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Abstract Eukaryotes and bacteria can be infected with

a wide variety of RNA viruses. On average, these

pathogens share little sequence similarity and use dif-

ferent replication and transcription strategies.

Nevertheless, the members of nearly all RNA virus

families depend on the activity of a virally encoded

RNA-dependent polymerase for the condensation of

nucleotide triphosphates. This review provides an over-

view of our current understanding of the viral RNA-

dependent polymerase structure and the biochemistry

and biophysics that is involved in replicating and tran-

scribing the genetic material of RNA viruses.
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Introduction

Infections with RNA viruses place a constant burden on

our healthcare systems and economy [1, 2]. Over the past

century, this has been particularly true for infections with

the Human immunodeficiency virus 1 (HIV-1), Influenza A

virus (IAV), Rotavirus (RotaV), West Nile virus (WNV),

Dengue virus (DV), Measles virus (MV), and the Porcine

reproductive and respiratory syndrome virus (PRRSV) [2–

6]. But also emergent RNA viruses can have considerable

consequences, such as the Severe acute respiratory syn-

drome-related coronavirus (SARS-CoV) in 2003 [7] and,

more recently, the Middle East Respiratory Syndrome

coronavirus (MERS-CoV) [8] and the Schmallenberg virus

(SBV) [9]. One way to limit the impact of RNA viruses and

retroviruses is to prevent their replication, and a thorough

understanding of the replication and transcription of these

pathogens is, therefore, essential.

RNA virus genomes can consist of double-stranded

RNA (dsRNA) or single-stranded (ssRNA) (Fig. 1a). In

turn, the ssRNA viruses can be classified into positive

sense (?RNA) and negative sense (-RNA) viruses

(Fig. 1a), depending on the translatability of their genetic

material. As summarised for four model RNA pathogens in

Fig. 1b, all RNA viruses use dedicated replication and

transcription strategies to amplify their genetic material.

The common denominator of these strategies is a con-

served RNA-dependent polymerase domain [10–12].

This review will start with a discussion of the structure

of the polymerase domain and its key catalytic residues.

Section ‘‘Beyond the conserved core’’ will subsequently

focus on the additional domains that are present in poly-

merase proteins and how they are coordinated. Section

‘‘Template recognition, initiation, elongation and regula-

tion’’ will concentrate on the interactions of the RNA-

dependent polymerase with the viral promoter and the

initiation of RNA synthesis. Finally, Sect. ‘‘Motion and

fidelity’’ will discuss the dynamics and fidelity of RNA-

dependent polymerases. A simplified taxonomy of the

RNA viruses that will be discussed in these sections is

shown in Fig. 1a.
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The RNA-dependent polymerase domain

Nomenclature and organisation of the conserved

elements in the RNA-dependent polymerase domain

The RNA-dependent polymerase domain is a member of

the superfamily of template-dependent nucleic acid

polymerases and typically\400 amino acids in length [10,

11] (Fig. 2). Its sequence is highly variable on average,

with some regions showing less than *10 % conservation

[11, 13]. Strong amino acid conservation can be observed,

however, in regions that are directly involved in nucleotide

selection or catalysis, such as the strictly conserved glycine

and aspartates in the centre of the domain [11, 13] (Fig. 2;

Fig. 1 Taxonomy and replication strategies of RNA viruses. a Sim-

plified taxonomy of the genome architecture of the RNA viruses

described in this review. See main text for used abbreviations.

b (?RNA virus) Infection with a ?RNA virus—as exemplified here

with a CoV-like virion—releases a single-stranded RNA genome into

the cytoplasm (1) [81, 173, 174]. (2) Translation of the 50-terminal

open-reading frame of the genome produces the viral replicase. (3)

