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Abstract

Host-range shifts in influenza virus are a major risk factor for pandemics. A key question in the study of emerging zoonoses
is how the evolution of transmission efficiency interacts with heterogeneity in contact patterns in the new host species, as
this interplay influences disease dynamics and prospects for control. Here we use a synergistic mixture of models and data
to tease apart the evolutionary and demographic processes controlling a host-range shift in equine H3N8-derived canine
influenza virus (CIV). CIV has experienced 15 years of continuous transfer among dogs in the United States, but maintains a
patchy distribution, characterized by sporadic short-lived outbreaks coupled with endemic hotspots in large animal shelters.
We show that CIV has a high reproductive potential in these facilities (mean R0 = 3.9) and that these hotspots act as refugia
from the sparsely connected majority of the dog population. Intriguingly, CIV has evolved a transmission efficiency that
closely matches the minimum required to persist in these refugia, leaving it poised on the extinction/invasion threshold of
the host contact network. Corresponding phylogenetic analyses show strong geographic clustering in three US regions, and
that the effective reproductive number of the virus (Re) in the general dog population is close to 1.0. Our results highlight
the critical role of host contact structure in CIV dynamics, and show how host contact networks could shape the evolution
of pathogen transmission efficiency. Importantly, efficient control measures could eradicate the virus, in turn minimizing the
risk of future sustained transmission among companion dogs that could represent a potential new axis to the human-
animal interface for influenza.
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Introduction

Respiratory pathogens that emerge as the result of host-range

shifts can cause serious epidemics in humans, livestock, and wild

animals [1–4]. Two recent pandemics in humans – Severe Acute

Respiratory Syndrome (SARS) in 2003 and H1N1 influenza in

2009 – involved host-range shifts in respiratory zoonotic viruses

[5,6], while the recently documented Middle East respiratory

syndrome coronavirus (MERS-CoV) has similarly emerged from

an animal reservoir to pose a growing risk to the human popu-

lation [7]. Importantly, however, cross-species transmission events

do not always lead to pandemics. Rather, zoonoses emerging in

new host species tend to have patchy and dynamic prevalence

patterns in space and time. As a result, the probability that an

emerging zoonosis will take hold in a new host population has

been difficult to assess a priori, which limits our capacity to use

targeted interventions to avert pandemics before they happen [8].

A variety of host-pathogen interactions may follow a species

jump, and revealing their determinants is essential to understand-

ing the process of zoonotic emergence. First, the emerging

pathogen may be poorly adapted for replication and onward

transmission in the new host population. This leads to inefficient

transmission, where many potentially infectious contacts between

susceptible and infected individuals fail to spread the disease, due

for example to a low pathogen load in the infected individual. In

this case, the disease will have a lower basic reproductive number
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(R0 – the number of secondary infections caused by a typical

infected individual in an entirely susceptible population) in the

recipient host than its recent ancestor in the donor host. Inefficient

transmission following a spillover event may lead to ‘‘stuttering

chains’’ of infection marked by patchy patterns of disease

prevalence interspersed with stochastic fadeouts. Even if a

pathogen has R0 above 1 (a necessary but not sufficient condition

for self-sustaining spread), values of R0 that are only marginally

above 1 are associated with a higher probability of stochastic

extinction. The probability that a pathogen will establish itself (in a

large homogeneously mixed population of susceptible hosts)

following the introduction of n infected individuals is given by

12(1/R0)n [9].

The heterogeneity in prevalence of emerging pathogens may

also reflect the demographic variability inherent to host popula-

tions. In smaller host populations random variation in the timing

and frequency of births, deaths, immigration, emigration, and

contacts between infected and non-infected individuals, as well as

in the timing of individual infections, can have profound effects on

epidemic dynamics [10–12]. Emerging pathogens that result from

spillover into new hosts are by definition initially confined to a

small population, in the sense that the first infected individual(s)

will have limited numbers of potential contacts to whom they can

spread the disease. This, in turn, makes the epidemic dynamics of

emerging pathogens inherently stochastic [13,14].

Finally, evolutionary change in emerging pathogens can affect

both their basic reproductive number, and their response to

demographic variability. Pathogen evolution can result in R0

increasing toward or above 1.0 after repeated spillover events from

the reservoir population, or during a chain of transmission in the

new host, either of which could result in the emergence and

selection of host-adaptive mutations. The occurrence of multiple

outbreaks over time may also increase the likelihood that the

pathogen evolves toward a point when it can be self-sustaining in

the new host [12]. Recent analytical frameworks that unite the

ecological and evolutionary dynamics of host-pathogen interac-

tions can help identify the processes that drive epidemiological and

phylogenetic patterns during and after host-range shifts [11,12,15].

Here we study the population dynamics and evolution of

equine-H3N8 derived canine influenza virus (CIV) in the US, and

use the results to propose control strategies. CIV emerged

following the transfer of a single H3N8 equine influenza (EIV)

to dogs from horses around 1999. Direct descendants of that virus

have been circulating continuously in dogs since that time [16–18].

CIV was first recognized as the cause of disease in greyhounds in a

training facility in Florida in 2004 and was transferred to various

states in the US with the racing greyhounds, eventually spreading

to other breeds [16]. The hemagglutinin (HA) sequence of CIV

was genetically distinct from EIV by 2004, forming a separate

monophyletic group from EIV in phylogenetic trees [16]. Notably,

there is no evidence of CIV transfer back to horses, onward to

humans, nor of reassortment involving CIV and other influenza

viruses [19]. Furthermore, although some other H3N8 EIV

spillovers from horses into dogs have been reported, these only

comprised single infections or small outbreaks that rapidly faded

out [20].

Although CIV can readily transmit among dogs its prevalence

remains patchy: it is enzootic in some regions of the US, but has

thus far failed to establish outside of these enzootic regions [21–

24]. The overall seroprevalence of CIV in the companion (pet) dog

population appears to be low (,3% or less depending on the

region), with visits to canine daycare a risk factor [22,24]. CIV

enzootic regions are typically associated with large animal shelters

[25], and the movement of the virus to different parts of the US is

most likely associated with the transport of infected shelter dogs to

facilities in other regions where they may be more readily adopted

[26].

