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Abstract

Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions
using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation
have only recently been described. In this study, we aimed to characterize pulmonary immune responses following
repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only
exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus
wild-type (WT) or a melanin-deficient (Dalb1) strain. Conidia were aerosolized and delivered to mice at an estimated
deposition dose of 16105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed
4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains
induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in
bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated
numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in
BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to
intracellular proteins while Dalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation
exposures may provide a more representative analysis of immune responses following exposures to environmentally and
occupationally prevalent fungal contaminants.
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Introduction

Exposure to fungi derived from contaminated building materials

are of growing concern in the general population [1–3]. Fungal

exposures have been associated with multiple adverse health

outcomes including invasive disease, allergic sensitization, hyper-

sensitivity pneumonitis, and asthma [1]. Consensus documents

published by the Institute of Medicine and the World Health

Organization have identified associations between living in damp

indoor environments containing mold and health effects, partic-

ularly asthma [4,5]. Although sufficient evidence of associations

exist, the fungal-specific factors and immunological mechanisms

that lead to the induction of these allergic diseases require further

characterization [6].

To date, numerous animal models of fungal exposure have been

developed to investigate the immunological responses that follow

fungal challenge [1,7–9]. Although these studies have provided

new insight, the test articles are often uncharacterized extracts,

individual antigens or liquid spore suspensions that do not

resemble typical human exposures. Many of these studies are

based on a single exposure with few studies using repeated

exposures [1,10,11], and even fewer studies utilizing inhalation

exposures [12,13].

To address the limitations associated with previous inhalation

studies [12,13], we developed a nose-only, acoustical generator

exposure system (AGS) that allows for real-time analysis of particle

size, deposition estimations, and manipulation of exposure

concentrations. We used an immunocompetent murine model of

repeated inhalation exposures with dry conidia to more closely

model the burden of fungi encountered in the environment.

Aspergillus fumigatus was chosen as the model organism to

directly compare to previous exposure models, as well as previous
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studies conducted in our laboratory [14,15]. Using this new

system, we characterized the pulmonary immune responses to

repeated inhalation of A. fumigatus conidia. Continuous moni-

toring of the real-time particle mass concentration in the animal’s

breathing zone allowed us to calculate estimates for the number of

conidia that were deposited in the upper and lower respiratory

tract. We additionally explored the response to A. fumigatus wild-

type (WT) as well as a melanin-deficient (Dalb1) strain to examine

the role of melanin and conidia germination on pulmonary

immune responses following repeated dry fungal exposures in

naı̈ve mice.

Materials and Methods

Fungal culture
A. fumigatus strains B-5233/ATCC 13073 (wild-type (WT)

parent strain) and Dalb1 were received as a gift from Dr. June

Kwon-Chung (NIAID, Bethesda, MD) [16]. Fungal cultures were

grown for 14 days at room temperature (RT) on malt extract agar

(MEA) as previously described [14]. For acoustical generation, a

modified method was used to grow conidia [17]. In brief, 10 mL of

sterilized, distilled, deionized water was added to one A. fumigatus
MEA plate and conidia were suspended by disruption with a

sterile inoculating loop. The fungal suspension (10 mL) was then

used to inoculate 200 mL of dry brown rice (Mahatma brown rice,

Allentown, PA) that was autoclaved (30 min, 121uC). The rice was

completely submerged by the addition of 100 mL sterile water and

approximately 10–12 g of wet rice was added to sterile 100 mm

petri dishes. The plates were wrapped with parafilm and incubated

at room temperature for 10–14 days with shaking once daily to

prevent rice aggregates and ensure homogenous growth. Addi-

tional MEA plates were inoculated with the original suspension to

ensure cultures were homogenous.

Animals
Female BALB/cJ mice, aged 5–7 weeks (Jackson Laboratory,

Bar Harbor, ME), were acclimated for approximately one week

prior to exposures. The mice were housed in HEPA filtered,

ventilated polycarbonate cages in groups of 5 on autoclaved

hardwood chip bedding. Mice were provided with NIH-31

modified 6% irradiated rodent chow (Harlan Teklad) and tap

water ad libitum. Sentinel mice were free of viral and bacterial

pathogens. The National Institute for Occupational Safety and

Health (NIOSH) animal facility is an environmentally controlled

barrier facility that is fully accredited by the Association for the

Assessment and Accreditation of Laboratory Animal Care

International. All animal procedures were performed under a

NIOSH Animal Care and Use Committee approved protocol 12-

BG-M-003.

Dry fungal aerosol exposure system
The nose-only inhalation AGS (Figure 1A) used conditioned air

from a water seal compressor that passed through a dryer, a

charcoal filter, and a high efficiency particulate air (HEPA) filter.

The flow was regulated at 6 L/min by a mass flow controller

(GFC37, Aalborg, Orangeburg, NY). The conditioned air flowed

through a modified PITT-3 AGS consisting of a speaker covered

with a rubber membrane, on which rice cultures were placed and

allowed to settle 12–24 hours prior to exposure. Acoustical energy

was then used to vibrate the conidia-laden rice resulting in the

detachment, de-aggregation, and aerosolization of the conidia

within the generator. The air-conidia mixture then passed into a

modified nose-only exposure chamber (Intox Products, LLC,

Moriarty, NM). The conidia entered the top of the chamber into a

column where animals were positioned in separate pods that

projected out radially from the column. The conidia entered the

pods directly in front of the nose of the animals and exhaled air

exited via radial ports around the nose of the mouse into a second

column where the air was HEPA filtered and exhausted. Of 24

pods, 2 pods were reserved as sample ports; one was used to

gravimetrically measure the conidial mass concentration and the

second used a light scattering device (DataRAM4, ThermoElec-

tron Co., Franklin, MA) to provide a real-time estimate of the mass

concentration of the conidia in the exposure chamber. The

DataRAM also recorded the chamber temperature and humidity.

During test runs, the gravimetric sample port was used to collect

samples for electron microscopy and to size the particles with an

aerodynamic particle sizer (APS, TSI Inc., Shoreview, MN;

Figure 1B and 1C).

A mouse lung deposition model, based on deposition measure-

ments from Raabe et al. [18], was developed to allow for

estimation of the number of conidia deposited within the murine

lung. The conidia frequency in each size bin of APS measurements

were cross-referenced to the corresponding interpolated mouse

lung deposition fraction for that particle size. A scale factor was

established and applied to the DataRAM signal to estimate the

real-time number of conidia deposited based on the DataRAM’s

mass concentration measurements and a mouse minute volume of

25 mL. The integrated value of deposition was calculated

throughout the exposures using custom software and the system

automatically turned off when the desired conidial deposition was

reached (,100 min). Animals were acclimated to the exposure

chamber by placing them in the nose-only housing units for

increasing time intervals (up to 2 hours), over the course of a one

week period prior to the first exposure. The acclimation was to

reduce potential stress or other adverse conditions resulting from

prolonged restraint required for the fungal exposures.

For exposures, fifteen mice per time point were exposed to A.
fumigatus WT conidia, Dalb1 conidia, or HEPA filtered air only.

