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Abstract

Molecular similarity has been effectively applied to many problems in cheminformatics and 

computational drug discovery, but modern methods can be prohibitively expensive for large-scale 

applications. The SCISSORS method rapidly approximates measures of pairwise molecular 

similarity such as ROCS and LINGO Tanimotos, acting as a filter to quickly reduce the size of a 

problem. We report an in-depth analysis of SCISSORS performance, including a mapping of the 

SCISSORS error distribution, benchmarking, and investigation of several algorithmic 

modifications. We show that SCISSORS can accurately predict multiconformer similarity, and 

suggest a method for estimating optimal SCISSORS parameters in a dataset-specific manner. 

These results are a useful resource for researchers seeking to incorporate SCISSORS into 

molecular similarity applications.

Introduction

Calculating similarity between small molecules gives insights into biological activity and 

provides a basis for prediction of unknown properties. For example, when one or more 

compounds are known to have activity against a particular target, ligand-based virtual 

screening (LBVS) can be performed to search a screening database for additional actives 

using similarity to those compounds.1 LBVS is an attractive approach to drug discovery 

because it does not require structural information about the target; successful applications 

have been reported for diverse targets including enzymes, membrane receptors, and protein–

protein interactions.2,3

Molecular similarity has been used in many applications besides virtual screening. Shoichet 

and co-workers described the similarity ensemble approach (SEA)4 for relating proteins by 

the similarity of their ligands and identified several novel ligand–target interactions. Posner 

et al.5 showed that similarity calculations can be used to reduce false positives in high-

throughput screening. Yoon and co-workers combined similarity with docking to streamline 
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multiple-receptor docking campaigns.6 Similarity also plays a role in methods for consensus 

structural alignment,7 screening library construction,8 and database clustering.9

Some applications (e.g., SEA or database clustering) require calculation of a full pairwise 

similarity matrix. Many similarity methods analyze molecules once and generate a vector 

representation of each molecule (a “fingerprint”) that can be used for repeated pairwise 

comparisons, and comparisons can often be performed rapidly with simple matrix 

operations. However, methods such as ROCS10,11 that require alignments between each 

molecule pair become impracticable at large scales, even when using GPU-based 

implementations such as PAPER12 or FastROCS.13

Otherwise intractable similarity calculations can be facilitated by methods that approximate 

similarity. The SCISSORS method described by Haque and Pande14,15 uses similarity 

relative to a fixed basis set to generate vector representations for molecules that can be used 

for rapid pairwise comparisons. Typical basis sets are on the order of hundreds of molecules, 

such that speedups relative to explicit similarity calculations become increasingly significant 

as the size of the problem increases. In LBVS applications, SCISSORS can serve as a 

preliminary filter to limit the number of molecule pairs that need to be compared by more 

expensive explicit methods.

This paper presents a detailed analysis of SCISSORS errors and suggests several practical 

considerations for various applications, with focus on predictions of ROCS shape, color, and 

combo Tanimotos. We calculate empirical error distributions for SCISSORS predictions and 

show that SCISSORS prediction quality varies with true similarity. We present 

benchmarking results that show significant speedups compared to FastROCS in all vs. all 

and one vs. all scenarios, and demonstrate that SCISSORS can be used to predict 

multiconformer ROCS and LINGO Tanimotos. We address several algorithmic 

modifications and their consequences on SCISSORS performance and conclude with 

suggestions for practical applications.

Methods

Validation Datasets

We created 100 validation sets by sampling from PubChem3D,16 which contains three-

dimensional conformers for many of the compounds in PubChem.17 Each subset contained 

5000 molecules chosen at random (replacement was allowed between but not within 

subsets). In cases where downloaded molecules had more than one conformer, only the first 

conformer was used. Each dataset was subdivided into an ordered “basis molecule pool” 

(1000 molecules) and a “library” (4000 molecules). SCISSORS basis sets were chosen from 

the basis molecule pool and predictions were made for all unique non-self pairs in the library 

(~8 million pairs per dataset).

ROCS

Rapid Overlay of Chemical Structures (ROCS)10,11 is a 3D similarity method that performs 

pairwise comparisons of molecular shape and chemical features. Molecular structures are 

represented as collections of atom-centered Gaussian functions,18,19 allowing gradient-based 
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optimization of the overlap between rigid conformers of the “query” (or “reference”) and 

“fit” molecules. The optimized overlap volume is used for comparison of molecular shape.