This multi-enzyme complex includes RdRp activity (orange) and

associates with intracellular membranes before -RNA synthesis

commences. Newly synthesised -RNAs are subsequently used to

produce new ?RNAs (4), which are typically capped (yellow) and

polyadenylated (polyA). (Retrovirus) HIV-1 genomes are packaged as

ssRNA in virions. When the ssRNA is released (1) a cDNA copy is

synthesised by the RT (2). The RNA is next degraded by the intrinsic

RNase H activity in the RT (3) and the single stranded cDNA

converted to dsDNA (4). The dsDNA is imported in the nucleus (5)

for integration into the host’s genetic material. (-RNA virus) (1) As

illustrated here with an IAV-like particle, infection with an -RNA

virus releases a viral RNA genome that is associated with a viral

polymerase (orange) and nucleoprotein (green). (2) In the case of

non-segmented -RNA viruses, these complexes support transcription

to produce viral mRNAs or cRNAs. (3) Viral mRNAs are next

translated and new viral proteins complex with cRNAs to synthesise

new vRNAs. (5) The vRNA-containing complexes of some seg-

mented -RNA viruses are imported into the nucleus of the host cell,

where (6) the RdRp produces mRNAs or cRNAs. (7) mRNAs are

transported to the cytoplasm, while cRNAs are bound by new viral

proteins to form cRNPs for -RNA synthesis. (dsRNA virus) Fully

duplexed RNA genomes lack cap and polyA elements. (1) The RdRp

(orange), therefore, transcribes the viral genome inside the capsid of

the virion (blue and red), so viral mRNAs can be (2) released into the

cytoplasm as illustrated here with a rotavirus-like virion. In the

cytoplasm the mRNA is translated (3) or replicated by newly

synthesised viral RdRps (4) [175, 176]
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see Sects. ‘‘Function of the conserved aspartates and lysine

in the polymerase catalytic site’’, ‘‘Motifs and structural

flexibility are important for nucleotide selection’’ for

details). The prototypic RNA virus RNA polymerase

domain harbours seven of such regions or motifs, which are

arranged in the order G, F1–3, A, B, C, D and E from

amino- to carboxy-terminus [10, 13] (Fig. 2). The only

exception to this scheme can be found in the Infectious

bursal disease virus (IBDV) and related viruses, where

motif C is encoded upstream of motif A [14].

Each of the seven motifs in the RNA polymerase

domain adopts a specific and conserved fold [10] (Fig. 3a).

However, for most the conservation of the folds extends

beyond the regions of sequence similarity into so-called

homomorphs [15]. Together, these conserved structural

elements make up approximately 75 % of the RNA-

dependent polymerase domain [15] (Fig. 3b). In the RdRp

structures that are currently available for ?RNA, dsRNA,

and Retroviridae (Fig. 4)—no structures are presently in

the PDB for -RNA viruses—these elements define an

RNA entry grove at the top of the polymerase, an RNA exit

channel at the front, and a channel for the entry of nucle-

otides at the rear (Fig. 3a) [16–22].

Following the convention for cellular DNA-dependent

DNA polymerases (DdDp), the seven motifs and homo-

morphs are grouped into three subdomains. These

subdomains are called fingers, palm and thumb in reference

to the polymerase domain’s likeliness to a cupped right

hand (Fig. 3a). The finger subdomain loops that intercon-

nect the fingers with the thumb in the RNA-dependent

RNA polymerases (RdRps) of ?RNA and dsRNA viru-

ses—for instance Foot and mouth disease virus (FMDV),

Pseudomonas phage phi6 (/6), and Japanese encephalitis

virus (JEV) (Fig. 4)—are called the fingertips [23]. This

connection creates an overall ‘‘closed-hand’’ conformation

that is unique to RdRps and generally not seen in crystal

structures of DdDps or reverse transcriptases (RTs)

(Fig. 4c).

Fig. 2 Key conserved residues

of the RNA polymerase domain.

Motifs A–C reside in the middle

of the typical RNA-dependent

polymerase domain as shown

here in the schematic of the

poliovirus 3Dpol subunit. They

are involved in catalysis and

nucleotide selection and the

residues involved in these

processes are highly conserved.