Mice were placed individually in the exposure units attached to the

acoustical generator for approximately 2 hours, while the gener-

ator was automatically turned off when real-time particle dose

estimates reached 16105 conidia. Mice were exposed twice per

week (Thursday and Monday or Friday and Tuesday) for 4 weeks,

and sacrificed at 4, 24, 48, or 72 hours post-final exposure using

an intraperitoneal injection of 100 uL (100 mg/kg body weight) of

sodium pentobarbital (Sleepaway, Fort Dodge Animal Health,

Fort Dodge, IA).

Modified local lymph node assay
Mice were exposed to 56103, 16104, 16105, 16106 WT

conidia or HEPA filtered air only via the AGS exposure chamber

once daily for three days, and then rested for two days. To serve as

a positive control for exposures, a group of mice were exposed to

200 mg of hyphal extract via pharyngeal aspiration using the same

exposure schedule. On the sixth day, mice were injected

intravenously via the lateral tail vein with 20 mCi 3H-thymidine

(Dupont NEN, Waltham, MA; specific activity 2 Ci/mmol). Five

hours following 3H-thymidine injection, animals were euthanized

via CO2 inhalation. The mediastinal lymph nodes (MLNs), located

at the bifurcation of the bronchi in the lung, were removed for

analysis. MLNs were homogenized between frosted microscope

slides, cell suspensions were prepared, and samples were incubated

with 5% trichloroacetic acid overnight at 4uC. Samples were then

mixed with scintillation fluid and counted using a Tri-Carb

2500TR liquid scintillation counter. Stimulation indices (SIs) were

calculated by dividing the mean disintegrations per minute (DPM)

by the mean DPM obtained from the control chamber exposure
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mice. Pre- and post-weight data was additionally recorded to assess

potential toxicity. Concentrations of conidia that induced greater

than 10% weight loss were not considered for the repeated

exposures, despite the SI value.

Histology
For each experiment, three mice per time point were selected

for histology analysis. Lungs were dissected and fixed as previously

described [14]. Tissues were sectioned and stained with hematox-

ylin and eosin (H&E), Periodic Acid Shift (PAS), and Grocott’s

Methenamine Silver (GMS) staining.

Conidia were identified using GMS stain and quantified by

counting the number visualized in 100 random fields of view

(4006magnification), covering both lungs fields. Conidia .26the

size of resting conidia were classified as swollen and the emergence

of germ tubes from conidia were classified as germinated. Data

were presented as the total conidial counts per exposure or the

Figure 1. Preliminary acoustical generator exposure chamber experiments. A) Illustration showing the acoustical generator inhalation
exposure system. Supply air is HEPA filtered and directed into the acoustical generator. The acoustical generator is then sent a signal to vibrate at a
designated frequency resulting in the formation of fungal aerosols from inoculated rice grains. The fungal aerosol is then directed into a multi-animal,
nose-only chamber. After passing through the animal’s breathing zone the air is filtered before being sent into the exhaust system. A real-time
particle counter attached to the computer calculates the concentration of fungal particles being deposited into the airways, and the DataRAM reports
that number to the computer, which can be altered during the exposure to obtain the desired deposition concentration. B) The Aspergillus fumigatus
aerosol particle size distribution produced by the acoustical generator. The size of single or aggregate A. fumigatus conidia is 2–5 mm. C) Field
emission scanning electron microscopy image of A. fumigatus fungal conidia deposited on a polycarbonate filter collected from one of the sampling
ports of the nose-only exposure chamber.
doi:10.1371/journal.pone.0109855.g001
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percentage of total conidia that were germinating (swollen+
germinated).

Collection of bronchoalveolar lavage fluid, mediastinal
lymph nodes, and serum

Bronchoalveolar lavage fluid (BALF) and serum was collected as

previously described [14]. Serum was collected from mice 7 days

following final exposure to WT and Dalb1 conidia. Following

collection of BALF, the MLNs were dissected, cleared of adipose

tissue and homogenized by grinding the nodes between frosted

microscope slides. Cells isolated from the BALF and MLN were

then prepared for flow cytometry analysis.

Differential cell staining
Cellularity was determined by flow cytometry using reagents

obtained from BD Biosciences (San Jose, CA) unless otherwise

specified. The resuspended BALF and MLN cells were divided in

two for differential and intracellular cytokine staining. One half of

the BALF cells were stained for 30 minutes using the following

antibodies at 1:100 rat anti-mouse Ly-6G, rat anti-mouse Siglec-F,

pan-leukocyte rat anti-mouse CD45, and Armenian hamster anti-

mouse CD11c (eBioscience Inc. San Diego, CA). MLN cells were

also stained to identify B cell populations using B220/CD45R

antibodies. After staining, cells were washed and fixed with BD

Cytofix. Cells were then washed and resuspended in FACS buffer.

Cell populations were evaluated on a BD LSRII (BD

Biosciences, San Jose, CA). Neutrophils were defined as

CD45hiLy-6Ghi, eosinophils as Ly-6GlowSiglecFhiCD11clow, and

alveolar macrophages as Ly-6GlowSiglecFhiCD11chi as previously

reported [14,19]. Total cell numbers were quantified using

acridine orange nuclear staining and an automated cell counter

(Cellometer AutoX4, Nexcelom Bioscience, Lawrence, MA). Total

numbers of each cell population were obtained by multiplying the

frequency of specific population by the total number of BALF cells

recovered for each animal.

Intracellular cytokine staining
BALF and MLN T-cells were quantified using rat anti-mouse

CD8 and CD4 antibodies. T-cell cytokine production was

determined by fluorescent intracellular cytokine staining (ICS) as

previously described [20]. Briefly, the BALF and MLN suspen-

sions were washed and incubated in Leukocyte Activation Cocktail

with GolgiPlug at 37uC in 5% CO2 for 4 hours. Following

incubation, the BALF cells were washed and stained for flow

cytometry analysis using rat anti-mouse CD4, rat anti-mouse

CD8, rat anti-mouse B220/CD45R, and rat anti-mouse CD25.

MLNs were stained using Syrian hamster anti-mouse CD3e, rat

anti-mouse CD4, and rat anti-mouse CD8 antibodies. Cells were

then washed, resuspended in BD Cytofix/Cytoperm, and incu-

bated for 15 minutes at 4uC. Cells were washed and resuspended

in PermWash. Each BALF sample was stained 1:100 with rat anti-

mouse IFN-c, rat anti-mouse IL-13, rat anti-mouse IL-10, and rat

anti-mouse IL-17A (eBioscience, San Diego, CA). MLNs were

stained with rat anti-mouse IL-13, (BioLegend, San Diego, CA),

rat anti-mouse IL-10, rat anti-mouse IL-12, rat anti-mouse IL-22,

rat anti-mouse IL-17A, and rat anti-mouse IFN-c. Cell popula-

tions were analyzed on a BD LSRII, with lymphocytes gated on

the basis of low forward and side scatter, then subsequently gated

on CD4+ or CD8+ populations to determine intracellular

expression of cytokines.

Aspergillus fumigatus protein extraction
Conidial protein extracts from WT and Dalb1 conidia were

obtained from 14 day old MEA plates. Conidia were harvested

from the plates by adding 5 mL of sterile, distilled, deionized

water, and agitating the surface of the agar with a sterile

inoculating loop. Samples were frozen overnight at 280uC, and

then lyophilized for 3–5 days to remove the suspension solution.