In contrast to CIV, its recent ancestor, H3N8 EIV, has been

circulating widely in horses since before 1963 when it was first

reported in Florida, having most likely been introduced with

horses from South America [27]. The virus appears to spread

continuously within and between many parts of North and South

America, Europe, and Asia [28–31]. EIV has been introduced into

countries that were previously free of the virus, including Australia

and South Africa, causing significant outbreaks that extended over

large distances, although these were controlled and the virus

eradicated [28,32]. Data from an outbreak in an unvaccinated

population of racehorses places R0 for EIV at 10.18 (95%

confidence interval: 9.57–10.89) in that context. In contrast, the

reproductive number of EIV in vaccinated populations of

racehorses has been estimated to be between 1.4 and 2.3 [33].

EIV has experienced marked evolution in all gene segments since

it emerged, with evidence of antigenic variation in the HA gene,

including phylogeographic patterns in HA variation, with distinct

clades in Europe versus the US, and among US states [28,34,35].

Although CIV and EIV are closely related, their epidemiology

and evolutionary dynamics differ, with EIV seemingly more

successful, and less heterogeneously distributed. Moreover, EIV

continues to spread despite active control measures (particularly

vaccination) whereas CIV retains a patchy distribution in the

absence of significant control measures. An analysis of the

phylogenetic history and ecology of CIV since its recent

emergence from EIV may therefore reveal how host demography,

disease dynamics, and pathogen evolution can combine to

determine the prevalence patterns and risk posed by emerging

zoonotic pathogens.

Here we combine individual-level data on the intake, output,

and transfer rates of dogs among US animal shelters of different

sizes, with CIV gene sequence data and available seroprevalence

estimates, to identify the processes controlling disease dynamics in

emerging zoonoses at the human-animal interface. We hypothe-

size that CIV persists through the presence of transmission

Author Summary

Influenza virus infects a range of vertebrate hosts,
including domesticated animals as well as humans. Some
of the most serious influenza pandemics in humans have
involved host range shifts, when an influenza virus jumps
from one host species to another. Importantly, however,
host range shifts do not always cause pandemics. Rather,
epidemiological patterns tend to be unpredictable in new
host species, causing disease patterns that change over
space and time. In this paper, we analyze epidemiological
and evolutionary dynamics of canine influenza virus (CIV),
which jumped to dogs in the late 1990s from an equine
strain (EIV) prevalent in horses. We show that the
epidemiology and evolution of CIV is strongly influenced
by heterogeneous patterns of infectious contact among
dogs in the US. A few large populations in metropolitan
animal shelters serve as reservoirs for CIV, but the virus
cannot be maintained for long in smaller facilities or in the
companion dog population without input from the larger
shelters, which represent disease hotspots. These hotspot
dynamics give a clear picture of what can happen in the
time between the beginning of a host range shift and the
onset of a possible pandemic, allowing more targeted
strategies for control and eradication.
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hotspots, which rescue chains of transmission that fade out in other

populations. The putative hotspots are large animal shelters in

major metropolitan areas. After estimating R0 from all available

data we ask: are the population sizes of small shelters small enough

to make fadeout significantly more likely than in large shelters?

And do large shelters have good prospects of maintaining CIV in

an enzootic state?

We then use the parameters from our analyses to determine

what control measures would result in eradication of the virus.

CIV is a prime target for eradication because it has both the

potential to cause significant disease burden, and it is currently

confined to a small subset of its host population. Effectively

controlling CIV would improve conditions in metropolitan animal

shelters, as well as minimizing the risk of zoonotic human infection

posed by CIV, before it has the opportunity to evolve higher

transmissibility in the companion dog population. A possible

future scenario of sustained CIV transmission amongst companion

animals would represent the evolution of a potentially significant

new axis to the human-animal interface for influenza.

Results

Phylogenetic Structure of CIV in the USA
To put the CIV sampled from animal shelters in a wider

geographical context, and to reveal movement of the virus on a

continental scale, we determined the HA1, M and NP gene

sequences of recent CIV isolates, and conducted a phylogenetic

analysis of these sequences combined with homologous sequences

available on GenBank as well as the Influenza Research Database.

Viruses or sequences were sampled from the US states of

Colorado, New York, Pennsylvania, Florida, California, Ken-

tucky, Wyoming, Philadelphia, South Carolina, Virginia, Ver-

mont, Connecticut, Texas, and Iowa.

The most striking result of this analysis is that CIV exhibits a

marked geographical clustering by US state with distinct clades

being observed in New York (and nearby states), in Pennsylvania,

and in Colorado, which also represent our largest sampling sets

(Figure 1). This geographical clustering was confirmed in Associ-

ation Index (AI) and Parsimony Score (PS) phylogeny-trait

association statistics [36], with significantly more clustering by

US state of origin than expected by chance alone across the data

set as a whole (p,0.001). Similarly, the Maximum Clade (MC)

statistic reveals significant (p,0.001) clustering in the individual

states of Colorado, New York, Pennsylvania, Vermont and

Wyoming. In addition, many of the viruses from the northeastern

states of Vermont, Connecticut, New Hampshire clustered with

the viruses that are circulating continuously in New York (also in

the northeast), suggesting that those viruses were derived from the

New York enzootic hotspots.

Population Structure and Epidemiological Dynamics of
CIV in Shelter and Companion Dogs

Next, we investigated the demographic and epidemiological

dynamics of CIV at the local scale in animal shelters. Here we

used individual-level records of dog arrival and departure from 13

animal shelters of varying size across the US, comprising a total of

124,519 dogs, as well as published seroprevalence estimates from a

large shelter [25], coupled with a stochastic epidemic model. The

epidemic model was an SIR-type model incorporating empirical

rates of arrival and departure from the shelter as well as CIV

infection and removal dynamics, and implemented at the level of

individual dogs using the Gillespie algorithm [37].

The majority of animal shelters in the US house relatively small

populations of dogs—the median dog population size in our

sample of shelters is 43—but a few shelters are much larger,

housing hundreds of dogs. In precise terms, the distribution of dog

population sizes in our data is close to a negative binomial

distribution with mean 71.23 and standard deviation 82.24

(Figure 2A), which indicates significant overdispersion in popula-

tion sizes relative to a homogeneous Poisson model. This

overdispersion in host population size is a potentially important

characteristic for the epidemiology of CIV because it indicates the

presence of a few extraordinarily large shelters where a pathogen

might persist more easily than in a host population of average size.

