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Abstract

Purpose—To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct 

undersampled dynamic MRI as a superposition of background and dynamic components in 

various problems of clinical interest.

Theory and Methods—The L+S model is natural to represent dynamic MRI data. Incoherence 

between k−t space (acquisition) and the singular vectors of L and the sparse domain of S is 

required to reconstruct undersampled data. Incoherence between L and S is required for robust 

separation of background and dynamic components. Multicoil L+S reconstruction is formulated 

using a convex optimization approach, where the nuclear-norm is used to enforce low-rank in L 

and the l1-norm to enforce sparsity in S. Feasibility of the L+S reconstruction was tested in several 

dynamic MRI experiments with true acceleration including cardiac perfusion, cardiac cine, time-

resolved angiography, abdominal and breast perfusion using Cartesian and radial sampling.

Results—The L+S model increased compressibility of dynamic MRI data and thus enabled high 

acceleration factors. The inherent background separation improved background suppression 

performance compared to conventional data subtraction, which is sensitive to motion.

Conclusion—The high acceleration and background separation enabled by L+S promises to 

enhance spatial and temporal resolution and to enable background suppression without the need of 

subtraction or modeling.
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Introduction

The application of compressed sensing (CS) to increase imaging speed and efficiency in 

MRI demonstrated great potential to overcome some of the major limitations in terms of 

spatial and temporal resolution, volumetric coverage and sensitivity to motion. CS exploits 
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the fact that an image is sparse in some appropriate basis to reconstruct undersampled data 

without loss of information (1–3). Successful application of CS requires image sparsity and 

incoherence between the acquisition space and representation space. MRI presents favorable 

conditions for the application of CS, since (a) medical images are naturally compressible by 

using appropriate sparsifying transforms, such as wavelets, finite differences, learned 

dictionaries (4) and many others, and (b) MRI data are acquired in the spatial frequency 

domain (k-space) rather than in the image domain, which facilitates the generation of 

incoherent aliasing artifacts via random undersampling of Cartesian k-space or the use of 

non-Cartesian k-space trajectories. Image reconstruction is performed by enforcing sparsity 

in the solution, subject to data consistency constraints. A key advantage for MRI is that CS 

can be combined with parallel imaging to further increase imaging speed by exploiting joint 

sparsity in the multicoil image ensemble rather than in each coil separately (5–8). Dynamic 

MRI is particularly well suited for the application of CS, due to extensive spatiotemporal 

correlations that result in sparser representations than would be obtained by exploiting 

spatial correlations alone.

Low-rank matrix completion extends the idea of compressed sensing to matrices, enabling 

recovery of missing or corrupted entries of a matrix under low-rank and incoherence 

conditions (9). In a similar fashion to sparse signals/images, which only have few large 

coefficients, low-rank matrices, which only have a few large singular values, depend upon a 

smaller number of degrees of freedom and undersampling becomes possible. Low-rank 

matrix completion from what seems to be incomplete information is performed by 

minimizing the nuclear-norm of the matrix (sum of singular values), which is the analog of 

the l1-norm for signal vectors (sum of absolute values) (10). Low-rank matrix completion 

has been applied to dynamic MRI by considering each temporal frame as a column of a 

space-time matrix, where the spatiotemporal correlations produce a low-rank matrix (11,12). 

Local k-space correlations in a multicoil data set have been exploited to perform 

calibrationless parallel imaging reconstruction via low-rank matrix completion (13).

The combination of compressed sensing and low-rank matrix completion represents an 

attractive proposition for further increases in imaging speed. In dynamic MRI, previous 

work on this combination proposed finding a solution that is both low-rank and sparse 

(14,15). A different model suggested decomposing a data matrix as a superposition of a low-

rank component (L) and a sparse component (S) (16,17). Whereas topics in graphical 

modeling motivate the L+S decomposition in (17), the aim in (16) is to use the L+S 

decomposition to perform robust principal component analysis (RPCA); that is to say, to 

recover the principal components of a data matrix with missing or corrupted entries. RPCA 

improves the performance of classical PCA in the presence of sparse outliers, which are 

captured in the sparse component S. RPCA, or equivalently the L+S decomposition, has 

been successfully applied to computer vision, where it enables separation of the background 

from the foreground in a video sequence (16), to image alignment (18), and to image 

reconstruction in 4DCT with reduced numbers of projections (19).

The L+S decomposition is natural for dynamic imaging, where L can model the temporally 

correlated background and S can model the dynamic information that lies on top of the 

background. Early work on the application of L+S to dynamic MRI has been reported by 
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Gao et al., initially for the reconstruction of retrospectively undersampled cardiac cine 

datasets (20) and more recently for the reconstruction of an accelerated series of diffusion-

weighted images (21). In parallel to Gao's latest work, we have developed a L+S 

reconstruction approach for accelerated dynamic contrast-enhanced imaging, which was 

tested on prospectively undersampled data sets (22,23).

Here we extend this preliminary work to present L+S reconstruction of various accelerated 

dynamic MRI datasets of clinical interest, and to introduce novel applications, such as 

separation of contrast enhancement from background and automated background 

suppression without the need of subtraction or modeling. We also demonstrate the superior 

compressibility of the L+S model compared to using a sparse or low-rank model only, which 

is the empirical basis that supports improved performance of the L+S method. 