Glass beads (0.5 mm) were added to each sample. Conidia were

then subjected to 361 minute bead beating cycles using a mini-

bead beater (BioSpec, Bartlesville, OK). Sodium bicarbonate

buffer (pH 8.0, 2 ml), containing 0.5 mM EDTA and protease

inhibitors (Complete Mini, Roche Diagnostics, Indianapolis, IN)

was added and the samples were agitated by three one-minute

bead-beating cycles, centrifuged, and the resulting supernatant was

used for SDS-PAGE.

For Western blot and ELISA analyses, hyphal extracts were

prepared by harvesting mycelial cultures by centrifugation at

4,1006 g for 5 min. The hyphal pellet was collected and

concentrated by lyophilization. Lyophilized hyphae were then

macerated in a mortar and pestle containing liquid N2 and

suspended in cold PBS, pH 7.4, containing Complete Mini

Protease Inhibitor Cocktail (Roche Diagnostics, Indianapolis,

IN). Proteins were extracted overnight at 4uC on a rocker. The

extract was then centrifuged at 4,1006 g for 5 min, and the

supernatant fluid was collected, aliquoted, and stored at 280uC
for further analysis.

For two-dimensional Western blot analysis, mycelial extracts

were prepared based on previously published methods [21].

Briefly, hyphae were ground in liquid nitrogen using a mortar and

pestle and resuspended in 10% (w/v) trichloroacetic acid (TCA).

After centrifugation at 20,2006g for 10 min at 4uC, samples were

washed twice in ice cold acetone. The pellets were then

resuspended in IEF buffer (10 mM Tris, 8 M urea, 2 M thiourea,

4% (w/v) CHAPS, 1% (v/v) Triton X-100, 65 mM dithiothreitol

(DTT) and 0.8% (w/v) IPG buffer), centrifuged at 14,0006 g for

5 min at 4uC, and the resulting supernatant was used for analysis.

Protein concentrations in all fungal extract preparations were

determined using a NanoDrop ND-1000 spectrophotometer

(NanoDrop Technologies, Wilmington, DE).

SDS PAGE and Western blot analysis
A. fumigatus WT and Dalb1 conidial and hyphal extracts

(10 mg) were prepared as described above and mixed with

Laemmli sample buffer (Bio-Rad, Hercules, CA) containing b-

mercaptoethanol and heated at 95uC for 5 minutes. Samples were

loaded in individual lanes (10 mg/well) and resolved using a 12%

polyacrylamide gel with a 4% stacking gel ran at 100 V for

90 minutes. Proteins were transferred to a 0.2 mm nitrocellulose

membrane at 16 V overnight at 4uC. The membrane was blocked

for 1 hour with 5% non-fat dry milk powder (SM) in Tris-buffered

saline containing 0.05% Tween-20 (TBST). Pooled polyclonal sera

from mice 7 days post exposure was diluted to 1:200 in SM-TBST

and incubated with the membrane at room temperature (RT) for 1

hour with gentle agitation. The blot was then washed 3 times with

TBST and incubated with alkaline phosphatase (AP)-conjugated

goat anti-mouse IgG heavy and light chain (Promega, Madison,

WI) diluted 1:5000 in SM-TBST for 1 hour (RT) with gentle

agitation. The blot was then washed 3 times with TBST and

developed using the AP substrate, 1-Step NBT/BCIP Solution

(Thermo Scientific, Rockford, IL).

Two-dimensional Western blot analysis
A. fumigatus B5233 hyphal proteins (500 mg) prepared in IEF

buffer as described above were suspended in 130 ml sample
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solubilization buffer (8 M urea, 2% (w/v) CHAPS, 0.5% (w/v)

IPG Buffer, 20 mM DTT, trace bromophenol blue) containing

0.625 ml ampholytes (3–10, GE Healthcare, Uppsala Sweden).

The protein was then loaded onto a 7 cm ReadyStrip IPG strip,

pH 3–10 (GE Healthcare) and focused at 4000 V for 15 kVh and

held at 500 V (Protean i12 IEF Cell, BioRad, Hercules, CA). IPG

strips were equilibrated for 15 min at RT in equilibration buffer (6

M urea, 2% (w/v) SDS, 50 mM Tris/HCl, pH 8.8, 20% (v/v)

glycerol) containing 130 mM DTT, followed by a second 15 min

incubation in equilibration buffer containing 135 mM iodoaceta-

mide. The equilibrated IPG strip was then placed on a 1.5 mm,

12% gel, electrophoresed at 100 V for 1.5 hr and transferred

overnight at 15 V to a nitrocellulose membrane (0.2 mm, BioRad).

Western blot analysis was performed as previously described.

Proteomic characterization of murine IgG reactive A.
fumigatus antigens

Murine IgG reactive A. fumigatus-specific protein bands were

identified by Western blot and excised from imperial stained SDS-

PAGE gels prepared in parallel. Excised spots were digested with

porcine trypsin (Sigma Aldrich) and analyzed using a nanoAC-

QUITY UPLC coupled to a SYNAPT quadrupole time-of-flight

mass spectrometer (qTOFMS; Waters, Milford, MA) according to

previously published methods [22,23].

Total IgE ELISA
Total IgE titers in pre-bleed sera and pooled polyclonal sera

isolated from mice exposed to WT and Dalb1 strains were

determined using a total IgE kit, as per the manufacturer’s

instructions (Biolegend, San Diego, CA). Sera were prepared at

1:10 and serially diluted and plates were read at 450 and 570 nm.

Background absorbance values obtained from the 570 nm

readings were subtracted from the 450 nm values. The standard

curve was created from known concentrations of IgE standards,

and unknown IgE sample concentrations were extrapolated from

the curve.

Specific IgG ELISA
Specific IgG concentrations in pooled polyclonal sera obtained

7 days post exposure to WT and Dalb1 strains were determined

using an indirect ELISA. Briefly, Corning high protein binding 96-

well plates (Corning, NY) were coated with 3 mg/mL A. fumigatus
conidial or hyphal extract in 0.1 M sodium carbonate, pH 9.6

overnight at 4uC. The wells were washed three times with PBS

containing 0.05% Tween 20 (PBST) and blocked with 200 mL/

well 3% non-fat dry milk powder in PBST (SM-PBST) for 1 hour

at 37uC. Duplicate wells were incubated with mouse sera diluted

1:200 in SM-PBST for 1 hour at 37uC. Wells were washed and

incubated for 1 h at 37uC with AP-conjugated anti-mouse IgG

heavy and light chain antibody (Promega) diluted 1:5000 in SM-

PBST. Wells were washed and developed with 0.5 mg/mL p-

nitrophenyl phosphate in AP substrate. The optical density was

determined spectrophotometrically at 405 nm using a SpectraMax

M4 microplate reader (Molecular Devices, Sunnyvale, CA).

Data analysis methods
Analysis of flow cytometric samples was performed with BD

FACSDiva software (BD Biosciences, San Jose, CA). SigmaPlot

(Systat Software, Inc., San Jose, CA) was used for graphs, and

GraphPad Prism (GraphPad Software, La Jolla, CA) for statistical

analysis of conidial clearance/germination and total IgE levels.