Large well-connected populations are more favorable environ-

ments for emerging pathogens because variance in vital rates (e.g.

the rate of arrival of new susceptible individuals) decreases pre-

dictably with population size. All else being equal, this makes large

host populations more stable for sustained pathogen transmission.

Shelters with larger populations are fueled primarily by higher

intake rates (Figure 2B), as the median residence time of dogs does

not vary significantly among shelters of different sizes (Figure 2C).

The residence time of dogs in a shelter is roughly exponentially

distributed with a mean of 9.88 days and a standard deviation of

8.22 days (Figure 2D). Transfer rates among shelters appear

relatively low—among the eight shelters in our demographic data

for which there was transfer information the median proportion of

dogs whose stay at a shelter ended with a transfer is 0.067 and the

mean is 0.1. Transfer probability is not correlated with dog

population size in our data (data not shown).

Most dogs arriving to shelters are susceptible to CIV [22,25].

The arrival rate of susceptible dogs places an upper limit on CIV

prevalence by continual dilution with uninfected individuals,

which leads to a saturating relationship for prevalence as a

function of R0 (Figure 3A). We estimated a posterior distribution

for R0 given seroprevalence data and demographic data by using a

Markov Chain Monte Carlo (MCMC) method based on a

stochastic SIR model parameterized with the demographic data

(see Methods). Point estimates of seroprevalence are normally-

distributed about the long-term equilibrium value given by the

mean-field model in our simulations (Figure 3B), and a seroprev-

alence estimate of 0.42 [25] from a large shelter where CIV is

enzootic, combined with the demographic data on dog intake and

outcome rates, yield a mean estimate for R0 of 3.9 for CIV in large

animal shelters. The posterior distribution of R0 has a median of

3.3, and a highest probability density (HPD - the central 95% of

the posterior distribution) interval extending from 2.0 to 8.9

(Figure 3C).

Moving from estimating the reproductive potential (R0) of CIV

in animal shelters to estimating the effective spread rate in the

general population from genetic data, we employed phylodynamic

birth-death models to analyze HA1 sequence data collected across

the US to determine the rate of spread of the virus in the wider

dog population. Our estimates for the effective reproductive

number (Re; the average number of secondary infections produced

by a typical infected individual at a given time, in a population

where not all potential hosts are necessarily susceptible) show

considerable temporal variation (Figure 3D,E). At the time when

CIV was first recognized in 2004 the posterior distribution of Re

roughly matches that of R0, consistent with the initial, exponential

phase of the epidemic. During the period 2004–2008 Re drops to a

value of approximately 1.0. A similar pattern was observed in the

New York data set. Across the USA as a whole the mean estimate

of Re is currently 1.02 (95% HPD = 0.79,1.26), with a similar

number found in New York (Re = 1.06, 95% HPD = 0.72, 1.47)

(Figure 3). The low Re observed toward the present suggests that

CIV spread has now reached an equilibrium, where stochastic

fadeouts often associated with outbreaks are balanced with new

Contact Heterogeneity and Transmission Efficiency in Canine Influenza
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infections, which usually occur in the large animal shelters where it

is enzootic.

Populations That Sustain Viral Transmission
Using the shelter demography data and the stochastic epidemic

model, we simulated CIV outbreaks in shelters of a realistic

distribution of sizes, intake rates and output rates, and for varying

levels of R0. From these simulations we estimated the probability

that a shelter (of a given population size, N) infected with a CIV

virus (of a given R0) could maintain the virus for 100 days. The

response surface for this experiment yielded a cut-off curve in the

N-R0 plane, below which fadeout was almost certain and above

which persistence was almost certain (Figure 4A, shaded surface).

Interestingly, the posterior distribution for R0 (estimated by

MCMC as described above), and the empirical distribution of

shelter population sizes from the demographic data, suggest that

CIV straddles the border between persistence and stochastic

fadeout. That is, the demographic and seroprevalence data

indicate that CIV cannot persist in the majority of shelters,

because the median of the posterior distribution of R0 is below the

cutoff for persistence in a shelter of median size. But CIV can

persist in existing shelters that are larger than the median size,

because the posterior distribution for R0, combined with the

distribution of shelter sizes from the demographic data, has

significant density at R0-N combinations that would allow

persistence (Figure 4A, points). This suggests that CIV persists

on the brink of extinction—its current transmission efficiency is

only sufficient to persist in large, high-throughput populations, but

not yet to invade more widely.

More generally, for CIV in animal shelters the stochastic

epidemic simulations parameterized with demographic data reveal

that the impact of demographic stochasticity is considerable; the

majority of shelters are too small to maintain the virus in the long

term at its present rate of transmission. Thus variation in contact

rates among host subpopulations, rather than inherent limitations

on the evolved transmission efficiency of the pathogen, is sufficient

to explain observed heterogeneity in prevalence in CIV, since the

virus has been shown to transmit efficiently in large shelters and

under laboratory settings [23].

Control and Eradication Strategies
We then used the parameterized epidemic model and demo-

graphic data to simulate the impact of control strategies for CIV.

The purpose of this analysis is to test how the observed hotspot

dynamics are predicted to interact with potential eradication

strategies, and to estimate, given available demographic and

epidemiological data, the degree of control efficacy required to

eliminate CIV from animal shelters where it is persisting, allowing

for the complete eradication the virus from the canine population.

Figure 4B shows the effect of a generic control measure applied to

a single shelter, that reduces the inflow of susceptible dogs to a

proportion 1/,R0. = 0.26 of current levels, where ,R0. = 3.9

is the mean of the posterior distribution for R0, as above. This

generic control measure has the effect of reducing the effective

Figure 1. Phylogenetic trees of HA1, NP and M sequences for EIV (black) and CIV (colors). Boxes surround CIV clades comprising two or
more samples from the same US state. Branches leading to CIV samples from the same location are colored by location (New York, blue; Pennsylvania,
orange; Colorado, purple. Branches leading to CIV samples from multiple locations are colored grey.
doi:10.1371/journal.ppat.1004455.g001
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reproductive number in a single shelter to unity. Consistent with

theory [38] this is a reduction in the susceptible portion sufficient

to eradicate the disease from a large isolated shelter.