The ROCS color force field measures approximate electrostatic similarity by placing “color 

atoms” at positions that match specific chemical groups and functionalities, including 

hydrogen bond donors and acceptors, charged atoms, rings, and hydrophobic regions. By 

default, color atoms have small effective radii (1 Å) and must overlap with another color 

atom of the same type to contribute to the optimized color overlap volume calculated for a 

molecule pair. When either molecule in a pair has no color atoms, or when they do not have 

any color atoms of the same type, the color Tanimoto for that pair will be zero (in contrast to 

shape Tanimotos, which are never zero).

ROCS shape and color Tanimotos are defined in terms of self overlap and optimized 

pairwise overlap volumes (note that the self overlap volume is equivalent to the molecular 

volume):

(1)

The ROCS combo Tanimoto used in this report is the average of shape and color Tanimotos 

(not the sum, as is the convention for ROCS).

Overlays were performed with FastROCS13 (version 1.3.1) on an NVIDIA GeForce GT 545 

GPU. Due to the grid-based nature of the FastROCS algorithm, some Tanimotos > 1 were 

observed, but these were constrained to unity. Molecule self overlap volumes were 

calculated using the OpenEye Shape TK.20

SCISSORS

The SCISSORS method14,15 generates vector representations for molecules by least-squares 

embedding in the feature space of a molecular similarity kernel. These vector 

representations are then used to calculate pairwise similarity using a vector formulation of 

the Tanimoto coefficient:

(2)

By comparison of equations (1) and (2), ROCS overlap volumes can be interpreted as inner 

products between vector representations of molecules: Oab = a · b. This representation 

allows molecule vectors to be approximated using kernel PCA. We define a “molecular” 

kernel function in terms of these inner products:

(3)
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Next, we construct a kernel matrix containing kernel values between molecules in a 

preselected basis set {b1, …, bn}:

Eigen decomposition of K gives a feature space basis as rows of a matrix B:

Finally, the feature space embedding (“SCISSORS vector”) for a molecule m is calculated 

using a two-step process:

1. Construct a vector m of kernel values between m and the basis set:

2. Calculate the SCISSORS vector x for m by least squares:

The matrix  used in step 2 can be calculated once and used for any number of 

embeddings. The dimensionality of the resulting vectors can be reduced by selecting a 

subset of eigenvectors to use when calculating P. In cases where the choice of kernel results 

in an indefinite kernel matrix, the maximum SCISSORS vector dimensionality is limited to 

the number of positive eigenvalues in D.

The original SCISSORS method14 calculated “inner products” between molecules (a · b) 

directly from Tanimotos under the assumption of unity self overlap values (a · a = b · b = 1). 

In this situation, the kernel function given in equation (3) can be rewritten as:

(4)

This modified kernel is used throughout this report, except where indicated.

For indirect prediction of combo Tanimotos, shape and color Tanimotos predicted using the 

same basis set and dimensionality were averaged. No indirect combo Tanimotos were 

predicted using dimensionality values where only one of shape or color Tanimoto 

predictions were possible.
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LINGO

LINGO21 is a fingerprint-like similarity measure that compares molecules by matching 

substrings of textual molecular representations such as SMILES. Canonical isomeric 

SMILES representations of validation set molecules were generated with the OpenEye OE 

Chem TK,22 and LINGO Tanimotos for all molecule pairs were calculated with the CPU 

implementation of SIML23 (pySIML 1.5).

LINGO self overlap values were defined as the number of LINGO substrings counted for 

each molecule, calculated by summing rows of the “count matrix” returned by the SIML 

preprocessing method cSMILES to Matrices.

Validation Protocol

SCISSORS predictions were validated using all available dimensions for 18 basis set sizes 

ranging from 1–1000 molecules. For each dataset, a basis set of size n was constructed from 

the first n molecules in the ordered basis pool. Average root-mean-square error (RMSE) or 

mean error (ME) of predictions of self and non-self overlap values and Tanimotos across all 

validation sets were calculated at each basis set size and dimensionality. The maximum 

number of dimensions for each basis set size varied between datasets, so some averages 

were calculated using fewer than 100 values. Standard deviations for averages are given in 

the Supporting Information.