The key residues of these motifs

are shaded across the RNA

polymerase domains of positive

strand RNA viruses (?RNA),

segmented negative strand RNA

viruses (seg -RNA), non-

segmented negative strand RNA

viruses (ns -RNA), double

strand RNA viruses of the

reovirus family (Reo dsRNA),

and reverse transcriptases (RT).

Sequence logo images were

created using prosite accession

numbers PDSC50507 and

PDOC50878
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Function of the conserved main structural elements

The three subdomains work together to facilitate the

binding of RNA and nucleotides (NTPs) [17–20]. The

thumb subdomain contains various residues that are

involved in RNA binding and these generally pack into the

minor groove of the template RNA [20]. In some poly-

merases, the thumb also contains sequences that protrude

into the template channel to help stabilise the initiating

NTPs on the ssRNA template (see Sect. ‘‘Template rec-

ognition, initiation, elongation and regulation’’ for details

on initiation) [17, 18, 24]. Crucially, these protrusions are

also able to undergo relatively large conformational rear-

rangements to facilitate translocation of the template

following the first condensation reaction [17, 25, 26]. The

other residues of the thumb subdomain contribute to the

formation of the NTP tunnel, which sits at an *110� angle

Fig. 4 Structural differences among RNA virus polymerases. a Struc-

ture of the /6 RdRp P2 based on PDB accession 1HI0. b Structure of

the JEV polymerase based on PBD entry 4K6 M. Inset depicts 90�
rotation of polymerase to visualise the N-terminal methyltransferase

domain. c Structure of the HIV-1 RT based on PDB accession 3V4I.

The RT is comprised of the p66 (left) and p51 (right) protein subunits.

Only the p66 subunit has an RNase domain (pink). Homomorphs A–G

are colour coded yellow, gold, orange, red, light green, aquamarine,

and blue, respectively in Fig. 4a–c. d EM model of the IAV RdRp

based on PDBe entry EMD-2213. Structural features were identified

by Moeller et al. [79]. e The IAV polymerase consists of the subunits

PA, PB1, and PB2. Six of the seven canonical RNA-dependent

polymerase domains motifs are found in PB1, which are colour coded

as in Fig. 3. Presently only significant structural information is

available for PA and PB2. Figure based on PBD entries 2VY6, 2W69,

2ZNL, 2ZTT, 3EBJ, and 4CB4

Fig. 3 Conserved structural elements in the RNA virus polymerase.

a Structure of the FMDV RdRp. The motifs A, B, C, D, E, F, and G

are colour coded yellow, gold, orange, red, light green, aquamarine,

and blue. Overall the polymerase structure adopts a shape that

resembles a cupped right hand. Herein, motifs A–E lie on the palm,

while motif F and G are part of the fingers. In the side-view of the

enzyme the location of the template and NTP channels is indicated.

b Conserved structural elements of the FMDV RdRp. Homomorphs

A–G were mapped according to Ref. [15] and colour coded yellow,

gold, orange, red, light green, aquamarine, and blue, respectively.

Images A and B are based on PDB accession 2E9R
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with the template channel (Fig. 3a). The cavity is lined

with positively charged amino acids [17–20], though

charge interactions are likely not sufficient to guide NTPs

into the interior. Indeed, molecular dynamics (MD) simu-

lations have shown that the residues of the NTP channel

can also explore a relatively large amount of space [27],

which may allow the RdRp to actively ‘‘pump’’ NTPs

down the channel [27].

The fingers subdomain residues mainly pack into the

major groove of the RNA template. Furthermore, upon

entry of the template they are able to unstack the single

strand at position ?3 [20] (Fig. 5a). The non-conserved

structural elements of the fingers subdomain play a role in

RNA binding as well [17, 18, 20]. In particular, the fin-

gertips of dsRNA and some ?RNA virus RdRps allow the

polymerase to ‘‘hold’’ the template without extensive

conformational changes [18, 28]. The variations and

extensions in the fingers subdomain have also been shown

to play roles in protein–protein interactions, phosphoryla-

tion, oligomerisation, and nuclear import [24, 29–31]. In

contrast, the HIV-1 RT lacks such extensions and adopts a

more ‘‘open-hand’’ or U-shaped binding cleft [21]

(Fig. 4c). As a consequence, the RT structure must rear-

range its subdomains to coordinate the binding of the

template, nascent strand, and incoming dNTPs.

