10). The inactive form of LFA-1 is converted to the active conformational state by 

several stimuli such as chemokines and cytokines leading to a rapid increase in LFA-1 

function(35). In leukemia, some patients’ leukemic cells may express inactive integrins that 

are non-functional, some that are constitutively active and some that are inactive but 

regulated by cytokines or other stimuli(35–36).

POTENTIAL OF LFA-1 TARGETED NANOPARTICLES

Targeted drug delivery systems promise to expand the efficacy and decrease the potential 

toxic side effects of drugs by increasing their localization to specific organs, tissues or cells 

(37). To enhance the targeting of nanoparticles to specific cells or tissues, target-specific 

ligands must be linked to the nanoparticle surface (38). For targeted delivery to tumors, the 

cellular target often consists of a membrane-bound tumor-associated antigen (TAA) such as 

folate receptor, which is amplified in a wide variety of human tumors (39). Target-specific 

ligands that are linked to nanoparticles have been divided into classes based on the target 

receptors: (i) targets that are preferentially expressed on endothelial cells of tumor blood 

vessels (e.g. integrin-αvβ3), (ii) targets that are overexpressed on tumor cells (e.g. HER2 and 

disialoganglioside (GD2)), and (iii) lineage-specific targets that are expressed at the same 

level on tumor cells and on normal cells (e.g. CD19)(40).

Cyclic peptides derived from the binding domain of ICAM-1, domain 1, with LFA-1 may be 

conjugated to drugs or drug carriers for targeting LFA-1. Cyclic peptides (cIBL, cIBR, 

cIBC, CH4 and CH7) derived from residues 1–21 of ICAM-1 Domain 1 (N terminus) have 

been investigated for the inhibition of ICAM-1/LFA-1 interaction between T-cells and 

epithelial cells (41). cIBR peptide, cyclo(1,12)Pen PRGGSVLVTGC, showed the highest 
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affinity to the isolated LFA-1 receptor compared to cIBC and cIBL(42). cIBR peptide has 

also been shown to inhibit LFA-1/ICAM-1 interaction (43) and this peptide was internalized 

selectively in LFA-1 expressing T-cells (44). Recently, cIBR has been coupled to PLGA 

nanoparticles for targeting lymphoblastic leukemic T-cells (45). Here, the selective binding 

and internalization of cIBR peptide conjugated on PLGA nanoparticles were investigated in 

four different types of leukemic cell lines expressing different degree of LFA-1 expression. 

The specific binding of LFA-1 targeted nanoparticles was compared with untargeted 

nanoparticles. The specificity of this drug delivery system may be useful for treating certain 

types of leukemia typified by LFA-1 overexpression. Finally, these studies suggest that 

targeted nanoparticle therapies may represent a viable therapeutic approach for leukemia 

when considered within the context of current trends in targeted therapies reviewed here.

EXPERIMENTAL EVIDENCE OF LFA-1 TARGETED NANOPARTICLES

The correlation of LFA-1 expression and the binding degree of LFA-1 targeted 

nanoparticles were investigated as a promise for differently targeting leukemias typified by 

LFA-1 upregulation. First, PLGA nanoparticles were prepared by a solvent displacement 

method and cIBR peptide was conjugated on nanoparticles by carbodiimide chemistry (44). 

The mean diameter of NPs and cIBR-NPs were 178.9 ± 3.0 and 219.2 ± 10.1 nm, 

respectively (Table 1). A low polydispersity index was obtained from both formulations and 

indicated a narrow size distribution of the nanoparticle suspension. These colloids were 

consistently homogenous and stable. The zeta potentials of NPs and cIBR-NPs were 

observed to be −28.5 mV and −31.3 mV, respectively. The peptide density on the surface of 

nanoparticles after reaction was calculated assuming a normal Gussian particle size 

distribution (Table2).

The relative expressions of LFA-1 on four different types of human leukemic cell lines were 

determined by immunofluorescence using anti-LFA-1-FITC antibody. The results indicated 

that Molt-3 cells (lymphoblastic cell line) expressed significantly more LFA-1 compared to 

the other cell types. U937 (promonocytic cell line), HL-60 (promyeloblastic cell line) and 

Molt-4 (lymphoblastic cell line) showed steadily decreasing LFA-1 expression levels (Fig.