We then simulated a control program across multiple shelters

connected by the transfer of dogs. The simulated control measure

applied to the metapopulation is represented in the model as a

vaccination program, but the results apply to any control that

achieves the same reduction in the force of infection. A possible

strategy (but to our knowledge untested; see below) that might be

used is a live attenuated influenza vaccine (LAIV) that is able to

generate an interfering response (possibly through generation of

interferon) which prevents infection by wildtype CIV.

We find that such a control program could eradicate CIV

within 1–2 months if it is applied to dogs immediately upon arrival

to the shelter, and removes them from the chain of transmission

within 24 hours with 85% probability (Figure 5A). A control

strategy that has an efficacy of 75% might also efficiently eradicate

CIV from isolated shelters, but transfers of dogs between shelters

at the observed mean rate will allow CIV to persist through

connected chains of outbreaks (Figure 5B). Control strategies with

efficacies of 65% or less would reduce the prevalence of the

infection, but are not predicted to lead to CIV eradication in every

case (Figure 5C). In addition, without appealing to models it is

clear from the demographic data that turnover rates in most

Figure 2. Demography of dogs in US animal shelters. (A) Cumulative distribution of median population size in each shelter (black dashed line)
compared to a negative binomial distribution fitted to the data (solid red line), and a fitted Poisson distribution (dotted blue line). (B) Intake rate as a
function of population size. Points show the median value for each shelter and vertical lines enclose the interquartile range. Line shows fit by linear
regression to log-transformed median intake rates. (C) Length of stay as a function of shelter size. The 95% confidence interval on the slope of the
dashed line includes 0. (D) Cumulative distribution of length of stay across all shelters (bars) compared to an exponential distribution with mean rate
1/9.88 days21 (solid line).
doi:10.1371/journal.ppat.1004455.g002
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shelters are too high for an inactivated vaccine to be effective,

because those vaccines take more than a week to generate

protective immunity. Since the expected residence time of a dog in

an animal shelter is around 10 days, most dogs would have been

part of the chain of transmission by the time an inactivated vaccine

given at intake took effect, and then they would leave the shelter.

We therefore suggest one possible approach for control is the

development of an LAIV administered at intake of dogs into

shelters, which may provide suppression of the wild type virus

infection by direct competition for the target tissues, as well as

through stimulation of innate immune responses. This potential

approach requires further research. In addition we note that the

LAIV performance required to eradicate CIV is higher than what

has been typically observed in other live influenza vaccines, and

there is still much uncertainty about the rate at which protection

would be acquired during the time that dogs spend in shelters

(typically 1–2 weeks) [39]. However, other control measures (e.g.

quarantine, decrease in population size, changes in population

structure, or anti-viral drugs) or combinations that removed dogs

from the chain of transmission with similar efficiency would also

have qualitatively equivalent effects in a control strategy.

The key result is that a net control efficacy of ,85% is required

for eradication of CIV from its reservoir in a network larger

animal shelters, even though a net efficacy of ,75% would

probably be sufficient for eradication from a single shelter. Thus

another interesting feature of the control simulations in a

metapopulation framework is the sensitivity to migration param-

eters (Figure 5). In particular, we show that there are efficacious

control strategies that would cause the virus to go locally extinct

but that would fail to achieve global eradication. These include

scenarios where the expected global prevalence approaches 0, but

where the virus would persists through connected chains of

stochastic outbreaks (Figure 5B).

We also used our epidemic model to explore the passage of CIV

from an infection in one large shelter to other shelters through the

transfer of dogs (Figure 6A). The hotspot dynamics predicted by

our model show regularities in the way CIV spreads outward from

a single shelter. Large shelters are predicted to receive the infection

earlier, as well as maintaining it for longer, creating a wave in the

population size—time-of infection plane (Figure 6B). The proba-

bility that a single infection introduced to a susceptible shelter

would start an epidemic that persisted for at least 100 days

increases with population size (Figure 6C). For the median

population size of 43 dogs the probability was approximately 0.5.

Discussion

Since its emergence more than a decade ago, equine H3N8-

derived CIV has maintained a patchy distribution, occurring most

often in sporadic and short-lived outbreaks in US animal shelters

[21]. In contrast, strains of CIV’s recent ancestor (EIV H3N8)

have been commonly found in horses around much of the world

Figure 3. Seroprevalence, R0 and Re for CIV, estimated from host demographic data, seroprevalence data, and molecular data. (A)
Saturating relationship between seroprevalence and R0 in a stochastic SIR framework, parameterized from the shelter intake and output data. Red
line shows equilibrium seroprevalence predicted by the mean-field model. Points show point seroprevalence estimates from the stochastic
simulations, where 74 dogs are sampled at random in a shelter with an average dog population of 134, corresponding to [25]. (B) Deviations of point
seroprevalence estimates from the long-term average (bars) compared to a normal distribution (line). (C) Posterior distribution of R0 based on an
observed seroprevalence of 0.42 in [25]. (D) and (E) Re for CIV, estimated by fitting a birth-death skyline phylodynamic model to HA1 gene sequences.
The black line shows the mean estimate while the grey shaded shows the highest posterior density (HPD) range, encompassing 95% of the credible
set of sampled values.
doi:10.1371/journal.ppat.1004455.g003
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since at least 1963. EIV thus transmits efficiently among horses,

sometimes despite vaccination programs [33,40]. Our study

investigates heterogeneity in CIV transmission and prevalence to

better understand the processes that determine how zoonotic

pathogens spread following a host range shift, and how these

processes affect the performance of control and eradication

strategies.

Stuttering chains of infection in recently emerged zoonoses are

caused by two distinct mechanisms that may operate in tandem.

The first is poor adaptation of the pathogen to its new host species,

causing lower within-host replication rates that may reduce

pathogen shedding and lead to inefficient transmission [11].