Reconstruction of highly-accelerated dynamic MRI data corresponding to cardiac perfusion, 

cardiac cine, time-resolved peripheral angiography, abdominal and breast perfusion using 

Cartesian and golden-angle radial sampling are presented to show feasibility and general 

applicability of the L+S method. This work extends our conference publications (22,23) to 

present compressibility analysis for the L+S model, convergence analysis of the 

reconstruction algorithm, application to patient studies and detailed discussion about the 

pros and cons of the proposed method1. Matlab code that reproduces some of the examples 

presented in this work is available at cai2r.net/resources/software/ls-reconstruction-matlab-

code

Theory

L+S matrix decomposition

The L+S approach aims to decompose a matrix M as a superposition of a low-rank matrix L 

(few non-zero singular values) and a sparse matrix S (few non-zero entries). The 

decomposition is unique and the problem is well posed if the low-rank component is not 

sparse, and, vice versa, if the sparse component does not have low rank (16,17). We refer to 

this condition as incoherence between L and S. For example, these conditions are guaranteed 

if the singular vectors of L are not sparse and if the nonvanishing entries of S occur at 

random locations (16).

The L+S decomposition is performed by solving the following convex optimization 

problem:

(1)

where ‖L‖* is the nuclear norm or sum of singular values of the matrix L, ‖S‖1 is the l1-norm 

or sum of absolute values of the entries of S and λ is a tuning parameter that balances the 

contribution of the l1-norm term relative to the nuclear norm term.

1The SPIE conference paper (23) was submitted while the present paper was being reviewed.
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L+S representation of dynamic MRI

In analogy to video sequences and following the work of Gao et al. (20), dynamic MRI can 

be inherently represented as a superposition of a background component, which is slowly 

changing over time, and a dynamic component, which is rapidly changing over time. The 

background component corresponds to the highly correlated information among frames. The 

dynamic component captures the innovation introduced in each frame, which can be 

assumed to be sparse or transform-sparse since substantial differences between consecutive 

frames are usually limited to comparatively small numbers of voxels. Our hypothesis is that 

the L+S decomposition can represent dynamic MRI data more efficiently than a low-rank or 

sparse model alone, or than a model in which both constraints are enforced simultaneously.

The time-series of images in a dynamic MRI data set is converted to a matrix M, where each 

column is a temporal frame, in order to apply the L+S decomposition approach. Figure 1 

shows the L+S decomposition of cardiac cine and perfusion data sets, where L captures the 

correlated background between frames and S captures the dynamic information (heart 

motion for cine and contrast-enhancement for perfusion). Note that the L component is not 

constant over time, but is rather slowly changing among frames, which differs from just 

taking a temporal average. In fact, for the case of cardiac cine, the L component includes 

periodic motion in the background, since it is highly correlated among frames.

Another important feature is that the S component has sparser representation than the 

original matrix M, since the background has been suppressed. This gain in sparsity is 

already obvious in the original y−t space, but it is more pronounced in an appropriate 

transform domain where dynamic MRI is usually sparse, such as the temporal frequency 

domain (y−f) that results from applying a Fourier transform along the columns of S 

(rightmost column of Figure 1). This increase in sparsity given by the background separation 

will in principle enable higher acceleration factors, since fewer coefficients need to be 

recovered, if the load to represent the low-rank component is lower. In order to test this 

hypothesis, the compressibility of dynamic MRI data using L, S and L+S models were 

compared quantitatively on the cardiac cine and perfusion data sets mentioned above. Rate-

distortion curves were computed using the root mean square error (RMSE) as distortion 

metric (Figure 2). Data compression using the low-rank (L) model was performed by 

truncating the SVD representation of the dynamic image series. Data compression using the 

sparse (S) model was performed by discarding low-value coefficients in the transform 

domain according to the target compression ratio, i.e. only the top n/C coefficients were 

used to represent the image, where n is the total number of coefficients and C is the target 

compression ratio. Data compression using the L+S model was performed by assuming a 

fixed low-rank approximation, e.g. rank(L) = 1, 2 or 3, which was subtracted from the 

original matrix M to get S. S was then transformed to the sparse domain and coefficients 

were discarded according to the target compression rate and the number of coefficients to 

represent the L component, e.g. the top n/C-nL coefficients were used to represent S, with nL 

coefficients used to represent L. nL is given by rank(L)×(ns + nt − rank(L)), where ns is the 

number of spatial points and nt is the number of temporal points. The rate-distortion curves 

in Figure 2 clearly show the advantages of the L+S model in representing dynamic MRI 

images with fewer degrees of freedom, which will lead to higher undersampling factors.
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Incoherence requirements

L+S reconstruction of undersampled dynamic MRI data involves three different types of 

incoherence:

• Incoherence between the acquisition space (k−t) and the representation space of the 

low-rank component (L)

• Incoherence between the acquisition space (k−t) and the representation space of the 

sparse component (S)

• Incoherence between L and S spaces, as defined earlier.

The first two types of incoherence are required to remove aliasing artifacts and the last one 

is required for separation of background and dynamic components. The standard k−t 

undersampling scheme used for compressed sensing dynamic MRI, which consists of 

different variable-density k-space undersampling patterns selected in a random fashion for 

each time point, can be used to meet the requirement for the first two types of incoherence. 