When analyzing SCISSORS performance as a function of similarity, predictions were made 

for an entire dataset and performance metrics were calculated for predictions of pairs whose 

FastROCS or SCISSORS Tanimoto similarity was within a given window. The windows are 

left-open, right-closed intervals, i.e. a < Ttrue ≤ b. Twenty windows between Ttrue = 0 and 

Ttrue = 1 were used for this report, each having width 0.05; color Tanimoto plots have one 

additional window for Ttrue = 0.

Benchmarking

Benchmarking was conducted on a Dell Power Edge R720 running Cent OS 6.3 with the 

following hardware configuration: 2×Intel E5-2650 CPU, NVIDIA Tesla M2070-Q GPU, 8 

× 8 GB 1600 MHz DIMM. SCISSORS calculations were performed with the Enthought 

Python Distribution (EPD) version 7.3-2, using functions in the numpy Python package 

(version 1.7.1). Numpy was linked against the Intel Math Kernel Library (MKL); results 

may vary when using packages without MKL support. Our benchmarking script used 

FastROCS to calculate shape Tanimotos, and assumed single-conformer molecules, i.e., 

scores were saved without comparison to the current (possibly zero) value in the result 

container array.

Miscellaneous

Coefficients of determination (R2) were calculated using the r2_score function in the scikit-

learn Python package (version 0.14) at dimensions that were represented in both basis–

library (BL) and library–library (LL) results. Figures were made using matplotlib 1.2.0. The 

table of contents figure also used Inkscape 0.48. Main text Figures were converted from 

PNG to TIFF using the convert tool in ImageMagick 6.6.9-7.
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Results and Discussion

We randomly sampled from PubChem3D16 to create 100 validation sets, each containing 

4000 molecules (~8 million non-trivial molecule pairs; see Methods). The distribution of 

ROCS and LINGO Tanimotos in the validation sets is shown in Figure 1. Shape Tanimotos 

have a broader distribution than color Tanimotos, which are concentrated at small values. 

The LINGO Tanimoto distribution is less smooth than any of the ROCS Tanimoto 

distributions, and closely matches the ROCS color Tanimoto distribution.

To evaluate SCISSORS performance, we calculated average root-mean-square (RMS) errors 

for Tanimoto predictions globally (across all molecule pairs) and in two local contexts, with 

molecule pairs binned either by FastROCS or SCISSORS similarity. Binning by FastROCS 

(“true”) similarity shows the dependence of prediction accuracy on true similarity, while 

binning by SCISSORS prediction provides confidence estimates for predictions in a given 

range. Standard deviations for averages are given in the Supporting Information.

Prediction accuracy is sensitive to SCISSORS parameters

We calculated average RMS errors for ROCS shape and color Tanimoto predictions using 

all available choices of dimensionality across a series of basis set sizes (Figure 2). Shape 

predictions had a lower maximum dimensionality than color predictions, and were most 

accurate near the center of the available dimensionality range, while color predictions tended 

to improve with increasing dimensionality. Predictions that used all available dimensions 

were generally poor. Haque24 noted that small values are more difficult to approximate at 

low rank due to vector space considerations, which suggests an explanation for the 

observation that optimal color Tanimoto predictions tended to require more dimensions than 

optimal shape Tanimoto predictions. Increasing the basis set size appeared to “stretch out” 

the error distribution for both shape and color Tanimotos, widening the range of acceptable 

dimensionality.

Local error analysis with binning by FastROCS Tanimoto (Figure 3) showed that 

SCISSORS performance depends significantly on true similarity, such that predictions of 

ROCS Tanimotos made with a given dimensionality were likely to have variable accuracy 

across the true Tanimoto range. Shape Tanimoto predictions showed a band of acceptable 

dimensionality within each bin, but color predictions deteriorated as similarity increased, 

such that predictions for similarities above ~0.4 were afflicted with significant error at most 

choices of dimensionality. Part of this effect could be due to the concentrated color 

Tanimoto distribution observed in Figure 1, but there does not appear to be any 

corresponding effect for shape Tanimoto errors. We observed that very few dimensions were 

required for accurate prediction of ROCS shape and color Tanimotos for very high similarity 

pairs, and that errors for these predictions tended to increase with increasing dimensionality. 