The data were analyzed via two way analysis of variance

(ANOVA) followed by Bonferroni post-test. Statistical analysis of

cellularity was performed using SAS version 9.3 for Windows

(SAS, Cary, NC). The data were log transformed prior to analysis

and Proc Mix was used to run a two-way factorial analysis of

variance (Fungal Exposure by Time). Pairwise comparisons were

performed using Fishers Least Significant Difference test. Differ-

ences between experimental groups were considered significant

with p-values #0.05.

Results

Characterization of the fungal acoustical generator
system

A new inhalation exposure system was developed to enable

characterization of pulmonary immune responses to dry particles

[24]. Figure 1A depicts a schematic of the AGS adapted for use

with fungal conidia. The AGS was capable of producing mass

concentrations of up to 60 mg/m3 (count concentration 2.66109

conidia/m3; data not shown) and field emission scanning electron

microscopy (FESEM) showed aerosols composed of individual

conidia, and in some cases aggregate conidia (Figure 1B and 1C),

with a size distribution within the aerodynamic diameter of

individual conidia (Figure 1B). Rice grain fragments or fungal

fragments (fractured conidia or hyphae) were not observed by

FESEM. These findings demonstrated that conidia could be

aerosolized in reproducible quantities and delivered to mice

housed in the multi-animal nose only exposure chamber.

Histopathological assessment of animals in a pilot study confirmed

that fungal conidia were deposited within the upper respiratory

tract and in the smaller airways (data not shown).

Lymphoproliferation induced by repeated dry A.
fumigatus exposures

The optimal dose for inhalation experiments was determined by

a modified local lymph node assay following 3 repeated inhalation

exposures to A. fumigatus WT spores (56103, 16104, 16105, or

16106 calculated airway deposition, CAD). Proliferation of

lymphocytes as determined by the incorporation of radiolabeled

tritiated thymidine in the MLNs was dose dependent and 16106

conidia (CAD) induced the highest stimulation index (,100 SI

units (fold change over vehicle control); Figure S1); however, mice

exposed to this dose had greater than 10% weight loss so 16105

was selected for future experiments. This dose corresponds to the

fungal burden that may be encountered in contaminated indoor

and some occupational environments [1].

Histopathology
Using 16105 spores, experiments were performed to charac-

terize the pulmonary response to repeated fungal conidia

exposures. After 8 exposures, H&E staining revealed inflammation

predominantly affecting the bronchioles, characterized by leuko-

cyte infiltration (Figure 2A) and giant cell formation (data not

shown). Airway remodeling, increased mucus production and

goblet cell hyperplasia were also observed (data not shown). The

time course revealed that by 24 hours, mucus production had

begun to resolve and the cellularity was largely composed of

neutrophils and lymphocytes surrounding the bronchioles (Fig-

ure 2A). Granulomas were occasionally observed near the larger

airways (data not shown). Compared to WT exposures, mice

exposed to Dalb1 conidia did not have as pronounced inflamma-

tion; however, airway remodeling, increased mucus production,

and goblet cell hyperplasia were observed (Figure S2).

Within 4 hours of final exposure, GMS stained WT conidia

could be microscopically observed in the lung interstitium. Some

conidia were swollen and minimal germ tube formation was
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present at this time point (Figure 2B and C). Considerably fewer

conidia (mean = 66.5) were resolved in the lungs of mice exposed

to Dalb1 conidia at 4 hours (Figure 2C). By 24 and 48 hours,

germination of WT conidia was significantly increased compared

to Dalb1 conidia that had not germinated (Figure 2C). By

72 hours, most inflammatory changes observed in histopathology

were resolving and few conidia were observed (Figure 2).

BALF Cellularity
Quantification of total BALF cell numbers showed a statistically

significant difference in the cellular influx between the WT

Figure 2. Histopathology of sections derived from Aspergillus fumigatus WT exposed mice. A) Representative histopathology sections from
WT exposed mice sacrificed at the indicated time points. Top panel-H&E stained sections at 1006magnification, Bottom panel-PAS stained sections
at 1006magnification. B) GMS stained sections at 4006magnification. Black arrow heads indicate swollen conidia (24 hr), while red arrow heads
indicate conidia germination and emergence of hyphal tubes (48 hr). C) Quantification of conidia and germination (swollen conidia+germ tube
formation) over time. Values were obtained by quantifying the number of conidia visualized by counting 100 random fields of view covering both
lung fields at a magnification of 4006. Conidia were considered swollen when the size was .26 that of resting conidia. Data are presented as the
average 6 standard error of measure. ****P#0.0001, ***P#0.001, **P#0.01.
doi:10.1371/journal.pone.0109855.g002
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exposure group and controls. Mice exposed to WT conidia had

significantly higher BALF cell counts (monocytic cells and

eosinophils) at 48 hours with significantly elevated neutrophil

counts persisting at 72 hours (Figure 3). Compared to WT

conidia, BALF cellularity in mice exposed to Dalb1 conidia was

generally lower and peaked for most cell types by 4 hours

(Figure 3).

To further characterize the pulmonary immune responses,

lymphocyte subpopulations were examined. Exposures to WT

conidia resulted in peak CD8+ T cell counts at 24 hours followed

by a gradual decline to 72 hours. A similar response was not

observed with the Dalb1 conidia. CD4+ T cell responses showed a

sharp peak at 48 hours following WT exposures; however, the

levels of this cell population at the other time points were similar to

Dalb1 exposed mice (Figure 3). Intracellular cytokine staining of

the BALF cells revealed mice exposed to WT conidia recruited

significantly more CD4+IL-17+ T cells (Th17) to the airways at

48 hours compared to the Dalb1 exposure group (Figure 4).

Interestingly, CD8+IL-17+ T cells (Tc17) reflected a majority of

the overall CD8+ T cell response observed in WT exposed mice

and this population peaked at the 24 hour time point (Figure 4).

Additional lymphocyte phenotypes demonstrating a mixed Th1/

Th2 response can be found in File S1, Figure S3.

Mediastinal Lymph Node Cellularity
In the draining mediastinal lymph nodes (MLN), the numbers of

total MLN cells and B cells increased up to 72 hours in WT

exposures; however, in the Dalb1 exposure group, the highest

MLN and B cell counts were observed at 4 hours (Figure 5). These

counts were reduced at 24 hours, and began to increase slightly

again by 72 hours (Figure 5).

WT exposures resulted in a steady increase in CD4+ T cells up

to 72 hours, while in Dalb1 exposure, CD4+ T cells were highest at

4 hours (Figure 5). Intracellular cytokine staining revealed that

Tc17 responses also increased with each time interval and reached

highest levels at 72 hours following the final exposure to WT

conidia (data not shown). Additional lymphocytic phenotypes

determined by intracellular cytokine staining can be found in

Figure S4 and indicated a mixed Th1/Th2 response.