Transmission is inefficient because many potentially infectious

contacts between infected and susceptible individuals fail to spread

the infection. The second mechanism that generates stuttering

chains is variation in contact rates among different subsets of the

new host population, which can increase the probability of

stochastic fadeouts [13]. In this case the fadeouts are not caused by

inefficient transmission but by exhausting the local supply of

susceptible hosts.

Strikingly, host contact heterogeneity has received less attention

as a potential driver of stuttering chains despite its fundamental

role in disease dynamics. We found that contact heteroge-

neity plays a critical role in the patchy distribution of CIV.

Demographic data indicate that most shelters are too small, and

import susceptible individuals too slowly, to protect CIV from

Figure 4. Demographics, persistence, spread rate and possible eradication of CIV. (A) Dog population sizes in animal shelters and within-
shelter spread rates at which CIV can persist for at least 100 days according to present intake and output rates. The surface shows a smoothed
(kriged) version of the outcome (persistence for at least 100 days) of 1000 simulations conducted at uniform random points within the plane
described by the figure. Darker shades correspond to higher probabilities of persistence. Red symbols show features of the distribution for dog
population sizes (estimated from the demographics data) and the posterior distribution of R0 in large shelters (estimated from seroprevalence data by
MCMC; see Figures 2 and 3), including the median (hollow circle), mean (filled circle), 2.5th percentile (minus sign) and 97.5th percentile (plus sign).
(B) Results of an intervention that reduces the arrival rate of susceptible individuals at a shelter to 1/,R0. its current value, where ,R0. is the mean
posterior distribution of R0 for CIV estimated from all available data. A kernel density estimate for the distribution of shelter sizes in the demographic
data is shown below (A) and (B) to illustrate the scarcity of shelters large enough to support CIV in an endemic state.
doi:10.1371/journal.ppat.1004455.g004
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local stochastic extinction at its current reproductive rate. At the

same time, the influence of contact heterogeneity on the spread of

CIV would diminish if transmissibility were higher and the

epidemiology of CIV (and similar zoonoses) generally represents

an interaction between contact heterogeneity and transmission

efficiency.

More evidence of contact heterogeneity appears at the inter-

shelter scale. Observed transfer rates suggest that the majority of

intakes and outputs are not associated with other shelters, so that

shelter-to-shelter transfer has not created an effectively larger

metapopulation of multiple shelters. While there are many millions

of susceptible household dogs in the USA (around 80 million,

about 25% the size of the human population), it is likely that they

do not exhibit infectious contact patterns sufficient to maintain the

virus in continuous transmission (see below). Hence, this work

shows that apparent stuttering chains of transmission are not

always driven by poor adaptation of an emerging pathogen to its

new host. Rather, in the case of CIV, demographic variability in

contact rates is alone sufficient to explain the fadeout in the disease

in most situations.

The basic reproductive number for CIV is intriguingly close to

the minimum value required to persist in a shelter of average size

(Figure 4A). This suggests that transmission efficiency in CIV may

have evolved to precisely the point of persistence. Yet, this average

shelter size belies the high variance in shelter populations, with

many small facilities balanced by a few extraordinarily large ones

(roughly matching the distribution pattern of US city sizes;

Figure 2A). The process by which CIV currently persists is

therefore to thrive in a few large populations with high rates of

infected-susceptible contact (as mediated by a high arrival rate of

new susceptibles, rather than by increase density), but failing to

take hold in the general population (Figure 4A). By analogy with

conservation biology, large populations thus function as refugia for

the virus, protecting it from extinction and also limiting its

distribution. These are also exactly the conditions to facilitate

further evolution toward higher reproductive capacities, by

facilitating repeated outbreaks outside the refugia, followed by

selection for higher transmissibility [10,12,41].

Our mean estimate of R0 = 3.9 in the large animal shelters is

lower than that estimated for EIV during outbreaks [42], but close

to the upper bound for estimates of human influenza transmission

[43,44]. It is also considerably higher than that of pandemic H1N1

influenza in humans in 2009 (R0 = 1.4–1.6) which spread

worldwide within weeks of its first recognition in humans [45].

Variation in R0 among different viral strains and host species can

be difficult to interpret because of the many factors that can affect

transmission and removal rates in different settings. However,

these comparisons do indicate that CIV has the biological capacity

to spread relatively efficiently among dogs given the right

conditions in the host population.

Although most of the parameters in the epidemic model were

estimated from a large volume of host demographic data from

animal shelters, there are currently few estimates of seroprevalence

in shelters where CIV is endemic and as a result our estimate for

equilibrium seroprevalence relies on data from a single shelter

[25]. This introduces a risk of sampling bias because that

individual shelter could exhibit individual characteristics that

affect its equilibrium seroprevalence, and/or due to non-random

temporal fluctuations in seroprevalence. While the scarcity of

seroprevalence estimates adds uncertainty to R0 estimates, the

extant data would be difficult to explain with values of R0 lower

than our estimates. This is due to the rapid rate at which infected

individuals are replaced by new arriving susceptibles in the high

throughput shelters where CIV is enzootic. The low residence time

of dogs in large, high-throughput shelters thus indicates (consistent

with previous results [25]) that individuals in shelters where CIV is

enzootic must acquire the infection within a few days of arriving.

This places a lower bound on probable values for R0 by

constraining estimates of the generation time of the infection, at

least in the context of large shelters [44]. In other facilities that are

smaller or where CIV is not enzootic, long-term average

seroprevalence over time may be lower [26] due to stochastic

fadeouts of the disease.

Phylogenetic analyses independently supports several key

predictions of our analysis. First, these analyses confirm that

CIV remains confined to endemic hotspots, with transfers to other

regions causing outbreaks that are generally short-lived (and thus

failing to establish new lineages outside of endemic locations).

Moreover, the strong phylogeographic structure, with distinct viral

clusters in New York, Pennsylvania and Colorado for each gene

analyzed, is exactly what might be expected given our empirically-

parameterized epidemic model, which predicts geographic segregation.