Note that in this sampling scheme, low spatial frequencies are usually fully-sampled and the 

undersampling factor increases as we move away from the center of k-space. First, high 

incoherence between k−t space and L is achieved since the column space of L cannot be 

approximated by a randomly selected subset of high spatial frequency Fourier modes and the 

row-space of L cannot be approximated by a randomly selected subset of temporal delta 

functions. Second, if a temporal Fourier transform is used, incoherence between k−t space 

and x−f space is maximal, due to their Fourier relationship. This analysis also holds for non-

Cartesian k-space trajectories, where undersampling only affects the high spatial frequencies 

even if a regular undersampling scheme is used. The third type of incoherence is 

independent of the sampling pattern and depend only on the sparsifying transform used in 

the reconstruction.

L+S reconstruction of undersampled dynamic MRI

The L+S decomposition given in Eq. (1) was modified to reconstruct undersampled dynamic 

MRI as follows:

(2)

where T is a sparsifying transform for S, E is the encoding or acquisition operator and d is 

the undersampled k−t data. L and S are defined as space-time matrices, where each column 

is a temporal frame, and d is defined as a stretched-out single column vector. We assume 

that the dynamic component S has a sparse representation in some known basis T (e.g., 

temporal frequency domain), hence the idea of minimizing ‖TS‖1 and not ‖S‖1 itself. Note 

that E is a general linear operator that maps a matrix to a vector. For a single-coil 

acquisition, the encoding operator E performs a frame-by-frame undersampled spatial 

Fourier transform. For acquisition with multiple receiver coils, E is given by the frame-by-

frame multicoil encoding operator, which performs a multiplication by coil sensitivities 

followed by an undersampled Fourier transform, as described in the iterative SENSE 

algorithm (24). In this work, we focus on the multicoil reconstruction case, which enforces 

joint multicoil low-rank and sparsity and thus improves the performance as was 
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demonstrated previously for the combination of compressed sensing and parallel imaging 

(7).

A version of Eq. (2) using regularization rather than strict constraints can be formulated as 

follows:

(3)

where the parameters λL and λS trade off data consistency versus the complexity of the 

solution given by the sum of the nuclear and l1 norms. In this work, we solve the 

optimization problem in Eq. (3) using iterative soft-thresholding of the singular values of L 

and of the entries of TS. We define the soft-thresholding or shrinkage operator as 

, in which x is a complex number and the threshold λ is real 

valued. We extend this to matrices by applying the shrinkage operation to each entry. Next, 

we define the singular value thresholding (SVT) by SVTλ (M) = UΛλ (Σ)VH, where M = 

UΣVH is any singular value decomposition of M. Table 1 and Figure 3 summarize the 

proposed L+S reconstruction algorithm, where at the k-th iteration the SVT operator is 

applied to Mk−1−Sk−1, then the shrinkage operator is applied to Mk−1−Lk−1 and the new Mk 

is obtained by enforcing data consistency, where the aliasing artifacts corresponding to the 

residual in k-space E* (E(Lk + Sk − d)) are subtracted from Lk+Sk. Here E* refers to the 

adjoint operator of E, which maps a vector to a matrix. The algorithm iterates until the 

relative change in the solution is less than 10−5, namely, until ‖Lk + Sk − (Lk−1 + Sk−1)‖2 ≤ 

10−5 ‖Lk−1 + Sk−1‖2.

This algorithm represents a combination of singular value thresholding used for matrix 

completion (10) and iterative soft-thresholding used for sparse reconstruction (25). Its 

convergence properties can be analyzed by considering the algorithm as a particular instance 

of the proximal gradient method for solving a general convex problem of the form:

(4)

Here, g is convex and smooth (the quadratic term in Eq. (3)), h is convex but not necessarily 

smooth (the sum of the nuclear and l1 norms in Eq. (3)). The proximal gradient method takes 

the form:

(5)

where tk is a sequence of step sizes and proxhis the proximity function for h:

(6)

When h(x) represents the nuclear-norm, the proximity function may be shown to be 

equivalent to soft-thresholding of the singular values, and when h(x) represents the l1-norm, 

the proximity function is given by soft-thresholding of the coefficients. Using a constant 

step size t, the proximal gradient method for Eq. (3) becomes:

Otazo et al. Page 6

Magn Reson Med. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(7)

This is equivalent to the iterations given in Table 1 with the proviso that we set t=1. Note 

that the cost function is  and not f(L+S), so the gradient of the cost function is the 

stack of the gradient with respect to L and the gradient with respect to S. Given the convex 

and smooth function g as follows:

(8)

general theory (26,27) asserts that the iterates in Eq. (7) will eventually minimize the value 

of the objective in Eq. (3) if:

(9)

where ‖E‖ is the spectral norm of E or, in other words, the largest singular value of E (and 

‖E‖2 is therefore the largest singular value of E* E). When t=1, this reduces to ‖E‖2 < 1. In 

our setup, the linear operator E is given by the multiplication of Fourier encoding elements 

and coil sensitivities. Normalizing the encoding operator E by dividing the Fourier encoding 

elements by , where n is the number of pixels in the image, and the coil sensitivities by 

their maximum value, gives ‖E‖2 = 1 for the fully-sampled case and ‖E‖2 < 1 for the 

undersampled case.