This is surprising, since it would be expected that very similar molecules would have very 

similar SCISSORS vectors, and that good accuracy would be observed for all choices of 

dimensionality. However, the approximate and indirect nature of the SCISSORS algorithm 

could lead to high-dimensional differences in SCISSORS vectors for highly similar 

molecules that at least partially explain the observed error distributions.
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We also performed a local error analysis with binning by SCISSORS shape or color 

Tanimotos (Figure 4). The shape Tanimoto error distribution revealed a band of 

dimensionality containing high-confidence predictions across the entire predicted similarity 

range. In contrast, predicted color Tanimotos appeared robust only at low similarity; at color 

Tanimoto values greater than about 0.4, virtually all Tanimoto predictions contained 

substantial error. Interestingly, high similarity predictions are made with good confidence at 

most choices of dimensionality.

Our two local analyses suggest different optimal dimensionalities for color Tanimoto 

predictions in the most populated similarity range: FastROCS partitioning indicated that 

about 200 dimensions was best, but predictions made with ~350 dimensions appeared to 

have the highest confidence. This discrepancy could result from molecule pairs in a 

similarity window being “contaminated” by pairs from other windows. For example, if 

FastROCS-partitioned local analysis shows good performance for molecule pairs with color 

Tanimotos in the range [0.2,0.25], that result provides no information about how many pairs 

were predicted to be in that range. SCISSORS might do very well at predicting pairs with 

true values in a given range, but could very well achieve that result by predicting all pairs to 

be in that range. Binning molecule pairs by SCISSORS Tanimoto measures the magnitude 

of this misassignment problem, or the accuracy of predictions within a given range. This is 

reminiscent of the trade-off between false positive and false negative rates in classification; 

using parameters chosen from FastROCS-based analysis will improve the recovery of 

molecule pairs in a given range (reducing false negatives), but choosing dimensionality 

based on SCISSORS predictions will improve the reliability of predictions in that range 

(reducing false positives). Later in this report we suggest an approach for generating 

approximate error distributions of both types in a dataset-specific manner.

Our local error analyses reveal important variations in SCISSORS performance that are not 

captured by global metrics. Thus, we emphasize that global RMS error is a poor metric for 

applications that focus on molecule pairs in sparsely populated similarity regimes, especially 

very high similarity. The choice of SCISSORS parameters should take into consideration the 

errors observed in local analyses at levels of similarity most important for a particular 

application. As an alternative metric, we calculated average mean errors (ME) for shape and 

color Tanimoto predictions. Global analysis showed that similarity tended to be 

overestimated by SCISSORS at low dimensions and underestimated at high dimensions, 

while local analysis revealed that Tanimoto predictions skewed toward lower values as true 

similarity increased (Supporting Figures 1 and 2).

Unity self overlap values are a valid assumption

The original description of SCISSORS14 includes a parsimonious assumption of unity self 

overlap (molecular) volumes in the calculation of inner products between molecules, such 

that similarity predictions are agnostic to differences in self overlap values between 

molecules. This assumption could have a significant effect on SCISSORS prediction 

accuracy, since the molecules in our validation sets have broad self overlap distributions 

(Supporting Figure 3) and the maximum pairwise overlap value is limited to the minimum 

self overlap value in a molecule pair. We compared SCISSORS predictions made with and 
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without the assumption of unity self overlap values and calculated average changes in RMS 

error for shape and color Tanimoto predictions (Supporting Figures 4–6). Most differences 

were quite small, with the exception of high-similarity errors for color Tanimoto predictions. 

Confidence for these predictions was noticeably improved without the assumption of unity 

self overlap values—this region of our average error distribution is highly variable, but we 

expect that the distribution for a specific dataset would be more smooth (in fact, predictions 

in this region are more variable without the assumption of unity self overlap values; 

compare the standard deviations in Supporting Figures 38b, 39b and 49). However, this 

region of the local error distribution binned by FastROCS Tanimoto showed slightly worse 

performance. One possible explanation for this effect is that SCISSORS makes more high-

similarity color Tanimoto predictions when assuming unity self overlap values. The false 

positive–false negative trade-off discussed above would become relevant in this situation, 

and specific applications may have different requirements. Supporting Figure 7 shows 

correlations plots for color Tanimoto predictions at several choices of dimensionality with 

and without the assumption of unity self overlap values; these plots are extremely similar. 