1). Then, cIBR-NPs and unconjugated NPs, both containing the fluorescent dye coumarin-6, 

were incubated with these cell lines and evaluated at several time intervals. Flow cytometry 

data indicated that the binding and internalization of cIBR-NPs in these four types of 

leukemic cell lines was significantly greater than untargeted NPs (p < 0.05 (Fig.2)), 

suggesting that cIBR was an effective targeting molecule when conjugated to a drug carrier. 

The binding of cIBR-NPs in these four types of leukemic cells was very fast and the 

fluorescence intensity of cIBR-NPs were significantly greater over time when compared to 

unconjugated NPs (Fig.3) .The rapid and specific binding of cIBR-NPs to LFA-1 on 

leukemic cells confirms previous reports (45). The uptake of cIBR-NPs in HL-60 and 

Molt-3 cells after 5, 30 and 60 minutes were similar (p > 0.05) but the fluorescence intensity 

increased with an incubation time of 90 min (p< 0.05 (Fig. 4)). In Molt-4, the fluorescence 

intensity generally increased slightly with incubation time (Fig. 4). After 30, 60 and 90 min, 

the binding of cIBR-NPs did not significantly increase in U937 suggesting that the cIBR-

NPs may have saturated LFA-1 molecules. Beyond 30 min, the curves showed a plateau 

effect (Fig. 4). Molt-3 cells had the highest degree of binding and internalization of cIBR-
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NPs compared to HL-60 and Molt-4 cells at all time points (Fig. 4). Among the leukemic 

cells, Molt-3 cells showed the highest expression of LFA-1 in this study. The binding of 

cIBR-NPs in this cell line was also the highest (Fig. 4). Taken cumulatively, the increased 

degree of LFA-1 expression corresponded to the greater degree of binding and 

internalization of cIBR-NPs.

The cellular uptake of the coumarin-6 encapsulated cIBR-NPs and NPs were visualized by 

fluorescence microscopy. Fluorescence intensity was found to be greater for cIBR-NPs 

compared to untargeted NPs, further substantiating that cIBR-NPs interact with leukemia 

cells to a greater extent than untargeted nanoparticles. The results also indicated that the 

fluorescence intensity of Molt-3 cells, which had the highest level of LFA-1 expression, was 

greater than the intensity of Molt-4 cells, HL-60 cells and U937 cells incubated with cIBR-

NPs (Fig.5). These results supported the cellular uptake of cIBR-NPs as determined by flow 

cytometry. Both analytical methods suggested that the level of LFA-1 expression 

corresponded to the degree of cellular uptake of cIBR-NPs.

In order to evaluate the effect of temperature on the ability of leukemic cell lines to 

endocytose nanoparticles, cell uptake experiments were performed at different temperatures 

(4°C and 37°C). The cIBR-NP cell uptake at 37°C was obviously higher compared to 

4°C(Fig. 6). The cIBR-NP uptake at 37°C were 1.2-,1.4-, 1.6- and 5.5-fold higher than at 

4°C for Molt-4 cells, HL-60 cells, U937 cells and Molt-3 cells, respectively. The results 

suggested that the uptake of cIBR-NPs was somewhat temperature dependent indicating 

some involvement of an energy-dependent endocytic mechanism for nanoparticle 

internalization (46).

The cytotoxicities of cIBR-NPs and NPs were determined using an established MTS assay. 

The particle concentration was varied from 15.6 μg/ml to 8.0 mg/ml which included the 

concentration of nanoparticles used in the binding and internalization studies(2.2 mg/ml). 

The percentage of cell growth inhibition was assayed by quantifying surviving cells after 24 

h incubation. Both nanoparticle formulations exhibited low cytotoxicity in the cell lines 

tested (Fig. 7). Results demonstrated that these drug carriers may be translatable due to low 

toxicity.

In this study, the specific targeting of surface-modified nanoparticles conjugated with cIBR 

peptide was determined using four types of leukemic cell lines which exhibited dramatically 

different LFA-1 expression levels. The binding and uptake of cIBR-NPs was then compared. 