Methods

The feasibility of the proposed L+S reconstruction was first tested using retrospective 

undersampling of fully-sampled data, which enables comparison reconstruction results with 

the fully-sampled reference. We compared the performance of the L+S reconstruction 

against compressed sensing using a temporal sparsifying transform (CS) and against joint 

low-rank and sparsity constraints (L&S2). The latter approach was implemented for 

comparison purposes only using the following optimization problem:

(9)

In a second step, the L+S reconstruction method was validated on prospectively accelerated 

acquisitions with k−t undersampling patterns for Cartesian and radial MRI.

2The L&S approach promoting a solution that is both low-rank and sparse should not be confused with the proposed L+S approach 
which seeks a superposition of distinct low-rank and sparse components.
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Image reconstruction

Image reconstruction was performed in Matlab (The MathWorks, Natick, MA). L+S 

reconstruction was implemented using the algorithm described in Table 1 and Figure 3. The 

multicoil encoding operator E was implemented using FFT for the Cartesian case and 

NUFFT (28) for the non-Cartesian case following the method used in the iterative SENSE 

algorithm (24). Coil sensitivity maps were computed from the temporal average of the 

accelerated data using the adaptive coil combination technique (29). The singular value 

thresholding step in Table 1 requires computing the singular value decomposition of a 

matrix of size ns × nt, where ns is the number of pixels in each temporal frame and nt is the 

number of time points. Since nt is relatively small, this is not prohibitive and can be 

performed very rapidly.

The regularization parameters λL and λS were selected by comparing reconstruction 

performance for a range of values. For datasets with retrospective acceleration, 

reconstruction performance was evaluated using the root mean square error (RMSE) and for 

datasets with true acceleration, qualitative assessment in terms of residual aliasing artifacts 

and temporal fidelity was employed. The datasets were normalized by the maximum 

absolute value in the x-y-t domain in order to enable the utilization of the same 

regularization parameters for different acquisitions of similar characteristics.

For comparison purposes, standard CS reconstruction was implemented by enforcing 

sparsity directly on the full matrix M, which is equivalent to the k−t SPARSE-SENSE 

method (7). L&S reconstruction was implemented by simultaneously enforcing low-rank 

and sparsity constraints directly on the full matrix M. This approach enabled fair 

comparison, since the same optimization algorithm was used in all cases and only the 

manner in which the constraints are enforced was modified. Regularization parameters for 

CS and L&S were selected by comparing reconstruction performance for several parameter 

values. As for L+S parameter selection, CS and L&S reconstruction performance was 

compared using RMSE for experiments with retrospective acceleration and qualitative 

assessment of residual aliasing and temporal fidelity for experiments with true acceleration.

Simulated undersampling of fully-sampled Cartesian cardiac perfusion data

Data were acquired in a healthy adult volunteer with a modified TurboFLASH pulse 

sequence on a whole-body 3T scanner (Tim Trio, Siemens Healthcare, Erlangen, Germany) 

using a 12-element matrix coil array. A fully-sampled perfusion image acquisition was 

performed in a mid-ventricular short-axis location at mid diastole (trigger-delay=400ms) 

with an image matrix size of 128 × 128 and 40 temporal frames. Relevant imaging 

parameters include: FOV=320×320mm2, slice-thickness=8mm, spatial 

resolution=3.2×3.2mm2, and temporal resolution=307ms. Fully-sampled Cartesian data 

were retrospectively undersampled by a factor of 10 using a different variable-density 

random undersampling pattern along ky for each time point (ky−t undersampling) and 

reconstructed using CS, L&S and L+S methods with a temporal Fourier transform serving as 

sparsifying transform. Quantitative image quality assessment was performed using the 

metrics of RMSE and structural similarity index (SSIM) (30), with the fully-sampled 
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reconstruction used as a reference. RMSE values are reported as percentages after 

normalizing by the l2-norm of the fully-sampled reconstruction.

Simulated undersampling of fully-sampled Cartesian cardiac cine data

2D cardiac cine imaging was performed in a healthy adult volunteer using the same MR 

scanner as in the previous perfusion study. Fully-sampled data were acquired using a 

256×256 matrix size (FOV = 320×320 mm2) and 24 temporal frames and retrospectively 

undersampled by a factor of 8 using a ky−t variable-density random undersampling scheme. 

Image reconstruction was performed using multicoil CS, L&S and L+S methods with a 

temporal Fourier transform serving as sparsifying transform. Quantitative image quality 

assessment was performed using RMSE and SSIM metrics as described in the cardiac 

perfusion example.

Cardiac perfusion with prospective 8-fold acceleration on a patient

2D first-pass cardiac perfusion data with 8-fold ky−t acceleration was acquired on a patient 

with known coronary artery disease using the pulse sequence described in (7). Relevant 

imaging parameters were as follows: image matrix size = 192×192, temporal frames = 40, 

spatial resolution=1.67×1.67mm2 and temporal resolution = 60ms. Image reconstruction was 

performed using CS and L+S methods with a temporal Fourier transform using the same 

regularization parameters from the cardiac perfusion study with simulated acceleration. 