Figure 5. Predicted performance of a control program administered to dogs on arrival in US animal shelters. (A) A vaccination (or
other control measure) that removes individuals from the chain of transmission with 85% probability (k= 0.15) within 24 h (a= 1 day) is predicted to
eradicate CIV from shelters within six months. The simulations used 100 shelters with dog population size, intake rate, and outtake rate jointly
sampled with replacement from the shelter demographics data, and R0 = 3.9. White lines show medians and shaded areas enclose the 5th to the 95th

percentiles of the simulation data. (B) Decreasing control efficacy to 75% can still achieve eradication in isolated shelters (blue region, solid line),
however shelters that transfer dogs amongst themselves at the observed mean rate of t= 0.1 would preserve CIV in a few shelters despite the
vaccination program (red region, dashed line). (C) Further decreases in vaccine efficacy make eradication significantly less likely, particularly if shelters
are connected through the transfer of dogs.
doi:10.1371/journal.ppat.1004455.g005
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Each US state has only a few large cities that would have an animal

shelter capable of supporting CIV in the long term, and with

relatively infrequent transfers among cities.

Second, the mean and HPD interval for Re from the

phylogenetic analysis in 2004 (when CIV was first detected and

when infected greyhounds were being transported to many US

states for racing) roughly matches the distribution of R0 from the

stochastic SIR model and demographic data. The initial phase of

an epidemic is usually associated with exponential growth

(corresponding to Re = R0), and Re must always be less than or

equal to R0 by definition. This makes the phylogenetic estimate of

Re in 2004 a conservative independent assessment of R0.

The third concurrence between the demographic and phyloge-

netic analysis involves the current estimate of Re, = 1. While R0

Figure 6. A simulation of CIV invasion over multiple shelters, starting with an infection in a single large shelter. (A) Each vertex
represents an animal shelter with dog population size proportional to the area of the circle. Edges show transfer of infection from shelter to shelter
over time through the movement of infected dogs. Edge lengths are arbitrary. The data for this figure were produced by simulating the
metapopulation stochastic SIR model with 100 shelters for 100 days, starting with a single infection in the largest shelter. Population sizes were
sampled with replacement from the shelter data. R0 = 3.9. Transfer probability is set to the mean observed value of t= 0.1. (B) Large shelters tend to
receive the infection earlier (and more often) following an outbreak at another shelter. (C) Probability that CIV will persist for 100 days in a shelter of a
given size following the introduction of a single infected individual to an otherwise susceptible population. The plateau on the curve arises for
populations sufficiently large that early depletion of susceptibles is not an important factor in the probability of an outbreak: rather than population
size, this probability is determined by R0.
doi:10.1371/journal.ppat.1004455.g006
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in our analysis measures the reproductive potential of the disease

where it is enzootic, the phylodynamic estimates of Re reflects the

net spread rate of CIV across the US as a whole, including

multiple shelters and the companion dog population. As such,

Re, = 1 indicates that on balance CIV is currently failing to

persist where it is not already enzootic, which is consistent with

both epidemiological observations [21] and the predictions of the

demographic analysis which showed that most shelters are too

small to support CIV in an endemic state (see Figure 4).

Targeted strategies for control and eradication depend on

understanding the conditions under which an emerging enzootic

pathogen can maintain itself in a new host population. Our

simulations indicate that eradication may be possible, but will

require relatively efficient control, and that success may depend on

the rates at which dogs are transferred between animal shelters. For

control measures with ,75% efficiency, CIV may be eradicated

from most shelters but still persist overall through connected chains

of outbreaks, with large shelters serving as focal points for staging

new infections elsewhere. This suggests that control programs for

CIV will be most successful if implemented across multiple shelters

and that participating shelters should maintain control measures

even after the virus has been eliminated locally.

Uncertainties in our analysis would be reduced by more

information on CIV prevalence and additional CIV sequence

data. A key area of uncertainty is transmission rates between

companion dogs within and among households whose contact

patterns would differ significantly from those of dogs in animal

shelters. Working from first principles, if a proportion p of contacts

between infectious and susceptible dogs result in the infection

being transmitted, then the probability that an infected individual

in the companion population will first transmit the infection on

their kth contact with a susceptible dog is p(1-p)k21, which gives

an expected value for k of 1/p. Studies of CIV transmission in

comingling trials estimate p = 0.75 [23]. This suggests that for a

CIV lineage to avoid extinction in companion dogs, the average

infected dog must contact k = 1.33 susceptible individuals during

the time they are infected. Another approach that yields the same

result is to recognize that if a proportion p of contacts produce

secondary infections, then R0.1 requires k.1/p, again translating

to approximately two contacts per week. It is evident from

common experience that while some companion dogs are highly

sociable, others do not frequently interact with other dogs.

Therefore, some companion dogs probably achieve the minimum

contact rate required to sustain CIV, but others probably do not.

Many dogs with higher contact rates than this minimum would be

necessary for CIV to actively spread among companion dogs, and

to protect the virus from stochastic extinction in the general dog

population, at its current transmission efficiency.

Conversely, if CIV had emerged with much higher transmis-

sibility upon entry to the greyhound population, stuttering chains

of transmission would not have been observed. Thus, the capacity

for contact heterogeneity to control epidemic spread is facilitated

by lower transmissibility. Furthermore, while endemic hotspots

created by contact heterogeneity can theoretically increase the

chances of evolving higher transmission efficiency, it is evident that

not all cross-species transmission events will involve small stepwise

gains in transmissibility in the new host. Indeed, a variety of

adaptive models, involving differing numbers and fitness of

mutations, can be put forward to explain the process of emergence

[46].

Despite these caveats, and limitations in the available data, our

analyses provide a coherent view of the ecological and evolution-

ary dynamics of CIV. After approximately 15 years of continuous

circulation among dogs in the US, CIV can be maintained only in

relatively dense host populations with high inputs of susceptible

individuals (essentially viral ‘‘chemostats’’), despite a relatively high

reproductive potential in that context. These hotspots are weakly

connected by migration, leading to geographic signatures in the

CIV phylogenies. Most dog populations are too small or diffuse to

independently support CIV at its current level of transmissibility,

explaining its current modest reproductive rate (Re, = 1), and

consistent with the epidemiology of CIV, which is characterized

primarily by sporadic short-lived outbreaks outside of enzootic

centers [21]. The demographic gradient between high-throughput

populations where CIV is enzootic, and smaller or more diffuse

populations where sporadic outbreaks can occur, creates hotspot

dynamics that can facilitate pathogen evolution toward higher

transmissibility [12,41]. Our results therefore demonstrate one

way that urbanization can increase the risk posed by emerging

infectious pathogens [2,47].