The NTP and template entry channels meet at the palm

subdomain (Fig. 3a). This is a structure that is comprised

of a central, partially formed three-stranded b-sheet, which

is also present in RNA-recognition motifs (RRMs). The

relative movement of these strands within the RRM is vital

to catalysis and dependent on NTP binding. Only when a

correct NTP binds can motif A and motif C align and the

RRM fold be completed [20] (Fig. 5a). This catalytically

competent conformation of the active site is often referred

to as the closed complex (not to be confused with the

‘‘closed-hand’’, which refers to the overall structure of the

RdRp) [20].

Function of the conserved aspartates and lysine

in the polymerase catalytic site

The palm subdomain motifs A, C and D are the most

essential elements in the RNA polymerase domain. This is

particularly evident from the strict conservation of the

N-terminal aspartates in the Dx4–5D and xDD consensus

sequences (here ‘x’ represents any residue) of motifs A and

C (Fig. 2). Mutational analysis of these residues has shown

that their absence abolishes or greatly alters RNA-depen-

dent polymerase activity in vitro and in vivo [32–36]. This

is in line with structural studies showing that the N-ter-

minal aspartates coordinate two divalent metal ions that are

crucial for polymerase function [17–20] (Fig. 5a, B). In

contrast, motif D typically contains a sole lysine or histi-

dine as signature amino acid [37, 38]. This residue is likely

protonated in the environment of the active site and its

mutation strongly reduces the activity of the RNA poly-

merase [37, 39–41]. Moreover, an arginine to lysine

mutation at motif D’s position in the polymerase of a

Hepatitis C virus (HCV) strain increases the activity of this

RdRp [42].

The polymerase reaction creates new phosphodiester

bonds between NTPs using RNA as template. The NTP

substrates involved in this reaction are coordinated by two

metal ions, which are bound by the conserved aspartates of

motifs A and C (Fig. 5a, panel i). They also position the

NTP’s triphosphate optimally for attack by the sugar

moiety of the nascent strand once its 30 carbon has lost a

proton [17–20] (Fig. 5b). The N-terminal aspartate of motif

C thus uses a metal ion to fix the a-phosphate of the

incoming NTP and reduce the pKa of the nascent RNA’s

30-OH to facilitate the attack (Fig. 5b, panel ii) [43]. The

Fig. 5 Catalysis in the RNA virus polymerase active site. a Structure

of the PV active site as it moves from a native state or elongation

complex (i) to an open complex (ii), and a closed complex (iii). The

closed complex depicted here shows the active site after catalysis.

Highlighted are the metal-binding aspartates of motifs A and C, and

the lysine of motif D that acts as general acid. Colour coding by motif

as in Fig. 3. Image based on PDB accessions 3Ol6, 3OLB, and 3OL7.

b Schematic presentation of the RdRp active site. The aspartates

(Asp) of motif A (yellow) and C (orange) bind divalent metal ions

(marked Mg and shaded grey), which are used to coordinate the

formation of a new phosphodiester bond at the 30-OH (red in panel ii)

of the nascent strand (yellow). The general acid (red Lys/His in panel

ii) is positioned near the b-phosphate of the incoming NTP to

protonate the PPi leaving group. c Simplified schematic of the kinetic

steps of RNA polymerases. Asterisk indicates closed complex
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amino-terminal carboxylate of motif A, on the other hand,

stabilises the b- and c-phosphates with its divalent metal as

well as the pentacovalent (phosphorane) intermediate that

forms during catalysis (Fig. 5b, panel ii). Structural and

biochemical analyses have shown that the formation of this

transient structure is dependent on the attack of the NTP’s

a-phosphate by the 30-OH, which is often the rate-limiting

catalytic step in NTP condensation [37, 43] (Fig. 5b).