Signal intensity time courses were computed using manually drawn ROIs according to the 6-

sector model of the myocardial wall defined by the American Heart Association (AHA).

Accelerated time-resolved peripheral MR angiography

Contrast-enhanced time-resolved 3D MR angiography of the lower extremities was 

performed in a healthy adult volunteer using an accelerated TWIST (Time-resolved 

angiography WIth Stochastic Trajectories) pulse sequence (31) on a 1.5T scanner (Avanto, 

Siemens Healthcare, Erlangen, Germany) equipped with a 12-element peripheral coil array. 

TWIST samples the center of k-space at the Nyquist rate and undersamples the periphery 

using a pseudo-random pattern, which is suitable to obtain sufficient incoherence for the L

+S approach. Relevant imaging parameters were as follows: FOV = 500×375×115 mm3, 

acquisition matrix size = 512×230×42, number of frames = 10. An acceleration factor of 7.3 

was used to achieve a temporal resolution of 6.4 seconds for each 3D image set. Image 

reconstruction was performed using the L+S approach without a sparsifying transform, since 

angiograms are already sparse in the image domain. For comparison purposes, a CS 

reconstruction which employed data subtraction was performed. The reference for data 

subtraction was acquired before the dynamic acquisition with 2-fold parallel imaging 

acceleration. After reconstructing the reference in k-space using GRAPPA (32), complex 

data subtraction was performed in k-space and the resulting time-series was reconstructed 

using CS with no sparsifying transform.

Free-breathing accelerated abdominal DCE-MRI with golden-angle radial sampling

Contrast-enhanced abdominal MRI data were acquired on a healthy volunteer during free 

breathing using a 3D stack-of-stars (radial sampling for ky−kx and Cartesian sampling for kz) 
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FLASH pulse sequence with a golden-angle acquisition scheme (33) on a whole-body 3T 

scanner (MAGNETOM Verio, Siemens Healthcare, Erlangen, Germany) equipped with a 

12-element receiver coil array. Relevant imaging parameters include: FOV = 380×380mm2, 

number of points for each radial spoke = 384, slice thickness = 3mm. 600 spokes were 

continuously acquired for each of 30 slices during free-breathing, to cover the entire liver 

(total acquisition time was 77 seconds). Golden-angle radial sampling (34) is well-suited for 

compressed sensing due to the presence of significant spatial and temporal incoherence 

given by the different k-space trajectory used to acquire each spoke. A time-series of 

incoherently undersampled frames with uniform coverage of k-space can be formed by 

grouping a Fibonacci number of consecutive spokes (35). 8 consecutive spokes were 

employed to form each temporal frame, resulting in a temporal resolution of 0.94 sec, which 

corresponds to an acceleration rate of 48 when compared to the Cartesian case with the same 

image matrix size. The reconstructed 4D image matrix size was 384×384×30×75 with a 

spatial resolution of 1×1×3mm3. Image reconstruction was performed using CS and L+S 

methods with temporal finite differences serving as sparsifying transform.

Free-breathing accelerated breast DCE-MRI with golden-angle radial sampling

Free-breathing breast DCE-MRI was performed on a patient referred for MRI-guided biopsy 

scans on a whole-body 3T scanner (MAGNETOM TimTrio, Siemens AG, Erlangen, 

Germany) equipped with a 7-element breast coil array (InVivo Corporation, Gainesville, 

FL). The same pulse sequence as for the liver case was employed for data acquisition. 

Relevant imaging parameters include: FOV= 280×280mm2, number of points for each radial 

spoke = 256, slice thickness = 4mm. CS and L+S reconstructions were performed by 

grouping 21 consecutive spokes to form each temporal frame with temporal resolution = 2.6 

seconds/volume and the reconstructed 4D image matrix size was 256×256×35×108. When 

compared to the Cartesian case with the same matrix size, the acceleration factor was 12.2.

Results

Simulated undersampling of fully-sampled Cartesian cardiac perfusion data

Figure S1.a (supplementary material) shows the effect of the regularization parameters λL 

and λS on the L+S reconstruction. High values of λL, which would correspond to removing 

an essentially static background, and very low values of λL, which would correspond to 

including substantial dynamic information in the L component, both increase the RMSE and 

lead to reduced performance. λL= 0.01 and λS = 0.01 presented the lowest RMSE. L+S 

reconstruction presented lower residual aliasing artifacts than CS and better temporal fidelity 

than L&S (Figure 4 and Video 1). The L&S may in certain respects look cleaner than the L

+S images, but note that the left ventricle has a different contrast and the papillary muscles 

have a different shape than in the fully-sampled case (see arrows in Figure 4 - top row). The 

x−t plots show more temporal smoothing in the L&S reconstruction than in the L+S 

reconstruction (Figure 4 - bottom row). These qualitative findings are corroborated by the 

RMSE and SSIM values in Table S1 (supplementary material).
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Simulated undersampling of fully-sampled Cartesian cardiac cine data

As expected, the optimal regularization parameters for the L+S reconstruction of 

undersampled cardiac cine are different than the ones from cardiac perfusion, due to 

differences in dynamic information content (cardiac motion vs. contrast-enhancement) 

(Figure S1.b - supplementary material). λL= 0.0025 and λS = 0.00125 presented the lowest 

RMSE and temporal blurring artifacts. The L+S approach yields lower RMSE and higher 

SSIM than both CS and L&S (Table S1 - supplementary material). CS introduced temporal 

blurring artifacts, particularly at systolic phases where the heart is contracted and the 

myocardial wall is prone to signal leakage from other frames (Figure 5 and Video 2 show a 

bright ring in the myocardial wall for CS). Both, L&S and L+S, can significantly remove 

these artifacts, but L+S offers an improved estimation of the original cine image, as depicted 

by better preservation of fine structures in the x−t plots and reduced residual aliasing 

artifacts.