Aspergillus fumigatus-specific antibody production
ELISA analysis of A. fumigatus-specific antibody showed

presence of IgG at 7 days (Figure 6C) but IgM was not detected

in either group (data not shown). In Western blots, WT exposed

sera reacted to a greater number of bands in hyphal extracts

compared with conidial extracts from both WT and Dalb1 strains

(Figure 6A). Conversely, Dalb1 exposed sera reacted to fewer

proteins; however, immunostaining of conidial proteins showed

prominent immunoreactive bands localized between 10–15 kDa

in both WT (band 2) and Dalb1 (band 1 and 3) conidia extracts

(Figure 6B).

Proteomic analysis was performed on protein bands identified to

bind sIgG. Prominent bands from WT and Dalb1 hyphal extracts

were identified at approximately 85 kDa, 65 kDa, and 52 kDa.

These proteins were further resolved by two-dimensional Western

blot (Figure S6, Table 1, Table 2). LC-MS/MS analysis of the

hyphal proteins identified to bind WT sIgG showed that many of

these spots were derived from intracellular proteins with a range of

functions (Table 2). Protein spots 1–2 (,85 kDa), 3 (,65 kDa), 4

(,60 kDa) and 6 (41 kDa) were identified as mitochondrial

proteins involved in various biosynthetic and metabolic processes.

Other proteins binding WT sIgG were identified as enzymes

involved in metabolic processes in the cytosol, namely spot 5

(52 kDa) identified as proteasome regulatory particle subunit Rpt3

and spot 7 (37 kDa) identified as glyceraldehyde 3 phosphate

dehydrogenase (GAPDH). Interestingly, the prominent immuno-

reactive conidial proteins recognized by the Dalb1 conidia exposed

sera (between 10–15 kDa) were identified in both WT (band 2)

and Dalb1 (bands 1 & 3) to be predominantly derived from

hydrophobins (Table 1).

Figure 3. Total cell counts in the BALF. Following 8 dry conidial exposures, mice were sacrificed at the indicated time points to determine the
kinetics of the cellular influx to the lung. Total cell numbers were obtained through acridine orange staining and quantified using an automated cell
counter. Each cell population was quantified by multiplying the frequency of each by the total cell counts. Data are presented as the average 6
standard error of measure. (Control n = 30 mice/time point, Exposed n = 7–10 mice/group/time point). ****P#0.0001, ***P#0.001, **P#0.01, *P#0.05.
doi:10.1371/journal.pone.0109855.g003
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Serum IgE was additionally quantified to further characterize

the immune response following repeated A. fumigatus WT and

Dalb1 conidia exposures. Total IgE concentrations were signifi-

cantly increased in each exposure group despite the presence of

melanin (Figure S5). Similar to the Western blot data, IgE titers

increased by approximately 1000 ng/mL (WT exposed) and

1500 ng/mL (Dalb1) between days 3 and 7. Overall, these data

demonstrated that nose-only exposures to dry A. fumigatus
conidia may result in the production of sIgG, as well as total IgE.

Discussion

Animal models of fungal exposure have provided understanding

of the pulmonary immune mechanisms that mediate fungal

clearance and pathogenesis [9–11]. However, many of these

studies use pharyngeal and intratracheal aspiration or intranasal

methodologies to deliver uncharacterized extracts or conidia

suspensions to animals [1,9–11]. These variables may not

represent exposure to fungal bioaerosols typically encountered in

the environment. Recently, several animal studies have evaluated

inhalation exposures to aerosolized fungal conidia that more

closely reflect human exposures to indoor, outdoor, or occupa-

tional environments [12,13,25]. In this study, we describe a system

that more closely represents typical inhalational exposures to

fungal conidia and the pulmonary immune responses in immu-

nocompetent mice following repeated (n = 8) exposures to a lung

dose of 16105 dry A. fumigatus conidia. It is estimated that this

lung burden would be equivalent to a worker breathing a constant

conidia workplace air level concentration of 5.606104 spores/m3

(0.93 mg/m3) over a 45 year working career. This daily dose could

be encountered in contaminated occupational environments [1].

An innovative AGS, based on a similar system developed at

NIOSH [26] was used to produce homogenous A. fumigatus WT

and Dalb1 (melanin deficient) conidia aerosols that were delivered

to mice housed in a multi-animal nose only exposure chamber.

The AGS allows the controlled delivery of fungal conidia to mice,

limits fungal bioaerosol deposition distal to the neck, and reduces

supplementary exposures such as the ingestion of conidia

associated with barbering. The inhalation of the dry aerosol also

avoids alterations to the conidia as a result of preparation of fungal

extracts or liquid conidia suspensions. The AGS uses mass

concentration measurements to estimate particle deposition

numbers so that exposure/deposition could be kept constant

throughout the duration of the exposures. These variables could

not be controlled in previously published murine inhalation

models of A. fumigatus exposure [12,13].

Previously, we published an aspiration exposure model of

repeated exposures to A. fumigatus mutant strains [14]. Mice were

exposed twice weekly for 4 weeks and harvested 72 hours after the

final exposure. In that study, we observed moderate to severe

inflammation resembling hypersensitivity pneumonitis, and while

similar inflammatory changes were observed between mutant

strains of A. fumigatus, histological differences in conidia

clearance were readily apparent. In the present study, we extended

these observations to an inhalation exposure and we examined 4

time points post exposure to characterize the dynamics of the

immune response of mice. Histopathologic analysis revealed a

severe inflammatory response within 4 hours of the final exposure.

Figure 4. Intracellular cytokine flow cytometry analysis of the BALF. IL-17+ CD4+ and CD8+ T cells were quantified by multiplying
the frequency of each individual cell population by the total cell counts. Mice were sacrificed at the indicated time points after the 8th
exposure. Data are presented as the average 6 standard error of measure. n = 7–10 mice/group per time point. ****P#0.0001, **P#0.01.
doi:10.1371/journal.pone.0109855.g004
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Influx of innate cells could be observed, as well as conidia

transported from the airways into the surrounding lung intersti-

tium. Mucus production by goblet cells, bronchiolar pneumonia,

and tissue remodeling were also observed. Large numbers of

neutrophils and eosinophils were observed surrounding the larger

airways and giant cell formation and granulomas were apparent.

Overall, the inflammation observed in the present study was not as

severe compared to previous A. fumigatus aspiration studies that

delivered as much as 26106 conidia [14,15]. However, these

results do support histopathological findings of previously reported

murine intranasal [10] and whole body guinea pig studies [25].

Fogelmark and colleagues [25] demonstrated increased alveolar

wall thickening with interstitial cells and granuloma formation

following A. fumigatus exposure. Similarly, Murdock and

colleagues observed goblet cell metaplasia following repeated

exposures [10]. In the present study, inflammation appeared to be

resolving by 48 and 72 hours, although, giant cells, and

granulomas were still observed.

Microscopic evaluation of tissue sections demonstrated a small

proportion of conidia (,10%) had become metabolically active

(swollen conidia) by 4 hours and by 24–48 hours germ tubes had

formed (,15% conidia). By 72 hours, conidia were nearly

undetectable, likely processed and removed by neutrophils.

Metabolically active conidia appeared to drive a mixed Th1/

Th2/Th17 response that was characterized by the recruitment of

neutrophils and eosinophils between 48–72 hours; however, these

results should be interpreted with caution as the complete fungal

lung burden was not assessed in the present study. These

preliminary data suggest that as conidia began to swell and

germinate, a unique T cell response appeared. BALF Th17 cells

peaked at 48 hours in mice exposed to WT conidia that

corresponded to the highest neutrophil counts in the BALF.