Although humans exposed to CIV appear not to be commonly

infected (as shown by serological testing), the true risk of future

human infection by either EIV or CIV is unknown as we do not

understand the host barriers that restrict human infection, or the

genotypic changes in the viruses that might overcome those

barriers [19]. Our analysis can therefor inform a strategy for

preemptive eradication of an influenza A virus that is well adapted

to mammals, since if CIV did gain high transmissibility among

companion dogs then much of the human population would be

directly exposed to the virus.

Methods

Epidemiological Model
Our analysis is based on an SIR framework that models changes

over time in the number of dogs in a shelter who are susceptible

(S), infected (I), or removed (recovered and thus immune; R). In

what follows, we describe the model for a single shelter: below we

expand the model to incorporate the dynamics of an control

program that reduces the force of infection, and to consider

control in multiple shelters linked through the transfer of dogs.

We assume dogs arrive at a shelter of a given size at a rate of m
dogs per day. Dogs leave at a per-capita rate of d per dog per day,

regardless of their state, so the mean residence time in a shelter is

1/d days. The number of dogs in a shelter, N = S+I+R, is equal to

m/d at equilibrium. Arrival and departure rates are estimated

empirically using individual-level records from 13 animal shelters

of varying size across the US (see Supporting Information, Data

S1). The records comprise a total of 124,519 dogs, recording the

date each individual arrived and left the shelter. In 8 of the 13

shelters, the data included whether or not the departure of the dog

represented a transfer to another shelter. Arrival rate, m, for a

shelter was estimated as the median number of dogs arriving in

that shelter per day. Departure rate, d, for a shelter was estimated

as the inverse of the median length of stay of dogs in that shelter.

When estimating arrival and departure rates we excluded dogs

that were admitted to the shelter in response to a euthanasia

request, as these dogs had systematically shorter residence times.

We also excluded dogs whose length of stay was greater than 40

days, as these represented rare atypical cases (see Figure 2C,D).

We assume that dogs in a shelter have a constant rate of contact

per day with other dogs where the contact would be capable of

spreading infection if one of the dogs were infected. An alternate

hypothesis is that contact rate increases with population size,

potentially leading to hotspot dynamics in large shelters in the

absence of demographic stochasticity. Our assumption of constant

contact rates is thus conservative with respect to the hypothesis

that demographic structure drives hotspot dynamics in CIV.
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Assuming that contact between any pair of dogs in the shelter is

equally likely, the force of infection is given by l= bP, where b is

the contact rate and P = I/N is the current prevalence of CIV in

the shelter [48]. The rate of new infections is given by lS, and

susceptible dogs contract the disease an average of 1/l days after

entering the shelter. In this framework, the basic reproductive

number of the disease is R0 = b/(c+d), and the disease only persists

in the long run if R0.1, in which case equilibrium prevalence is

given by

P~
d

czd
1{

1

R0

� �
ð1Þ

which is bounded above by d/(c+d) as R0 becomes large (see

Supporting Information, Text S1, Section 1.6).

The infected class in our model represents the number of dogs

with non-zero viral loads, rather than those exhibiting clinical

symptoms. Thus, we avoid including latent or asymptomatic

classes in our model. We set c= 1/7 because viral shedding

continues for approximately seven days after inoculation [16].

Seroconversion for dogs infected with CIV also happens at

approximately 7 days [16]. Equilibrium seroprevalence is then

given by R/N (see Supporting Information, Text S1, Section 1.7).

Variation among individuals in time of infection, recovery,

arrival, and departure causes variations in disease prevalence

around the predicted long-term average. These excursions from

mean prevalence carry with them the risk of visiting zero

prevalence, leading to stochastic extinction of the disease. This

demographic stochasticity becomes increasingly pronounced in

smaller populations. However, the critical population size below

which disease dynamics begin to significantly diverge from the

long-term average through stochastic fadeouts depends upon R0,

and upon the turnover rate in the population. We parameterize

the stochastic SIR model with the demographic data to test the

impact of demographic stochasticity on the spread and mainte-

nance of CIV in animal shelters. We implement the model in

continuous time at the level of individual dogs using the Gillespie

algorithm [37].

We estimated a posterior distribution for R0 given seropreva-

lence data and demographic data by using a Markov Chain Monte

Carlo (MCMC) method, as follows. From the stochastic SIR

model we simulated seroprevalence samples by observing the

seropositivity of n randomly selected dogs from the population at a

given time. Seroprevalence thus observed has the property of

being normally-distributed about the long-term equilibrium value

given by the mean-field model in our simulations (Figure 3B). We

then seek the posterior distribution of an unknown equilibrium

seroprevalence at an actual shelter, given a real point seroprev-

alence estimate there. We estimate this distribution by sampling

from the Gaussian distribution of deviations between point

seroprevalence estimates and equilibrium seropreovalence, using

the Metropolis-Hastings algorithm [49]. We assessed convergence

by visually examining within- and among- chain mixing.

Convergence was determined to have occurred when the long-

term variance in sampler state among chains was the same as the

variance within chains. Convergence under this definition was

easily achieved using 10 chains run for 105 steps each, with a

burnin of 10%, and keeping every 100th step. From the posterior

distribution of equilibrium seroprevalence, we then map to a

posterior distribution for R0 by inverting Equation 1.

Control and Eradication Strategies
We represent control strategies by a vaccination program that

reduces the force of infection (as described below), but the results

apply to any control measure that provides a similar reduction in

risk of infection and in infectiousness. In what follows we discuss

control in the context of a LAIV administered to dogs upon arrival

at the shelter.

The model with vaccination dynamics includes two more

compartments, counting the number of dogs in each shelter who

are vaccinated (V), and the number of dogs who are infected

despite vaccination (W). Vaccination reduces a dog’s susceptibility

to infection by decreasing the probability that a virus population

initially transferred through infectious contact will enter a phase of

exponential growth, prerequisite to significant viral shedding and

clinical symptoms [50].

By reducing viral load and viral shedding, vaccination reduces

the risk of infection in vaccinated dogs and reduces the

infectiousness of a dog who becomes infected despite vaccination.