Particle size and size distribution are important characteristics of these types of nanoparticle 

systems. Desai et al. found that 100 nm nanoparticles had a 2.5 fold greater uptake than 1 

μm microparticles, and 6 fold greater uptake than 10 μm microparticles in a Caco-2 cell line 

[33]. Others have also demonstrated that the smaller particles have relatively higher 

intracellular uptake. The particle size and size distribution (Table 1) confirmed that both 

cIBR and untargeted nanoparticles had small size and narrow size distribution. The surface 

charge of both nanoparticles were around −30 mV, which is sufficient to support NP 

stability since the surface charge prevents aggregation of particles (47).
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Several leukemia cell lines were used to identify differential targeting of cIBR-NP as a 

function of LFA-1 expression levels. Molt-3 and Molt-4 cell lines were originally derived 

from a patient with T-cell acute lymphoblastic leukemia (ALL). HL-60 cell line was derived 

from a single patient with acute promyelocytic leukemia (AML) and U937 cell line was 

established from a human diffuse histiocytic lymphoma. Studies of LFA-1 expression on 

these cell lines showed that Molt-3 exhibited the highest level of LFA-1 expression. The 

uptake of targeted nanoparticles by Molt-4, HL-60 and Molt-3 cells were time dependent, 

however, it was hypothesized that cIBR–NPs quickly bound to cells via a saturable 

mechanism followed by internalization at 30 and 60 min incubation (48). At 90 min, 

increased binding and uptake may be facilitated by presentation of recycled LFA-1 receptor 

(49). The binding of cIBR-NPs did not significantly increase in U937 after 30 min, perhaps 

due to the differentiation of U937 monocytes after PMA stimulation (50). Others have 

reported differentiation of this cell line where PMA produced changes in morphology, 

certain cytochemical enzymes and the expression of macrophage markers (51).

The binding and internalization of both nanoparticles by leukemia cell line were confirmed 

via fluorescecent microscopy. Micrographs showed that cIBR-NPs bound better than 

untargeted nanoparticles. The results also indicated that the fluorescence intensity of Molt-3 

cells, which had the highest level of LFA-1 expression, was greater than the intensity of 

Molt-4 cells, HL-60 cells and U937 cells incubated with cIBR-NPs. The very low 

fluorescent intensity of Molt-3 cells after incubation with cIBR-NPs at 4°C revealed that 

temperature has the most significant effect on the nanoparticle uptake of this cell line. To 

develop these types of targeted nanoparticles, identification of the different endocytic 

pathways involved will be critical. Additionally, the partial inhibition of nanoparticle uptake 

at low temperature (4°C) suggested that the internalization of the cIBR-NPs likely occurred 

via an energy dependent receptor-mediated endocytic process (45–46). Similar results have 

been reported when targeting ICAM-1 (52). The results of LFA-1 expression and cellular 

binding and internalization of nanoparticles revealed the relationship between the level of 

LFA-1 expression and the magnitude of nanoparticle binding and internalization. Molt-3 

cells, which showed the highest LFA-1 expression, also exhibited the greatest binding and 

internalization of cIBR-NPs. Hence, certain leukemic cells overexpressing LFA-1 may 

differentially bind and internalize cIBR-NPs thus improving the selectivity of encapsulated 

chemotherapeutics.

CONCLUSION

Future leukemia therapeutics must offer improved drug selectivity to improve efficacy and 

reduce side effects of potent chemotherapies. The current state-of-art for targeting LFA-1 

and other leukemia therapies were reviewed. Also, a brief study was presented to offer 

additional perspective regarding the potential use of nanoparticles for targeting potent 

leukemia drugs. cIBR-coupled PLGA nanoparticles targeting LFA-1 were studied to 

determine differential binding to four different types of leukemic cell line, Molt-4, HL-60, 

U937 and Molt-3 cells. The results of cellular uptake of cIBR-NPs from flow cytometry and 

fluorescence microscopy showed a significant increase in nanoparticle uptake in LFA-1 

expressing cells compared to untargeted nanoparticles. Studies also revealed a strong 

correlation between LFA-1 expression level and the binding and internalization of cIBR-
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NPs. Moreover, the cIBR-NPs were non-cytotoxic as targeted drug carriers to LFA-1 

expressing cells. These studies suggest that nanoparticles may be differentially targeted to 

surface markers on leukemic cells as a future targeted therapy.

EXPERIMENTAL PROCEDURES

Cell culture

Molt-3, Molt-4, HL-60 and U937 cell lines (American Type Culture Collection, VA, USA) 

were cultured in RPMI 1640 (Thermo Scientific HyQPAK, UT, USA) supplemented with 

10%(v/v) fetal bovine serum and 1%(v/v) penicillin-streptomycin (10,000 U/ml), in a 

humidified 37°C incubator with 5% CO2 atmosphere.