Previous reports have shown that a major role for Th17 cells

includes the recruitment of neutrophils, and this cell population

has also been shown to contribute to viral persistence, allergy,

chronic inflammation associated with parasitic infection and is

important in immunity against opportunistic fungal pathogens,

such as Candida albicans [27–29]. Recent intranasal and

aspiration studies of A. fumigatus have also identified Th17

responses in the lungs of mice following repeated exposure [10,14].

A CD8+ T cell response was additionally observed to

correspond to A. fumigatus conidial germination. Compared to

a previous study that showed the production of CD8+ IFNc+ cell

population following A. fumigatus aspiration [15], approximately

1/3 of the total CD8+ T cells were a CD8+ IL17+ (Tc17) cell

population that peaked at 24 hours. The Tc17 population

correlated with WT conidia germination, as well as the highest

concentrations of mononuclear cells, neutrophils, and eosinophils

present in the BALF. These results are consistent with the reported

role for Tc17 cells in innate cell recruitment [30,31]. CD8+ T cells

Figure 5. Total cell counts in the MLNs. Following 8 dry conidial exposures, mice were sacrificed at the indicated time points to determine the
cellular influx kinetics to the lung-associated nodes. Total cell numbers were obtained through acridine orange staining and quantified using an
automated cell counter. Each cell population was quantified by multiplying the frequency of each by the total cell counts. Data are presented as the
average 6 standard error of measure. (Control-n = 30 mice/time point, Exposed n = 7–10 mice/group/time point). ***P#0.001, **P#0.01, *P#0.05.
doi:10.1371/journal.pone.0109855.g005
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have been shown to be protective by Carvalho and colleagues

[32]; however, the role of Tc17 cells has remained less clear. Tc17

cells are a unique subset of CD8+ T cells associated with viral

immunity (viral clearance), pulmonary inflammatory responses,

systemic lupus erythematosus, control of tumor growth, and

contact dermatitis [30]. Tc17 cells demonstrate functional

plasticity and are reported to produce proinflammatory cytokines

and chemokines responsible for the recruitment of neutrophils

[31]. Recently, aspects of CD8+ and Tc17 immunity to A.
fumigatus have been reported by our laboratory [14] as well as for

the dimorphic fungal pathogens, Blastomyces dermatitidis and

Histoplasma capsulatum [30]. Interestingly, the Tc17 response in

Figure 6. Specific IgG from A. fumigatus WT or Dalb1 exposed mice. Western blot analysis of specific IgG in serum from mice exposed to
acoustically aerosolized conidia from (A) WT or (B) Dalb1 strains. Lanes 1-molecular weight markers, 2-ASF WT conidial extract, 3-Dalb1 conidial
extract, 4-ASF WT hyphal extract, 5-Dalb1 hyphal extract (10 mg protein/lane). Numbered bands were excised and identified using LC/MS analyses.
The asterisks (*) denote weak binding of WT–exposed serum antibody to hydrophobin. C) ELISA analysis of IgG specific for A. fumigatus WT and Dalb1
conidial proteins or hyphal extracts. Results are representative of the mean OD405 values for each mouse sera diluted 1:200 6 the standard deviation
of duplicate ELISA wells coated with 3 mg/mL protein.
doi:10.1371/journal.pone.0109855.g006
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this study was also specific for germinating conidia, as exposures to

Dalb1 conidia that did not germinate and polystyrene beads of the

equivalent aerodynamic diameter did not induce the recruitment

of Tc17 cell populations in the BALF (data not shown).

CD4 T+ cell responses within the MLNs of mice exposed to WT

conidia increased over time, likely indicating continual antigen

presentation, lymphocyte activation, and clonal expansion within

this site [33,34]. Levels of CD4+ IFN-c+ (Th1), IL-13+ (allergy-

associated Th2), as well as IL-17+ and IL-10+ (immunoregulatory)

cells peaked at 72 hours in mice exposed to WT conidia and

indicated a mixed Th1, Th2 and Th17 response. Compared to

WT exposed mice, there were minimal differences in these cell

numbers in mice exposed to Dalb1 conidia, with the exception of

IFN-c production. This result was expected in the MLNs, as

melanin is known to suppress proinflammatory responses [35];

however, MLN responses to Dalb1 conidia have not been

previously examined. We hypothesize that the low number of

Dalb1 conidia observed at 4 hours is below a threshold that would

result in the proliferation of lymphocytic populations.

In this study, we additionally compared specific immunoglob-

ulin responses in WT and Dalb1 exposed mice. Serum titers of

total IgE and sIgG were increased in WT compared to control and

Dalb1 exposed mice. In Western blots, no specific-IgM was

detectable; however, 10 IgG-reactive proteins were observed. The

WT exposed group shared similar immune reactivity with WT

and Dalb1 conidia and hyphal extracts. WT IgG reacted to several

enzymes of broad intracellular function similar to those previously

identified to be biomarker antigens associated with farmers lung

[36]. These results further support the importance of fungal

germination in expressing antigen/allergens following exposure to

fungi [37–39]. In contrast, mice exposed to Dalb1 conidia

mounted an IgG response toward hydrophobin, a protein

constituent of the cell wall of A. fumigatus conidia that was

primarily identified as the major antigen in the proteomic analysis

[40]. Although WT serum IgG also detected hydrophobin, the

reactivity was weak compared to Dalb1 exposed mice. In contrast

to previously reported data by Aimanianda et al. [40] that showed

hydrophobin to mask conidial recognition from the immune

system, our findings suggest that the presence of melanin may

block hydrophobin immune recognition. These findings support

recent data presented by Chai et al. [35] that demonstrated fungal

melanin may protect the conidia long enough to allow them to

germinate. These data suggest that in the absence of melanin,

conidia are recognized and killed more efficiently by the innate

system. Although fungal germination would be restricted to

thermotolerant organisms, these findings demonstrate that hyphal

exoantigens are additional sources of antigen following repeated

exposures. In order to determine the role of other sources of fungal

exposure, such as hyphal and submicron fragments, additional

characterization using this murine model will be required [41].

In conclusion, a novel inhalation exposure system was

developed at NIOSH that allowed dry fungal conidia aerosols to

be repeatedly delivered to mice housed in a nose only multi-animal

exposure chamber. The generated aerosols reflect the potential

burden of fungi encountered by humans in certain high exposure

settings. The resultant pulmonary immune response from repeated

Table 1. Proteomic analysis of immunoreactive conidia protein bands identified in sIgG Western blot.

Protein bands Protein Identification
Protein Accession
Number

Theoretical molecular
mass (kDa)/pI

Number of
peptides

Sequence
coverage (%)

Predicted signal
peptide (positions)

1 a) Hydrophobin P41746 16.11/5.17 26 66.04 Yes (1–18)

b) Nucleoside
diphosphate kinase

B0Y2U5 16.93/7.76 12 37.91 No

2–3 a) Hydrophobin Q8TFV2 11.42/4.66 20 46.73 No

b) Putative,
uncharacterized protein

B0YDB8 12.85/5.73 2 24.56 No

doi:10.1371/journal.pone.0109855.t001

Table 2. Proteomic analysis of immunoreactive hyphal protein bands identified in WT sIgG two-dimensional Western blot.