We conclude that the assumption of unity self overlap values is valid for most predictions, 

and use it throughout the remainder of this report. Interestingly, this result suggests that 

Tanimoto similarity does not generally reflect differences in molecular volume.

ROCS combo Tanimotos can be predicted directly or indirectly

Figure 5 shows RMS errors for combo Tanimoto predictions made directly by using combo 

Tanimotos as input into equation (4) or indirectly by averaging separate shape and color 

Tanimoto predictions. (It is not clear how the inner products (overlap values) in equation (3) 

would be calculated for the prediction of combo Tanimotos, so direct predictions can only 

be made under the assumption of unity self overlap values.) The error distributions for direct 

and indirect combo Tanimoto predictions are quite different: direct combo Tanimoto 

predictions had the highest maximum dimensionality of all ROCS Tanimoto predictions, 

and optimal direct combo Tanimoto predictions required higher dimensionality than either 

shape or color Tanimoto predictions.

Local analyses with binning by FastROCS Tanimoto (Figure 6) showed that direct 

predictions had increased error at low dimensionality for mid-range similarities. (Note that 

we have scaled combo Tanimotos to the range [0,1] instead of using the traditional range 

[0,2].) Both direct and indirect predictions were less sensitive to similarity than color 

Tanimoto predictions. Direct combo predictions did not have a single band of 

dimensionality with consistent error for all similarity windows, but indirect combo 

Tanimotos achieved good accuracy across all similarity values using ~125 dimensions. 

Local analysis with binning by predicted similarity (Figure 7) further emphasized the 

different dimensionality requirements of the indirect and direct approaches: direct 

predictions had good confidence for predicted Tanimotos up to ~0.6 when ~450 dimensions 

were used, and indirect combo predictions showed good confidence for Tanimotos up to 

~0.7 using ~250 dimensions.

Haque has suggested24 that direct combo Tanimoto prediction implicitly improves color 

Tanimoto predictions, but our results suggest that optimal combo Tanimoto predictions 
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would come from combining shape and color Tanimoto predictions made with different 

basis sets or and/or dimensionality. In practice, since shape and color Tanimotos are 

calculated simultaneously by ROCS, handling them separately should not significantly 

impact SCISSORS performance relative to FastROCS (see benchmarking results below).

As an alternative metric to RMS errors (see above), average mean error (ME) distributions 

for direct and indirect combo Tanimoto predictions are given in Supporting Figures 8 and 9, 

respectively.

SCISSORS is fast

To give quantitative description of the speedups made possible by SCISSORS, we 

benchmarked the direct prediction of ROCS shape Tanimotos using several different basis 

set sizes. We measured performance in two application contexts: all vs. all comparisons 

within a 4000 molecule dataset (Table 1), and one vs. all comparisons between a query 

molecule and a 40 000 molecule screening library (Table 2). For calculation of SCISSORS 

Tanimotos, we used all available SCISSORS vector dimensions. In the one vs. all context, 

vectors representing a large library are precomputed at a substantial upfront cost (Supporting 

Table 1), but they can then be stored and used for unlimited queries; the results in Table 2 

assume that SCISSORS library vectors have been precomputed.

Our benchmarking results make it clear that ROCS overlays are the rate-limiting step in all 

vs. all SCISSORS calculations. For example, it might be surprising that using a 1000 

molecule basis set with SCISSORS takes ~50% of the FastROCS time. FastROCS can take 

advantage of the fact that only  comparisons need to be made (where N is the size 

of the library) since the all vs. all similarity matrix is symmetric.25 For the 4000 molecule 

libraries used in our benchmarking, FastROCS requires ~ 8 × 106 overlays and SCISSORS 

with a 1000 molecule basis set requires 4 × 106 overlays—very close to 50%.

One vs. all comparisons using a precalculated SCISSORS library achieve much greater 

throughput than FastROCS. Interestingly, and contrary to the all vs. all results, FastROCS 

calculations were not the rate-limiting step for one vs. all comparisons. Instead, Tanimoto 

calculations using SCISSORS vectors took approximately the same amount of time as query 

vs. library FastROCS comparisons. Faster methods for calculation of Tanimotos from 

SCISSORS vectors would yield even better speedups relative to FastROCS.