Preparation of PLGA Nanoparticles loading fluorescent dye

Poly(DL-lactic-coglycolic acid)(50:50) with terminal carboxylate group (inherent viscosity 

0.67dL/g, LACTEL Absorbable Polymers International, AL, USA) and coumarin-6 were 

dissolved in acetone and was slowly dropped into a stirred carboxylated Pluronic F-127 

(BASF the Chemical Company, USA). The excess coumarin-6 and carboxylated Pluronic 

F-127 were removed by dialysis against 0.2% mannitol solution. The size and zeta potential 

of nanoparticles were evaluated using dynamic laser light scattering (ZetaPALS, 

Brookhaven Instrument Inc.).

Conjugation of cIBR Peptide to PLGA-Nanoparticles

A carbodiimde reaction was utilized for the coupling reaction of cIBR peptide to surface of 

nanoparticles using 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC, 

Thermo Fisher Scientific Inc., IL, USA) and N-hydroxysuccinimide(NHS, Thermo Fisher 

Scientific Inc., IL, USA) as coupling agents. The activated nanoparticles were coupled with 

cIBR peptides (170 μmole) for 12 h. To determine the density of cIBR peptide on NPs, 

unreacted peptide was quantified by gradient reverse phase HPLC (SHIMADZU) using a 

C18 column (Vydac® HPLC column Protein and Peptide C18 column).

LFA-1 Expression on Leukemic Cell Lines

Cells were treated with 0.4% Phorbol 12-myristate 13-acetate (PMA, Biomol International 

LP., PA, USA) for 48 h to stimulate LFA-1 on the cell membranes. AB serum were added in 

to the PMA activated leukemic cell lines (2×106 cells/ml) and incubated at 4°C for 10 min to 

block non–specific binding. Cells were then reacted with anti LFA-1-FITC at 4°C for 45 

min and washed three times with cold 0.1% BSA in PBS. The fluorescent intensity was 

determined by using a flow cytometer.

In vitro Cellular Binding and Internalization of Nanoparticles

PMA treated Molt-3, Molt-4, HL-60 and U937 cell lines (2×105 cells/well) were incubated 

with cIBR -NPs or NPs (2.2 mg/ml) at 37°C for 5, 30, 60 and 90 min and washed three 

times with cold 0.1% BSA in PBS before measuring the fluorescent intensity by flow 

cytometer.
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For microscopic study, cIBR-NPs or NPs (2.2 mg/ml) were incubated with each PMA pre-

treated cell lines (2×106 cells/ml) for 30 min at 37°C, 5% CO2. A Nikon Eclipse 80i 

microscope equipped for epifluorescence was used for cell observation. Micrographs were 

taken using an Orca ER camera (Hamamatsu, Inc., Bridgewater, NJ) and analyzed by 

Metamorph, version 6.2 (Universal Imaging Corp., West Chester, PA).

Temperature Effect in Cellular Uptake of Nanoparticles

Four types of PMA treated leukemic cell lines (2×106 cells/ml) were incubated with cIBR-

NPs or NPs (2.2 mg/ml) for 15, 30, 45, and 60 min at 4°C and 37°C and washed three times 

with ice-cold PBS. The uptake of cIBR-NPs or NPs by cells was determined by flow 

cytometry.

Cytotoxicity of Nanoparticles

Cytotoxicity of cIBR-NPs and NPs was evaluated on all studied cell lines using the MTS 

assay. Cells (8×103 cells/well/100μl) were incubated with various concentrations of cIBR-

NPs or NPs for 24 h. After removing nanoparticles, fresh serum free RPMI 1640 and MTS 

were added. The plates were incubated for 4 h at 37°C. The quantity of formazan product 

was determined by the amount of 490 nm absorbance.

Acknowledgments

The authors would like to acknowledge funding from the Coulter Foundation and the Higuchi Biosciences Center, 
as well as additional funding from the American Heart Association. In addition, they would like to acknowledge 
funding from the NIH (R03 AR054035, P20 RR016443, and T32 GM08359-11) and the NSF (CHE 0719464). The 
authors acknowledge Prof. Jeffrey Krise for providing the fluorescence microscope. We would like to acknowledge 
funding support from Chiang Mai University and the Office of National Research Council of Thailand.