Cardiac perfusion with prospective 8-fold acceleration on a patient

L+S presented lower residual aliasing artifacts than CS, which resulted in lower fluctuations 

in the SI curves (Figure 6 and Video 3). Both CS and L+S SI curves clearly show perfusion 

defects in sectors 4 and 5, which is in agreement with the static images. However, stronger 

temporal fluctuations in the CS reconstruction can pose challenges for accurate 

quantification. The regularization parameter for CS reconstruction was selected to provide 

similar temporal fidelity as in the L+S reconstruction, at the expense of increasing residual 

aliasing artifacts. One can also increase the regularization parameter to reduce aliasing 

artifacts, but with the adverse effect of introducing temporal blurring. The L+S approach 

offers improved performance in reducing aliasing artifacts without degrading temporal 

fidelity. In addition to improving the reconstruction quality compared to standard CS, L+S 

improved the visualization of the perfusion defect in the S component, where the 

background has been suppressed and improved contrast is observed between the healthy 

portion of the myocardium and the lesion. This capability may be useful to identify lesions 

that are difficult to visualize in the original image.

Accelerated time-resolved peripheral MR angiography

The L+S approach automatically separates the non-enhanced background from the enhanced 

vessels without the need of subtraction or modeling. At the same time, the S component 

provides angiograms with improved image quality as compared with CS reconstruction with 

raw data subtraction (Figure 7 and Video 4). CS reconstruction results in incomplete 

background suppression, which might be due, in part, to inconsistencies between the time-

series of contrast-enhanced images and the reference used for subtraction.

Free-breathing accelerated abdominal DCE-MRI with golden-angle radial sampling

Figure 8 and Video 5 shows one representative slice of reconstructed 4D contrast-enhanced 

abdominal images corresponding to aorta, portal vein and liver enhancement phases. L+S 

presents improved reconstruction performance compared to CS as indicated by better 

depiction of small structures which appear fuzzy in the CS reconstruction. Moreover, the 

intrinsic background suppression improves the visualization of contrast enhancement in the 
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S component, which might be useful for detection of regions with low enhancement that are 

otherwise submerged in the background.

Free-breathing accelerated breast DCE-MRI with golden-angle radial sampling

L+S reconstruction of dynamic contrast-enhanced breast data improves the visualization of 

fine structures within the breast lesion as compared to CS – a capability which might be 

useful for diagnosis (Figure 9). Small vessels outside the lesion are also better reconstructed 

by L+S. The gain in performance for this breast study was lower compared to the previous 

abdominal study, in part due to the absence of a marked background in dynamic contrast-

enhanced breast MRI (since healthy breast tissue has very low intensity values).

Discussion

Comparison to other methods that exploit low-rank and sparsity

The ideas introduced in the k−t SLR technique (14) and joint partial separability and sparsity 

method (15) also represent a combination of compressed sensing and low-rank matrix 

completion. However, these methods impose low-rank and sparsity constraints in the 

dynamic MRI data without trying to decompose the reconstruction. Moreover, k−t SLR uses 

Schatten p-norms with p<1, which are not convex and very challenging to optimize in 

general. Similarly, rank constrained problems are known to be NP hard. The L&S approach 

used in this work for comparison purposes is based on the nuclear-norm, which may 

empirically be outperformed by non-convex techniques. Our proposed convex L+S method 

has not been compared to the non-convex L&S techniques mentioned above and relative 

reconstruction performance to non-convex techniques is still an open question.

As was mentioned earlier, the work of Gao et al., established a precedent for use of the L+S 

model to reconstruct undersampled dynamic MRI data (20). However, this early work was 

limited to retrospective undersampling and considered one potential clinical application 

only. More recently, Gao et al. (21) and our own work (22,23) independently demonstrated 

L+S reconstruction using prospectively undersampled data. In this paper, we show improved 

reconstructions in a variety of clinical application areas using true prospective acceleration. 

We also introduce a range of novel and potentially clinically useful applications, including 

separation of contrast-enhanced information from non-enhanced background in DCE-MRI 

studies, and background suppression without the need of data subtraction in time-resolved 

angiography.