SCISSORS can be used to predict multiconformer similarity

Three-dimensional similarity measurements are especially resource-consuming when they 

consider conformational ensembles of molecules instead of single conformers, but the 

indirect nature of SCISSORS could be problematic for predicting multiconformer similarity. 

To evaluate SCISSORS performance with multi-conformer molecules, we calculated 

generated conformational ensembles (up to 10 conformers per molecule) for each of our 

validation datasets using OpenEye OMEGA26,27 (version 2.4.6). By default, OMEGA does 

not generate conformers for molecules with unspecified stereochemistry, and only 57 of our 

validation basis pools were completely expanded (i.e., none of the molecules failed 
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conformational expansion). ROCS Tanimotos for these 57 basis pools and their 

corresponding libraries were calculated using FastROCS and SCISSORS, and global and 

local error distributions were calculated for SCISSORS predictions. The global and local 

error distributions for multiconformer Tanimoto predictions of all ROCS Tanimotos 

(Supporting Figures 10–13) were similar to those observed for single-conformer molecules, 

confirming the ability of SCISSORS to approximate multiconformer similarity with roughly 

the same fidelity as single-conformer similarity.

As an interesting point of reference, the global RMS error between single-conformer and 

multiconformer FastROCS combo Tanimotos was 0.1137 ± 0.0006. There are some 

important caveats to this number: first, we only compared results for seven libraries that 

retained all 4000 molecules after expansion with OMEGA; second, we are assuming that 

multiconformer similarity values are more “true” than single-conformer similarity. If these 

caveats are acceptable, this result suggests that SCISSORS predictions of similarity (at least 

globally) can be superior to FastROCS single-conformer comparisons.

We did not benchmark SCISSORS predictions for multiconformer molecules because not all 

molecules have the same number of conformers following OMEGA expansion, and this 

would have added additional variation to our measurements. All vs. all performance would 

not be significantly enhanced since ROCS calculations are already the rate-limiting step. 

However, the longer times required for multiconformer comparisons could enhance one vs. 

all performance, since FastROCS calculations would become the rate-limiting step.

Optimal SCISSORS parameters can be estimated using known similarities

The error distributions for our validation datasets are useful in evaluating SCISSORS 

performance in general, but our results are not guaranteed to generalize to new datasets. 

Accordingly, we investigated whether optimal SCISSORS parameters could be estimated by 

using SCISSORS to predict a set of known similarities. Since similarities between basis and 

library molecules must be calculated explicitly to perform the SCISSORS calculation, they 

are a natural choice. By calculating global and local error distributions for predictions of 

basis–basis and basis–library (BB+BL) Tanimotos, the optimal parameters for library–

library (LL) Tanimoto predictions can be estimated, assuming that BB+BL and LL errors 

are somewhat correlated. We calculated error distributions for BB+BL Tanimoto 

predictions, as well as the average changes in RMS error when moving from BB+BL to LL 

predictions (Supporting Figures 14–19). We observed reasonable correspondence between 

BB+BL and LL errors for shape and color Tanimoto predictions, but BB+BL–LL 

correspondence was poor for direct combo Tanimoto predictions.

As an alternate measurement of error correspondence, we calculated the coefficient of 

determination (R2) between BB+BL and LL RMS errors (as a function of dimensionality) 

within each validation dataset. Global R2 values for shape and color Tanimoto predictions 

showed that error correlation improved with increasing basis set size. Shape Tanimoto error 

correlation was good for mid-range and high similarity values (Supporting Figure 20). Color 

Tanimoto error correlations with binning by FastROCS Tanimoto were good for low- and 

mid-range similarities, but binning by SCISSORS Tanimoto gave much weaker correlations 

for low-range similarity, and high-similarity errors were very poorly correlated (Supporting 
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Figure 21). Direct combo Tanimoto error correlations were generally unremarkable 

(Supporting Figure 22).

Although the correlation between BB+BL and LL Tanimoto prediction errors is not perfect, 

our results suggest that calculating the BB+BL error distribution can provide ballpark 

estimates of optimal SCISSORS parameters for shape and color Tanimoto predictions in a 

dataset-specific manner. These parameter estimates will also indicate the applicability of the 

error distributions reported in this paper to specific applications. As a practical note, 

generating the BL error distribution requires scanning across multiple dimensions for a 

particular basis set, but the associated computational cost can be reduced by generating 

SCISSORS vectors once and truncating them to the appropriate dimensionality as needed.