Motif D’s lysine or histidine assists the N-terminal

aspartate of motif A in coordinating the b-phosphate of the

incoming NTP, analogous to the trigger-loop in DdDps [38,

44]. However, when the positively charged side chain of

motif D approaches the b-phosphate, it can protonate the

PPi leaving group as well (Fig. 5b, panel ii). This second

protonation step in the active site is not essential for the

polymerase reaction, since catalysis can still take place

when motif D’s lysine has been mutated to a residue with a

different pKa. The polymerase reaction rate will never-

theless be 50- to 1,000-fold higher when a lysine or

histidine is present [38, 45]. Recent data even suggests that

motif D can coordinate the export of the PPi group from the

active site once catalysis has taken place [45], thereby

triggering the translocation of the RNA.

Motifs and structural flexibility are important

for nucleotide selection

Biochemical and structural analyses have shown that

polymerase catalysis is a multi-step process that includes at

least one NTP recognition event (Fig. 5C). This step must

ensure that the catalytic residues and the substrate are not

placed in a catalytically competent position before a cor-

rect NTP is bound. In part, this is achieved by motif D,

which needs to bind the b-phosphate of the incoming NTP

to trigger active site closure (Fig. 5a, b). Crucially, due to

its highly flexible nature it can only adopt this position

when a correct NTP is bound [44–46] and it is now

believed that getting motif D near the b-phosphate is the

second most rate-limiting step (kslow) in the RNA poly-

merase catalytic cycle after chemistry (Fig. 5c).

Motif D’s conformational change is thus the final

checkpoint in the NTP selection process and other motifs

facilitate the steps that lead up to this event. Subtle

movements in motif B, for instance, help position the

template and the incoming NTP via direct interactions

between the base and conserved residues in the N-terminus

of motif B [20, 47]. Motif F, on the other hand, contributes

several evenly spaced, positively charged amino acids that

coordinate the negatively charged triphosphate of the NTP

(Fig. 5a) [17–20]. In the case of HIV-1 RT, the binding of a

dNTP also triggers a rotation of the motif F-containing

homomorph towards the polymerase active site [21]. As

this motion creates a relatively tight fit between active site,

dNTP, and the basic residues of motif F, only the binding

of the correct dNTP can trigger it [21].

In ?RNA RdRps, selection between NTPs and dNTPs is

supported by motif B’s conserved asparagine and the

C-terminal aspartate of motif A (Fig. 2). Both form a

crucial hydrogen bond with the 20-OH of the incoming

NTP [48] and mutation of conserved motif B residues

cripples polymerase activity [42, 49]. In dsRNA RdRps,

residues with equivalent functions are an aspartate that is

positioned just N-terminal of motif A and a conserved

serine in motif B [17]. In the HIV-1 RT, on the other hand,

these residues are a tyrosine just N-terminal of motif A

and, most frequently, a phenylalanine at the same position

as the ?RNA virus asparagine, since their side chains are

better suited to facilitate a hydrophobic interaction with the

20-H of the incoming dNTP [21].

Beyond the conserved core

Additional enzymatic domains

Additional domains frequently flank the polymerase

domain (Fig. 6). Good examples are the polymerase sub-

units of the Bunya- and Arenaviridae, which contain both

an N-terminal endonuclease domain as well as a C-terminal

polymerase domain [50, 51]. An even more striking

example is the Vesicular stomatitis virus (VSV) RdRp

(Fig. 6). In electron microscopy (EM) images, this enzyme

appears as a central density that is surrounded by globular

appendages [52], which harbour enzymatic activities that

are required for viral mRNA5’ cap synthesis: a 20-O-

methyltransferase (MTase), a guanine-N7-MTase, and a

polyribonucleotidyl-transferase (PRNTase) [53, 54]. Such

activities can also be found in the RdRps of Flavivirus

genus members, albeit with a guanylyltransferase (GTase)