Separation of background and dynamic components

Full separation of background and dynamic components requires incoherence of low-rank 

and sparse representations. In certain dynamic MRI examples, such as cardiac cine and 

perfusion, this condition is not fully satisfied since (1) the L component has a sparse 

representation in the sparse domain or (2) the sparse component has a low-rank 

representation. The latter is due to the fact that dynamic information in MRI is usually 

structured and does not appear at random temporal locations. However, rank(L) is usually 

much lower than rank(S) and the singular values of L are much higher than the singular 

values of S, since most the signal power resides in the background. Under these conditions, 
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the highest singular values representing the background will be absorbed by L, leaving the 

dynamic information for inclusion in S. This approach enables an approximate separation 

with a small contamination from dynamic features in the background component, but 

removes the risk of importing the high singular values that represent the background into the 

S component. Of course, it should be noted that in many applications, including the cardiac 

examples mentioned above, only the sum L+S is of interest and therefore incoherence 

between L and S is not strictly required. In these cases, the L+S approach outperforms 

standard compressed sensing techniques due to increased compressibility (Figure 2).

In other applications, such as time-resolved angiography, where background suppression is 

required to segregate the angiograms in the S component, there is ample incoherence 

between L and S, since no sparsifying transform is used and the L component does not have 

a sparse representation in x−t domain. Under these conditions separation is theoretically 

expected to perform robustly.

L+S reconstruction explicitly decomposes the reconstructed image series into L and S 

components, therefore reconstruction and decomposition cannot be performed in two 

separate steps. L+S decomposition can be used as an image processing tool to separate 

background and dynamic components in an image previously reconstructed with another 

method. However, this two-step approach does not improve the quality of the original 

reconstruction.

Selection of reconstruction parameters

The theory of L+S suggested using  for matrices of size n1×n2 to solve 

the constrained optimization problem in Eq. (1), where ρ is the fraction of observed entries. 

The parameter λ represents the ratio of parameters λS and λL used in our proposed 

reconstruction algorithm. This approach works well for the case of matrix decomposition 

with true data consistency M=L+S. However, for reconstruction of undersampled data, true 

data consistency in the acquisition space results in noise amplification. Moreover, in 

addition to the parameter λ, we need to add another parameter to weight the data consistency 

portion of the reconstruction. Our reconstruction algorithm uses two regularization 

parameters λL and λS. We have adopted an empirical method to select the reconstruction 

parameters λL and λS, choosing those presenting the best reconstruction performance over a 

range of possible values. Even though this process might be lengthy and special care is 

required to select the right parameters to achieve a global minimum, it needs to be 

undertaken only once for each dynamic imaging technique, and the same parameters can be 

used for subsequent studies with similar dynamic information. Recent work on the automatic 

selection of parameters for matrix completion such as the SURE (Stein’s unbiased risk 

estimate) method (36) might also be applicable for L+S reconstruction.

The regularization parameters balance the contribution of the low-rank and sparse 

components. If the information of interest resides only in L or S, which requires an accurate 

separation of L and S, careful selection of regularization parameters is required in order to 

avoid propagation of dynamic information into L or background features into S. However, if 

we are only interested in the overall reconstruction L+S, strict separation between 
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background and dynamic components is not required and the approach is less sensitive to 

the selection of regularization parameters.

Selection of step size in the general solution

The step size t in the general algorithm given in Eq. (7) must be selected to be less than 

1/‖E‖2 to ensure convergence. Assuming a normalization in which ‖E‖2 ≤ 1, we have chosen 

to work with a constant step size t=1. An alternative would be to use adaptive search 

strategies, such as backtracking line search, to possibly achieve faster convergence.

Computational complexity

The computation of the SVD in each iteration constitutes the additional computational 

burden imposed by the L+S reconstruction, which has been reduced considerably by using a 

partial SVD approach. Moreover, the partial SVD is computed in the coil-combined image 

and not on a coil-by-coil basis since our reconstruction approach enforces low-rank in the 

image that results from the combination of all coils. The major computational burden in this 

type of iterative reconstruction is the Fourier transform, which must be applied for each coil 

separately to enforce data consistency. Particularly, the reconstruction of non-Cartesian data 

will suffer from longer reconstruction times due to the computational cost of the non-

uniform FFT.

Conclusions

The L+S decomposition enables the reconstruction of highly-accelerated dynamic MRI data 

sets with separation of background and dynamic information in various problems of clinical 

interest without the need for explicit modeling. The higher compressibility offered by the L

+S model results in higher reconstruction performance than when using a low-rank or sparse 

model alone, or even a model in which both constraints are enforced simultaneously. The 

reconstruction algorithm presented in this work enforces joint multicoil low-rank and 

sparsity to exploit inter-coil correlations and can be used in a general way for Cartesian and 

non-Cartesian imaging. The separation of the background component without the need of 

subtraction or modeling provided by the L+S method may be particularly useful for clinical 

studies that require background suppression, such as contrast-enhanced angiography and 

free-breathing abdominal studies, where conventional data subtraction is sensitive to motion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
L+S decomposition of fully-sampled 2D cardiac cine (a) and perfusion (b) data sets 

corresponding to the central × location. The low-rank component L captures the correlated 

background among temporal frames and the sparse component S the remaining dynamic 

information (heart motion for cine and contrast-enhancement for perfusion). The L 

component is not static, but is rather slowly changing over time and contains the most 

correlated component of the cardiac motion (a) and contrast enhancement (b). The rightmost 

column shows the sparse component S in y−f space (Fourier transform along the columns), 

which shows increased sparsity compared to the original y−t domain.
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Figure 2. 
Root mean square error (RMSE) vs. compression ration curves for fully-sampled (a) cardiac 

cine and (b) cardiac perfusion data sets using low-rank (L), sparsity in the temporal Fourier 

domain (S) and low-rank + sparsity in the temporal Fourier domain (L+S). For the L+S 

model, compression ratios were computed by fixing the rank of the L component to 1, 2 or 