SCISSORS accurately predicts LINGO Tanimotos

To assess the applicability of SCISSORS to similarity metrics besides ROCS Tanimotos, we 

calculated global and local average RMS errors for LINGO Tanimoto predictions with and 

without the assumption of unity self overlap values (Supporting Figures 23 and 24, 

respectively). (Note: overlap values for LINGO Tanimoto calculations are not interpretable 

as volumes; see Methods.) SCISSORS vectors generated from LINGO Tanimotos had 

maximum dimensionality equal to the basis set size (the kernel matrix was positive definite), 

and most choices of dimensionality yielded low average RMS errors when moderately-sized 

basis sets were used. Contrary to our observations of ROCS Tanimoto predictions, there was 

no increase in error at high dimensionality for LINGO Tanimoto predictions. Local analyses 

showed good performance at moderate to high dimensionality across the entire true 

similarity spectrum.

Using true self overlap values increases high-similarity prediction errors

In an effort to improve SCISSORS performance, we attempted to identify and correct major 

sources of error in SCISSORS Tanimoto predictions, focusing on the individual terms in 

equation (2). We calculated average RMS errors for predictions of self overlap (Supporting 

Figure 25) and pairwise overlap (Supporting Figures 26–29) values and observed strong 

sensitivity to basis set size and dimensionality for self overlap value predictions. To 

compensate for this source of error, we introduced true self overlap values into SCISSORS 

Tanimoto predictions, effectively reformulating equation (2) by replacing squared norms of 

SCISSORS vectors with the corresponding true self overlap values:

(5)

Self overlap values (molecular volumes) can be extracted from ROCS (they are not 

accessible from FastROCS, as far as we are aware) or calculated independently in linear 

time. Under the assumption of unity self overlap values, these terms are known a priori. The 

calculations reported in this section assumed that unity was the “true” self overlap value for 

all molecules.
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When true self overlap values were used, global SCISSORS performance for all Tanimoto 

predictions became virtually insensitive to both basis set size and dimensionality (Figure 8 

shows results for direct combo Tanimotos). However, local analyses showed that predictions 

for low similarity pairs were accurate at nearly all choices of dimensionality, but that 

prediction quality decreased at higher similarities (Figure 9). This decay in prediction 

quality with increasing similarity mirrors the distribution of true Tanimotos in Figure 1. 

Global and local error distributions for shape, color, indirect combo, and LINGO Tanimoto 

predictions using true self overlaps are shown in Supporting Figures 30–33, respectively. In 

all cases, good performance is achieved at most choices of dimensionality for low-similarity 

pairs, but predictions degrade at higher similarities.

The only error-prone quantity in equation (5) is the pairwise overlap value a · b. It is thus 

not surprising that the error distributions for Tanimoto predictions made with true self 

overlaps are similar to the error distributions for predictions of pairwise overlap (compare, 

for example, Supporting Figures 26 and 30). The striking dependence of SCISSORS 

performance on similarity when using true self overlap values suggests that errors in self 

overlap predictions in the original SCISSORS method help to compensate for errors in 

pairwise overlap at high similarities.

Figure 10 shows correlation plots for direct combo Tanimoto predictions with and without 

true self overlaps using 1000 basis molecules and 300 dimensions. Including true self 

overlap values tightens the correlation between true and predicted ROCS combo Tanimotos 

less than ~0.6, but predictions begin to stray from the correlation line (in both directions) at 

higher similarities. Additional correlation plots for shape, color, indirect and direct combo, 

and LINGO Tanimoto predictions at several choices of dimensionality are shown in 

Supporting Figures 34–38, respectively.

Increasing prediction errors at high similarity are not ideal for LBVS and other applications 

where the most interesting molecules have high similarity to one or more reference 

compounds. Although some mis-predicted high-similarity pairs might be recovered using 

inexpensive explicit methods (such as topological fingerprints), most applications of 

SCISSORS will likely perform better without true self overlaps. Importantly, good low 

similarity accuracy is usually possible with the correct choice of basis set size and 

dimensionality, without using true self overlaps. One possible exception to these conclusions 

is the prediction of shape Tanimotos, where the degradation of performance with increasing 

similarity is relatively minimal. Some applications could take advantage of separate shape 

and color Tanimotos predicted with and without true self overlap values, respectively.