instead of a PRNTase [55, 56]. As is shown in the inset of

Fig. 4b, the MTase of NS5 is connected to the polymerase

domain via a flexible linker. It is likely that the discrete

domains of other RNA virus polymerases are connected via

such linker sequences as well [57]. The benefit of such

flexible attachments is that it allows domains to work in

trans or even separately from the polymerase domain, as

was demonstrated for the MTase and endonuclease

domains of the Sendai virus (SeV) and Lymphocytic cho-

riomeningitis virus (LCV) RdRps [50, 58]. Moreover,

accessory domains can sometimes also be deleted from the

polymerase subunit without disrupting the activity of the

polymerase domain [24, 41].

The IAV genome, in contrast, encodes an RdRp in

which its multiple activities are separated out into three

individual polypeptides, called PA, PB1, and PB2 (Figs. 4,

6). The three subunits are encoded by three negatively
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stranded genome segments (vRNAs), which are replicated

and transcribed in the nucleus of the host in complexes

(vRNPs) of heterotrimeric polymerase and a helical

assembly of nucleoprotein (NP) monomers (Fig. 1). The

RdRp motifs F–E are housed in PB1 [59, 60], while a

metal-dependent endonuclease site is present in PA and a

cap-binding domain resides in PB2 (Fig. 6). It is now

widely accepted that IAV RNA synthesis initiates repli-

cation de novo, whereas transcription initiates in a primer-

dependent manner (see Sect. ‘‘Template recognition, ini-

tiation, elongation and regulation’’ for details). In the latter

scenario, a 50 capped pre-mRNA molecule is bound by the

PB2 subunit (Fig. 7a). The pre-mRNA is then cleaved by

the PA subunit 9–15 nt downstream of the cap and moved

into the PB1 active site for template-dependent extension

[59, 60]. How the molecular hand-off is performed and the

30-OH of the capped primer transferred to PB1 is presently

unknown.

Such a hand-off between enzymatic domains has been

studied for the HIV-1 RT. This enzyme is effectively a

dual-polymerase complex that consists of the viral p66

subunit, which contains an RNase H domain and a poly-

merase domain [61], and its cleavage product p51, which

lacks the former domain [62] (Fig. 4c). During

retrotranscription, the two active sites in the enzyme must

catalyse a multi-step process, including (1) RNA-templated

cDNA synthesis using a lys3 tRNA as primer, (2) dsDNA

synthesis using the cDNA strand as template, and (3)

hydrolysis of the incorporated lys3 RNA primer sequences

[63] (Fig. 1b). Although the two enzymatic activities of RT

can work in trans [64], fluorescence resonance energy

Fig. 6 Sizes and additional domains of RNA virus polymerases. The

RNA-dependent polymerase domain consists of approximately 400

amino acids. The size of the rest of the subunit varies significantly

among RNA-dependent polymerases, as does the conservation of

motifs F and G. The additional sequences of the polymerase subunit

often contain functional domains, such as a methyltransferase

(MTase), exonuclease (Exo), capping domain (Cap), or cap-binding

domain (CB). The SAR-CoV RdRp has an additional N-terminal

domain that is conserved, but to which no function has been ascribed

yet (?). Figure based on alignments from references [15, 39, 83, 177,

178]

Fig. 7 Template recognition mechanisms. a i The IAV RNA

promoter forms through hybridization of the terminal ends of a viral

genome segment. ii The structure is next bound by the heterotrimeric

RdRp complex that consists of subunits PB1 (green), PB2 (red), and

PA (orange). During transcription, the PB2 subunit binds the cap of

pre-mRNAs. These pre-mRNAs are next cleaved by the PA subunit

and transferred to the PB1 subunit. Here nucleotide condensation

takes place on the 30-OH of the capped primers. b The HIV-1 RT is

comprised of the subunits p66 and p51, of which only the p66

subunit has an active polymerase (colour coded as Fig. 4) and RNase

domain (pink). The enzyme can bind to the template in a random

orientation and switch between the activities by tumbling around its

axis once a polymerase (i) or RNase (ii) substrate has been

encountered. c A model for the circularisation of the PV genome.