3. The L+S model presents lower compression errors than the L or S models, particularly at 

higher compression ratios. This gain in compressibility is expected to increase the 
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undersampling capability of L+S reconstruction compared to low-rank approximations or 

conventional compressed sensing(sparsity only).
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Figure 3. 
Sequence of operations for the k-th iteration of the L+S reconstruction algorithm (see also 

Table 1). First, a singular value thresholding (SVT) is applied to Mk−1−Sk−1 to get Lk; 

second, the soft-thresholding (ST) operator is applied to Mk−1−Lk−1 in the T domain to get 

Sk; and third, data consistency is enforced to update the intermediate solution Mk, where the 

aliasing artifacts corresponding to the residual in k-space E*(E(Lk+Sk)−d) are subtracted 

from Lk+Sk. The forward encoding operator E receives a space-time matrix as input and 

outputs a multicoil k-space representation and the adjoint encoding operator E* performs the 

reverse operation as described in the iterative SENSE technique.
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Figure 4. 
Myocardial-wall-enhancement-phase images and x−t plots corresponding to reconstruction 

of cardiac perfusion data with retrospective 10-fold undersampling using compressed 

sensing (CS), simultaneous low-rank and sparsity constraints (L&S) and L+S decomposition 

(L+S). L+S presents lower residual aliasing artifacts than CS, and improved temporal 

fidelity as compared with L&S (arrows indicate temporal blurring artifacts in the L&S 

reconstruction).
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Figure 5. 
Systolic-phase images and x−t plots corresponding to reconstruction of cardiac cine data 

with simulated 8-fold undersampling using compressed sensing (CS), simultaneous low-

rank and sparsity constraints (L&S) and L+S decomposition (L+S). CS reconstruction 

presents temporal blurring artifacts (e.g. the ring in the myocardial wall indicated by the 

white arrow), which are effectively removed by both L&S and L+S reconstructions. 

However, L+S presents higher temporal fidelity (fine structures indicated by the arrows in 

the x−t plots) and lower residual aliasing artifacts.
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Figure 6. 
(a) Myocardial-wall-enhancement-phase images and (b) signal intensity (SI) time-course for 

the six sectors defined in the American Heart Association model of the myocardium, 

resulting from reconstruction of the 8-fold accelerated cardiac perfusion scan performed on 

a patient with coronary artery disease using compressed sensing (CS) and L+S 

decomposition (L+S). The images and SI curves show a perfusion defect in sectors 4 and 5. 

Besides improving overall image quality and reducing temporal fluctuations in the SI time-

course, the L+S approach improves the visualization of the perfusion defect (white arrow) in 

the sparse component S, where the background has been suppressed.
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Figure 7. 
Maximum intensity projection (MIP) maps corresponding to CS and L+S reconstructions of 

the 7.3-fold accelerated time-resolved peripheral MR angiography data for three different 

contrast-enhancement phases. CS reconstruction employed raw data subtraction using a 

reference acquired before contrast injection. The L+S approach automatically separated the 

non-enhanced background from the enhanced vessels without the need of subtraction, and 

the S component presented improved angiograms compared to CS with data subtraction. In 

particular, small vessels are better visualized in the S component of the L+S reconstruction 

than in CS.
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Figure 8. 
CS and L+S reconstruction of 4D dynamic contrast-enhanced abdominal data acquired with 

golden-angle radial sampling (8 spokes / frame, undersampling factor = 48, temporal 

resolution = 0.94 seconds per 3D volume) corresponding to a representative slice and three 

contrast-enhancement phases (aorta, portal vein, liver). L+S compares favorably to CS, and 

the S component (right column), in which the background has been suppressed, offers 

improved visualization of contrast-enhancement.
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Figure 9. 
Representative slice corresponding to a tumor-enhancement phase for CS and L+S 

reconstruction of 4D dynamic contrast-enhanced breast data acquired with golden-angle 

radial sampling (21 spokes / frame, undersampling factor = 19.1, temporal resolution = 2.6 

seconds per 3D volume). L+S improves the visualization of fine structures within the lesion 

(top arrow) and thin vessels (bottom arrow) compared to CS.
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Table 1

L+S reconstruction algorithm for undersampled dynamic MRI

L+S using iterative soft-thresholding

input:

  d: multicoil undersampled k−t data

  E: space-time multicoil encoding operator

  T: sparsifying transform

  λL: singular-value threshold

  λS: sparsity threshold

initialize: M0 = E*d, S0 = 0

while not converged do

  % L: singular-value soft-thresholding

  Lk = SVTλL (Mk−1 − Sk−1)

  % S: soft-thresholding in the T domain

  Sk = T−1(ΛλS (T(Mk−1 − Lk−1)))

  % Data consistency: subtract residual

  Mk = Lk + Sk − E*(E(Lk + Sk) − d)

end while

output: L, S
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