Conclusion

Similarity methods are a core component of cheminformatics and computational drug 

discovery, but their computational expense can be prohibitive for some applications. The 

SCISSORS method uses similarity between database compounds and a preselected basis set 

calculate approximate similarities with much higher throughput than expensive explicit 

methods such as ROCS. In this report, we have made an extensive mapping of the 

SCISSORS error distribution under many different conditions, establishing guidelines for 
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selection of SCISSORS parameters. We have demonstrated that SCISSORS can be applied 

to multiple types of similarity, including multiconformer ROCS and LINGO Tanimotos 

(although LINGOs are not especially expensive to calculate).

Our results suggest several “best practices” for practical applications of SCISSORS. First, 

combo Tanimotos should be predicted indirectly if resources permit, since separately 

optimized shape and color Tanimoto predictions are likely to give better results than direct 

prediction of combo Tanimotos. Second, because our results are not guaranteed to 

generalize to all datasets, optimal SCISSORS parameters for a particular dataset should be 

estimated by mapping the error distribution for predictions of basis–basis and basis–library 

similarities. Finally, it should be remembered that SCISSORS is not a replacement for 

explicit similarity measurements. Instead, SCISSORS should be viewed as a filter for large-

scale applications that allows resources to be preferentially allocated to the most interesting 

molecules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of ROCS and LINGO Tanimotos in validation sets derived from Pub-Chem3D. 

The figure shows an averaged histogram for each similarity measure. Each dataset contains 

nearly 8 million unique non-self molecule pairs. The spike at very low Tanimotos is due to 

molecule pairs that have zero similarity by these metrics.
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Figure 2. 
Global average RMS errors for (a) shape and (b) color Tanimoto predictions as a function of 

basis set size and dimensionality.
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Figure 3. 
Local average RMS errors partitioned by FastROCS Tanimoto for (a) shape and (b) color 

Tanimoto predictions. True Tanimoto similarity was partitioned into bins, each covering a 

Tanimoto range of 0.05, and SCISSORS prediction RMSE using 1000 basis molecules was 

measured for molecule pairs within each bin. The bin to the left of zero in (b) contains only 

molecule pairs with a color Tanimoto equal to zero, since these pairs are not included in the 

first positive bin.
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Figure 4. 
Local average RMS errors partitioned by predicted Tanimoto for (a) shape and (b) color 

Tanimoto predictions. Predicted Tanimoto similarity was partitioned into bins, each 

covering a Tanimoto range of 0.05, and SCISSORS prediction RMSE using 1000 basis 

molecules was measured for molecule pairs within each bin. The bin to the left of zero in (b) 

contains only molecule pairs with a color Tanimoto equal to zero, since these pairs are not 

included in the first positive bin.
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Figure 5. 
Global average RMS errors for (a) direct and (b) indirect combo Tanimoto predictions as a 

function of basis set size and dimensionality. Indirect combo Tanimoto predictions are the 

average of separate shape and color Tanimoto predictions at the same basis set size and 

dimensionality. Direct combo Tanimotos are calculated using a kernel matrix constructed 

from basis set combo Tanimotos.
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Figure 6. 
Local average RMS errors partitioned by FastROCS Tanimoto for (a) direct and (b) indirect 

combo Tanimoto predictions.

Kearnes et al. Page 20

J Chem Inf Model. Author manuscript; available in PMC 2015 January 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7. 
Local average RMS errors partitioned by predicted Tanimoto for (a) direct and (b) indirect 

combo.
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Figure 8. 
Global average RMS errors for direct combo Tanimoto predictions using true self overlap 

values.
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Figure 9. 
Local average RMS errors partitioned by (a) FastROCS Tanimoto and (b) SCISSORS 

Tanimoto for direct combo Tanimoto predictions using true self overlap values.
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Figure 10. 
Comparison of SCISSORS and ROCS direct combo Tanimotos for 100 PubChem3D subsets 

(~800 million molecule pairs) using 1000 basis molecules and 300 dimensions. Molecule 

pairs with predicted Tanimoto similarity outside the interval [0,1] are not shown (< 1% of 

pairs).
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