First viral proteins and the 3CDpro cleavage intermediate bind to

conserved 50 structures on the genome (i). Next a protein bridge is

formed that brings together the 50 and 30-ends of the genome (ii).

This step subsequently ensures that the viral protease is activated and

the viral polymerase 3Dpol is released in close proximity to the 30-end

of the viral genome. Here it can initiate -RNA synthesis using VPg as

protein primer
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transfer (FRET) assays demonstrated that the enzyme can

flip along its axis and switch between the activities

(Fig. 7b). This principle allows RNA hydrolysis and NTP

condensation to effectively work in cis, irrespective of how

RT initially bound [65, 66]. Interestingly, such an apparent

dissociation-rebinding event is in contrast with the

intramolecular translocation of the nascent strand between

the polymerase and exonuclease sites in DdDps [67, 68]. It

will, therefore, be interesting to see how other viral RNA-

dependent polymerases orchestrate a hand-off between

active sites.

Multimerisation

Oligomerisation of RdRps has been reported for Poliovirus

(PV), FMDV, HCV, Norovirus (NV), and IBDV enzymes.

It can result in cooperative template binding, lattice for-

mation, and a stimulation of viral RNA polymerase activity

in vitro [69–72], which in HCV appears to be specific for

initiation [73]. Also inactive RdRps can stimulate activity

and participate in array formation, which led to the

hypothesis that multimerisation evolved to stabilise poly-

merases [69]. Mutagenesis studies suggest that the

dimerisation of the HCV RdRp is mediated by the thumb

domain [74], whereas in PV 3Dpol residues in N-terminal

part of the polymerase domain and two aspartates of the so-

called interface I—an interaction interface between the

thumb subdomain of one RdRp and the palm of another—

play a role [46, 69]. Mutation of the interacting residues

also results in viral growth defects [75].

Polymerase multimerisation may also play a role in IAV

infections [76]. In the replication cycle of this -RNA

virus, the viral RdRp synthesises new vRNAs through a

complementary ?RNA (cRNA) intermediate, which is

bound by newly produced viral RdRp and NP to form

cRNPs (Fig. 1). Crucially, during the synthesis of vRNAs,

the cRNP can be stimulated by both active as well as

inactive secondary RdRps [77], which suggests that coop-

eration takes place. In contrast, experiments with vRNPs

suggest that secondary -RNA virus polymerases are trans-

acting and only able to complement the activity of the

resident RdRp during the synthesis of cRNA copies [78,

79]. Curiously, no evidence has been found for either

cooperation or trans-acting activity during transcription,

which suggests that cap-snatching, mRNA synthesis, and

polyadenylation all occur in cis [78] and putatively without

multimerisation. It is presently not known how any of the

two replication-specific interactions between the IAV

polymerases are mediated.

In contrast to the above examples of multimerisation,

which all involve multiple copies of essentially the same

polypeptide, the positive-stranded CoVs have been

hypothesised to use two distinct polymerase activities for

their RNA synthesis [80]. The CoVs are well known for

their uniquely large *30-kb ?RNA genomes, of which

approximately two-thirds code for numerous viral replicase

functions that associate with cellular membranes upon

translation [81] (Fig. 1). Nearly three decades ago, bioin-

formatics analyses predicted that a canonical RNA

polymerase domain resided among these replicase func-

tions in a 932 amino acid-long mature protein [82] (Fig. 6).

Since then, biochemical experiments of the CoV replicase

protein have not only confirmed this prediction [33, 83],

but also revealed a non-canonical, multimeric RdRp that is

able to recognise the 30 terminus of the viral genome [84,

85]. It has been proposed that these two enzymes may

cooperate to improve or to achieve better control over

initiation and elongation, putatively functioning as primase

and primer-dependent polymerase [80].