ABBREVIATIONS

ALL Acute lymphoblastic leukemia

AML Acute myeloid leukemia

cIBR-NPs cIBR conjugated nanoparticles

CML Chronic myelogenous leukemia

EDC 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride

FLT3 FMS-like tyrosine kinase 3

GD2 Disialoganglioside

HER2 Human Epidermal growth factor Receptor 2

ICAM-1 Intercellular adhesion molecule-1

LFA-1 Lymphocyte function-associated antigen-1

mTOR Mammalian Target of Rapamycin Complex-1

NPs Nanoparticles

NHS N-hydroxysuccinimide
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PLGA Poly(DL-lactic-coglycolic acid

PMA Phorbol 12-myristate 13-acetate

PML Progressive leukoencephalopathy

RHAMM/CD168 Receptor for hyaluronic acid mediated motility

TAA Tumor-associated antigen

WT1 Wilms’ tumor gene 1
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Fig. (1). 
Relative expression of the adhesion molecule LFA-1 on leukemic cell lines. Data represent 

the mean ± S.D. from experiments performed in triplicate. *** indicates p< 0.001
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Fig. (2). 
Binding and internalization of cIBR-NPs and NPs after incubation (37°C; 60 min) with 

Molt-4, HL-60, U937 and Molt-3 cells. The fluorescence of leukemic cells incubated with 

cIBR-NPs were significantly greater when compared to unconjugated NPs. Results are given 

as mean ± S.D. (n=3); * indicates p< 0.05 and ** indicates p< 0.01
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Fig. (3). 
The comparison of fluorescence intensity between cells incubated with serum free medium 

(white color), cells incubated with NPs (gray color) and cells incubated with cIBR-NPs 

(black color) for 5 min incubation. Data are given as mean ± S.D.(n=3); **** indicates p< 

0.0001
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Fig. (4). 
Kinetic binding profiles of cellular binding of cIBR-NPs by human leukemic cell lines 

(Molt-4, HL-60, U937 and Molt-3) after incubation for 5, 30, 60 and 90 min. Data 

represents mean ± S.D.(n=3); * indicates p<0.05, ** indicates p<0.01 and *** indicates 

p<0.001
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Fig. (5). 
Fluorescent micrographs of (A1) Molt-4 cells incubated with coumarin-6 loaded NPs, (A2) 

Molt-4 cells incubated with coumarin-6 loaded cIBR-NPs, (B1) HL-60 cells incubated with 

coumarin-6 loaded NPs, (B2) HL-60 cells incubated with coumarin-6 loaded cIBR-NPs, 

(C1) U937 cells incubated with coumarin-6 loaded NPs, (C2) U937 cells incubated with 

coumarin-6 loaded cIBR-NPs, (D1) Molt-3 cells incubated with coumarin-6 loaded NPs and 

(D2) Molt-3 cells incubated with coumarin-6 loaded cIBR-NPs. The white arrows indicate 

the binding of cIBR-NPs or NPs to leukemic cells. All images were captured at the 

magnitude of 10X and were normalized for variations in excitation light intensity.
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Fig. (6). 
Effect of temperature on cellular binding and internalization of cIBR-NPs after 45 min 

incubation. Data are given as mean ± S.D.(n=3); *** indicates p<0.001 and **** indicates 

p<0.0001
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Fig. (7). 
Cytotoxicity of cIBR-NPs and NPs in (A) Molt-4 cells, (B) HL-60 cells, (C) U937 cells and 

(D) Molt-3 cells.
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Table 1

Properties of nanoparticles.

Property Coumarin-6 loaded NP Coumarin-6 loaded cIBR-NP

Mean size (nm) 178.9 ± 3.0 219.2 ± 10.1

Polydispersity 0.099 ± 0.09 0.067 ± 0.06

Zeta potential value (mV) −28.5 ± 2.17 −31.3 ± 1.37

Values are given as mean ± S.D. (n=3)
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Table 2

Calculated cIBR density on PLGA nanoparticles.

Nanoparticle Size (nm) Total Surface Area(m2/g of PLGA) Density of cIBR (pmol/cm2)

cIBR-NP 219.2 0.0397 41.7 ± 2.4

Values are given as mean ± S.D. (n=3)
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