Protein
spots Protein Identification

Protein Accession
Number

Theoretical
molecular mass
(kDa)/pI

Numberof
peptides

Sequence
coverage (%)

1 a) 5-methyltetrahydropteroyltriglutamate homocysteine
S-methyltransferase

B0Y5S8 86.84/6.33 3 4.01

2 a) Putative, Mitochondrial aconitate hydratase Q4WLN1 85.48/6.25 8 9.91

3 a) Putative, Mitochondrial dihydroxy acid dehydratase B0XTT1 68.21/7.78 10 13.08

b) Phosphoglucomutase PgmA B0XXA2 60.46/6.30 14 16.58

c) Putative, Pyruvate decarboxylase PdcA B0XXN9 62.96/6.07 3 10.72

d) Putative, GMC oxidoreductase Q4WFN7 72.10/7.08 3 7.58

4 a) Putative, Antigenic mitochondrial protein HSP60 B0XRX3 61.91/5.35 35 37.99

5 a) Putative, Proteasome regulatory particle subunit Rpt3 Q4WY11 51.57/4.99 11 26.02

6 a) Putative, Acetyl CoA acetyltransferase B0YA65 40.88/6.43 12 17.59

7 a) Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) B0Y207 36.29/7.27 28 33.14

doi:10.1371/journal.pone.0109855.t002
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inhalation exposures had a mixed Th1/Th2/Th17 cytokine

profile. Tc17 cells were additionally identified in response to A.
fumigatus germination. This T cell population may be an

important source of IL-17 responsible for heightened recruitment

of innate phagocytes observed at 24 and 48 hours following the

final exposure. Additionally, we observed the production of

specific IgG to prominent antigens derived from WT and Dalb1
conidia and hyphal extracts. This study provides further insight

into the role of conidial melanin in the induction of immune

responses and demonstrates that sIgG could be produced to

hydrophobin. Future studies that evaluate other mold species of

environmental and occupational significance are required to

provide further insight into the resulting pulmonary immune

responses. Other potential uses of this inhalation model include

studies of the pathogenesis of either acute or chronic aspergillosis

and the influence of different immunosuppressive agents on the

establishment of opportunistic fungal infections. These studies may

identify additional biomarkers of fungal exposure that could prove

useful in immunodiagnostics but more importantly, may provide

further data to determine limits of personal and occupational

exposure.

Supporting Information

Data S1 Supporting file containing original datasets
associated with each manuscript and supporting infor-
mation figure.
(ZIP)

Figure S1 Average stimulation indices (SI) determined
by a modified local lymph node assay. Mice were exposed

to the indicated deposition concentration of WT conidia. SI were

calculated as average disintegration per minute of the exposed

group/average disintegration per minute control group. Horizon-

tal line at SI of 10 is an arbitrary index used to determine positive

lymphocyte proliferation in these studies. n = 10 mice/group.

(TIF)

Figure S2 Histopathology of sections derived from A.
fumigatus Dalb1 exposed mice. A) Representative histopa-

thology sections from WT exposed mice sacrificed at the indicated

time points. Top panel-H&E stained sections at 1006 objective,

Bottom panel-PAS stained sections at 106 objective.

(TIF)

Figure S3 Flow cytometry analysis of intracellular
cytokine production in the BALF. CD4+ and CD8+ T cells
were quantified by multiplying the frequency of each

individual cell population by the total cell counts. Mice

were sacrificed at the indicated time points after the 8th exposure.

Data are presented as the average 6 standard error of measure.

n = 7–10 mice/group per time point. ****P#0.0001, ***P#0.001,

*P#0.05.

(TIF)

Figure S4 Intracellular cytokine flow cytometry analy-
sis of the MLNs. CD4+ and CD8+ T cells were quantified
by multiplying the frequency of each individual cell
population by the total cell counts. Mice were sacrificed at

the indicated time points after the 8th exposure. Data are

presented as the average 6 standard error of measure. n = 7–10

mice/group per time point. ****P#0.0001, ***P#0.001, *P#

0.05.

(TIF)

Figure S5 Total IgE quantification via ELISA. Sera from

exposed mice was obtained at 3 days or 7 days following the final

exposure, and analyzed via a commercially available total IgE

ELISA kit (Biolegend, San Diego, CA). Each sample was prepared

in duplicate and the values presented are the average 6 standard

error of measure.

(TIF)

Figure S6 Specific IgG from A. fumigatus WT exposed
mice. Two dimensional Western blot analysis of specific IgG in

serum from WT mice exposed to proteins generated from an A.
fumigatus WT hyphal extract.

(TIF)

File S1 Supporting file containing additional BALF and
MLN results.
(DOCX)

Acknowledgments

The authors wish to thank Diane Schwegler-Berry for FESEM analysis.

The findings and the conclusions in this report are those of the authors and

do not necessarily represent the views of the National Institute for

Occupational Safety and Health.

Author Contributions

Conceived and designed the experiments: ADB BJG WTG SEA JMH SPT

DRG DHB. Performed the experiments: ADB BJG ARL APN WTG SEA

JMH. Analyzed the data: ADB BJG ARL APN WTG MLK JMH.

Contributed reagents/materials/analysis tools: BJG WTG MLK SEA

JMH. Wrote the paper: ADB BJG ARL APN WTG MLK SEA JMH SPT

DRG DHB.

References

1. Eduard W (2009) Fungal spores: a critical review of the toxicological and

epidemiological evidence as a basis for occupational exposure limit setting. Crit

Rev Toxicol 39: 799–864.

2. Devereux G (2006) The increase in the prevalence of asthma and allergy: food

for thought. Nat Rev Immunol 6: 869–874.

3. Black PN, Udy AA, Brodie SM (2000) Sensitivity to fungal allergens is a risk

factor for life-threatening asthma. Allergy 55: 501–504.

4. WHO (2009). WHO Guidelines for Indoor Air Quality: Dampness and Mould.

Geneva.

5. Institute of Medicine (U.S.). Committee on Damp Indoor Spaces and Health.

(2004) Damp indoor spaces and health. Washington, DC: National Academies

Press. xi, 355 p. p.

6. Crameri R, Weichel M, Fluckiger S, Glaser AG, Rhyner C (2006) Fungal

allergies: a yet unsolved problem. Chem Immunol Allergy 91: 121–133.

7. Simon-Nobbe B, Denk U, Poll V, Rid R, Breitenbach M (2008) The spectrum of

fungal allergy. Int Arch Allergy Immunol 145: 58–86.

8. Bakker-Woudenberg IA (2003) Experimental models of pulmonary infection.

J Microbiol Methods 54: 295–313.

9. Templeton SP, Buskirk AD, Green BJ, Beezhold DH, Schmechel D (2010)

Murine models of airway fungal exposure and allergic sensitization. Med Mycol

48: 217–228.

10. Murdock BJ, Shreiner AB, McDonald RA, Osterholzer JJ, White ES, et al.

(2011) Coevolution of TH1, TH2, and TH17 responses during repeated

pulmonary exposure to Aspergillus fumigatus conidia. Infect Immun 79: 125–

135.