Vaccinated dogs thus experience a reduced force of infection el,

0#e#1, and, if they become infected, contribute to the force of

infection at a reduced rate 0#v#1, leading to an overall force of

infection of l= b(I+vW)/N in population which has W vaccinated

individuals who have nonetheless become infected.

Dogs transition from S to V at a rate of a per dog per day.

Because a live vaccine is assumed to be administered to dogs

immediately upon arrival, 1/a measures the average time after

entry/vaccination that a dog experiences the vaccine-associated

decrease in risk of infection from other dogs, and decreased

infectiousness if they do become infected. Vaccination changes

mean dynamics by reducing R0 by a factor of 1-K, where K is

effective vaccination coverage. K is given by (1-k)V/N, where

k= ev expresses the failure rate of the vaccine, ranging from 0 for

perfect vaccine, to 1 for an entirely ineffective one (see

Supplementary material, section 1.4). We use a step function for

k as a function of a, where k goes from 1 to its post-vaccine value

at 1/a days.

We also model the effects of a generic control strategy

equivalent to inoculating some dogs with a perfect vaccine, or to

quarantine that partially or completely stops the flow of susceptible

dogs into the shelter. We do this by replacing susceptible dogs with

removed ones in the intake stream. Reducing the proportion of

susceptible dogs in the intake stream to 0,h,1, while 1- h are

already removed, has the same effect as reducing R0 to hR0.

Metapopulation Dynamics
The metapopulation model expands the stochastic SIR model

for a single shelter to describe multiple shelters whose dynamics

are linked by the transfer of dogs. As above, the model is

implemented at the level individual dogs using the Gillespie

algorithm. Thus at each point in continuous time, each individual

in the model has a disease state (S,I,R,V, or W) and a location in a

given shelter. The metapopulation is composed of shelters that

vary in dog population size, intake rate and output rate by

sampling with replacement from the demographic data. Transfer

probabilities are also based on the demographic data (see

Supporting Information, Text S1, Section 2). Although the CIV

phylogenies show geographic localization (see Figure 1), the

metapopulation model is spatially implicit, consistent with level

of detail in the demographic data we used. However, even without

including spatial structure in transfer patterns, the metapopulation

model reproduces hotspot dynamics, based on transfer hierarchies

driven by differences in shelter size (see Figure 6).

Phylogenetic Analysis, Estimates of Re, and
Phylogeography

We compiled all available CIV HA1, NP and M gene segment

sequences from GenBank and the Influenza Research Database
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(www.fludb.org) and by sequencing samples provided by the

Animal Health Diagnostic Center (AHDC) at Cornell University.

For the sequencing of the virus samples obtained from AHDC we

extracted viral RNA using Qiagen viral RNA mini kit and

synthesized cDNA using Avian Myeloblastosis Virus (AMV)

reverse transcriptase and influenza universal primer Uni12. Three

gene segments, HA1, NP and M, were then amplified by PCR

with gene specific primers (primer sequences are available upon

request) for all samples. The PCR products were purified using

EZNA Cycle-Pure Kit and sequenced by the Sanger method. All

sequences derived here have been submitted to GenBank and

assigned accession numbers KM359803-KM359864.

All sequences were aligned by MUSCLE v3.8.31 [51] using

default parameters, followed by manual adjustment. Phylogenetic

trees of each gene were then estimated using the maximum

likelihood (ML) available in PhyML 3.0 [52] and assuming the

general time-reversible reversible (GTR) model of nucleotide

substitution and a gamma distribution of among-site rate variation

with 4 rate categories (i.e. the GTR+I+C4 model of nucleotide

substitution) with SPR branch-swapping. The robustness of the

phylogeny was estimated using 1,000 bootstrap replicates. Because

of their greater availability, the analyses of evolutionary dynamics

and phylogeography were only performed on the HA1 gene (see

below).

To estimate R from the CIV sequence data we used a total of 94

HA1 sequences (alignment length = 1032 nt) sampled from various

locations (states) in the US (Colorado, New York, Pennsylvania,

Florida, California, Kentucky, Wyoming, Philadelphia, South

Carolina, Virginia, Vermont, Connecticut, Texas, and Iowa)

between 2003 and 2013. This data set included 40 sequences

sampled from dog shelters in New York between 2005 and 2012,

which were analyzed separately using the same protocols.

First, we estimated the mean (and credible intervals) of R in

both data sets using the epidemiological birth-death method [53]

available in BEAST v1.7.5 [54]. This analysis used the simpler

Hasegawa-Kishino-Yano (HKY) model of nucleotide substitution

and a gamma distribution of among-site rate variation (HKY+C4).

To account for temporal rate variation in the data an uncorrelated

lognormal relaxed molecular clock model was employed. Using

the Bayesian Markov Chain Monte Carlo (MCMC) framework

available in BEAST, 100 million steps were run, sampling every

10,000 and removing 10% as a burn-in. Second, temporal changes

in R were estimated using the more complex serial-sampled birth-

death (SSBD) model [15], available in BEAST v2.0 [55], again

using the HKY+C4 but this time (to ensure statistical convergence)

employing a strict molecular clock with a uniform distributed clock

rate of 261023 (161023–361023) nucleotide substitutions per

site, as this was found to be best-fit to the data in epidemiological

birth-death method. The MCMC was again run for 100 million

steps, sampling in the same way as described above. Two

independent runs allowed different Re values to be inferred from

up to Re = 25.

To determine whether CIV was more clustered on the

phylogenetic tree by US state of sampling than expected by

chance alone, we employed the Association Index (AI), Parsimony

Score (PS) and Maximum Clade size (MC) phylogeny-trait

association statistics incorporated within the Bayesian Tip-

association Significance testing (BaTS) program [36]. Traits were

defined as the US state of sampling. Phylogenetic uncertainty in

the data was incorporated by basing estimates on the posterior

distribution of trees obtained from the BEAST analysis (epidemi-

ological birth-death method) described above. In all cases, 1000

random permutations of sampling locations were undertaken to

create a null distribution for each statistic.

Supporting Information

Data S1 State-of-origin of the animal shelters.

(XLSX)

Text S1 Details of the epidemic model.

(PDF)
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