11. Shreiner AB, Murdock BJ, Sadighi Akha AA, Falkowski NR, Christensen PJ, et

al. (2012) Repeated exposure to Aspergillus fumigatus conidia results in CD4+ T

cell-dependent and -independent pulmonary arterial remodeling in a mixed

Th1/Th2/Th17 microenvironment that requires interleukin-4 (IL-4) and IL-10.

Infect Immun 80: 388–397.

12. Hoselton SA, Samarasinghe AE, Seydel JM, Schuh JM (2010) An inhalation

model of airway allergic response to inhalation of environmental Aspergillus
fumigatus conidia in sensitized BALB/c mice. Med Mycol 48: 1056–1065.

13. Samarasinghe AE, Hoselton SA, Schuh JM (2011) A comparison between

intratracheal and inhalation delivery of Aspergillus fumigatus conidia in the

development of fungal allergic asthma in C57BL/6 mice. Fungal Biol 115: 21–

29.

A Murine Inhalation Model of Aspergillus fumigatus Exposure

PLOS ONE | www.plosone.org 12 October 2014 | Volume 9 | Issue 10 | e109855



14. Buskirk AD, Templeton SP, Nayak AP, Hettick JM, Law BF, et al. (2014)

Pulmonary immune responses to Aspergillus fumigatus in an immunocompetent
mouse model of repeated exposures. J Immunotoxicol 11: 180–189.

15. Templeton SP, Buskirk AD, Law B, Green BJ, Beezhold DH (2011) Role of

germination in murine airway CD8+ T-cell responses to Aspergillus conidia.
PLoS One 6: e18777.

16. Tsai HF, Wheeler MH, Chang YC, Kwon-Chung KJ (1999) A developmentally
regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus
fumigatus. J Bacteriol 181: 6469–6477.

17. Jarvis BB, Sorenson WG, Hintikka EL, Nikulin M, Zhou Y, et al. (1998) Study of
toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata
isolated during a study of pulmonary hemosiderosis in infants. Appl Environ
Microbiol 64: 3620–3625.

18. Raabe OG, Al-Bayati MA, Teague SV, Rasolt A (1988) Regional deposition of
inhaled monodisperse coarse and fine aerosol particles in small laboratory

animals. Ann Occup Hyg 32: 53–63.

19. Stevens WW, Kim TS, Pujanauski LM, Hao X, Braciale TJ (2007) Detection
and quantitation of eosinophils in the murine respiratory tract by flow

cytometry. J Immunol Methods 327: 63–74.
20. Foster B, Prussin C, Liu F, Whitmire JK, Whitton JL (2007) Detection of

intracellular cytokines by flow cytometry. Curr Protoc Immunol Chapter 6: Unit

6 24.
21. Collins C, Keane TM, Turner DJ, O’Keeffe G, Fitzpatrick DA, et al. (2013)

Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria
mellea: toward a new infection model system. J Proteome Res 12: 2552–2570.

22. Chakraborty AB, Berger SJ, Gebler JC (2007) Use of an integrated MS–
multiplexed MS/MS data acquisition strategy for high-coverage peptide

mapping studies. Rapid Commun Mass Spectrom 21: 730–744.

23. Green BJ, Cummings KJ, Rittenour WR, Hettick JM, Bledsoe TA, et al. (2011)
Occupational sensitization to soy allergens in workers at a processing facility.

Clin Exp Allergy 41: 1022–1030.
24. Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, et al. (2008)

Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice:

inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung
Cell Mol Physiol 295: L552–565.

25. Fogelmark B, Lacey J, Rylander R (1991) Experimental allergic alveolitis after
exposure to different microorganisms. Int J Exp Pathol 72: 387–395.

26. McKinney W, Chen B, Frazer D (2009) Computer controlled multi-walled
carbon nanotube inhalation exposure system. Inhal Toxicol 21: 1053–1061.

27. van de Veerdonk FL, Gresnigt MS, Kullberg BJ, van der Meer JW, Joosten LA,

et al. (2009) Th17 responses and host defense against microorganisms: an
overview. BMB Rep 42: 776–787.

28. Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, et al. (2007) An IL-17F/

A heterodimer protein is produced by mouse Th17 cells and induces airway

neutrophil recruitment. J Immunol 179: 7791–7799.

29. Huppler AR, Conti HR, Hernandez-Santos N, Darville T, Biswas PS, et al.

(2014) Role of Neutrophils in IL-17-Dependent Immunity to Mucosal

Candidiasis. J Immunol 192: 1745–1752.

30. Nanjappa SG, Heninger E, Wuthrich M, Gasper DJ, Klein BS (2012) Tc17 cells

mediate vaccine immunity against lethal fungal pneumonia in immune deficient

hosts lacking CD4+ T cells. PLoS Pathog 8: e1002771.

31. Hamada H, Garcia-Hernandez Mde L, Reome JB, Misra SK, Strutt TM, et al.

(2009) Tc17, a unique subset of CD8 T cells that can protect against lethal

influenza challenge. J Immunol 182: 3469–3481.

32. Carvalho A, De Luca A, Bozza S, Cunha C, D’Angelo C, et al. (2012) TLR3

essentially promotes protective class I-restricted memory CD8(+) T-cell

responses to Aspergillus fumigatus in hematopoietic transplanted patients.

Blood 119: 967–977.

33. Lambrecht BN, Hammad H (2003) Taking our breath away: dendritic cells in

the pathogenesis of asthma. Nat Rev Immunol 3: 994–1003.

34. Obst R, van Santen HM, Mathis D, Benoist C (2005) Antigen persistence is

required throughout the expansion phase of a CD4(+) T cell response. J Exp

Med 201: 1555–1565.

35. Chai LY, Netea MG, Sugui J, Vonk AG, van de Sande WW, et al. (2010)

Aspergillus fumigatus conidial melanin modulates host cytokine response.

Immunobiology 215: 915–920.

36. Millon L, Roussel S, Rognon B, Quadroni M, Salamin K, et al. (2012)

Aspergillus species recombinant antigens for serodiagnosis of farmer’s lung

disease. J Allergy Clin Immunol 130: 803–805 e806.

37. Green BJ, Mitakakis TZ, Tovey ER (2003) Allergen detection from 11 fungal

species before and after germination. J Allergy Clin Immunol 111: 285–289.

38. Green BJ, Sercombe JK, Tovey ER (2005) Fungal fragments and undocumented

conidia function as new aeroallergen sources. J Allergy Clin Immunol 115:

1043–1048.

39. Mitakakis TZ, Barnes C, Tovey ER (2001) Spore germination increases allergen

release from Alternaria. J Allergy Clin Immunol 107: 388–390.

40. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, et al. (2009)

Surface hydrophobin prevents immune recognition of airborne fungal spores.

Nature 460: 1117–1121.

41. Green BJ, Tovey ER, Sercombe JK, Blachere FM, Beezhold DH, et al. (2006)

Airborne fungal fragments and allergenicity. Med Mycol 44 Suppl 1: S245–255.

A Murine Inhalation Model of Aspergillus fumigatus Exposure

PLOS ONE | www.plosone.org 13 October 2014 | Volume 9 | Issue 10 | e109855