Template recognition, initiation, elongation

and regulation

Template recognition

The association between the heterotrimeric IAV polymer-

ase and viral RNA can be solely achieved through

interactions with a partially complementary RNA pro-

moter, which consists of the conserved 50 and 30 terminal

sequences that are present at each genome segment or

complementary genome segment [86]. A similar sequence

element and one that is also based on complementarity can

be found in the genomic ends of the genomes of the Arena-

and Bunyaviridae [87]. It is currently understood that the

IAV polymerase first associates with the 50 end of the

promoter, before the 30 terminus is bound [88–90]. Muta-

genesis data suggest that the binding process creates

structural rearrangements in the promoter, changing its

conformation to a cork-screw-like structure (Fig. 7a). It is

assumed that conformation directs the viral transcription

and replication activity of the polymerase [91–93]. Other

experiments have shown that the promoter is also vital for

the packaging of viral genome segments into virions [94]

and potentially in overcoming host restrictions [95].

In Flaviviridae, RdRp recruitment and binding are par-

tially guided by circularisation of the genome. RNA

structures, such as the stem-loop/promoter structure in the

50 UTR of the genome, are strongly involved in the initi-

ation of replication as well [96, 97]. The involvement of the

50 UTR can be explained by the interaction it establishes

with the conserved elements of the 30 UTR, thereby cir-

cularising the genome akin to the segmented -RNA

viruses. Such a long-range interaction can also effectively

position the conserved 30-terminal sequence 50-CUOH

opposite the 50-terminal end [96, 98–100], which would
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facilitate recognition of the 30-terminal end and minimise

initiation on non-viral templates [101].

In contrast, the plant virus Brome mosaic virus (BMV)

requires an additional viral protein to bring the viral 2a

polymerase and genome together. The interaction is med-

iated by protein 1a, which can bind both RdRp and

conserved so-called box B motifs in the viral RNA [102].

The helicase domain of 1a may also stimulate RdRp ini-

tiation [103], which is believed to take place on a

conserved 30-terminal cytosine during replication and an

internal cytosine during subgenomic transcription [104].

The involvement of conserved (30-terminal) cytosine resi-

dues appears to be a recurring theme in RNA virus

replication or transcription, as they are also used for initi-

ation by the Reovirus (ReoV), Machupo virus (MACV),

and the Equine arteritis virus (EAV) [17, 105, 106].

In infections with members of the Picornaviridae, both

circularisation and the use of viral protein factors can be

observed (Fig. 7c). Here the 50 structures in the genome

present a binding platform for viral and cellular proteins.

The most downstream of the these 50 elements is currently

believed to serve as promoter for both ?RNA and -RNA

synthesis [107] (Fig. 7c, marked i), while the upstream

cloverleaf structure functions as binding site for the cellular

poly(rC)-binding protein (PCBP) and the viral 3CDpro

polyprotein cleavage intermediate [108–110]. To setup PV

3Dpol for RNA synthesis, the various proteins already

associated with the viral genome must first bind the

C-terminal part of the cellular poly(A) binding protein

(PABP) [111], which effectively circularises the viral

genome (Fig. 7c, marked ii). In turn, the circularisation

stimulates the self-cleavage of the 3CDpro precursor and

thereby the activation of the RdRp 3Dpol (Fig. 7c, marked

iii), whose activity is inhibited as long as its N-terminus

has not been processed [112, 113]. Typically the RdRp

next initiates on the cis-replication element (CRE) in the

viral genome [114].

De novo initiation

In spite of the wide range of replication strategies used by

RNA viruses, their polymerases can use only two mecha-

nisms to initiate the synthesis of RNA: de novo initiation or

primer-dependent initiation (Fig. 8). The de novo initiation

mechanism can be subdivided in 30 terminal initiation or

internal initiation. Some polymerases can also use a com-

bination of both which is called prime-realign initiation

[91, 115]. The advantage of the latter strategy is that no

genetic information is lost, since internal residues are better

protected from cellular exonucleases.

During de novo initiation, an initiating nucleotide

serves as primer for a second nucleotide. These two NTPs

are base paired with positions ?1 and ?2 of the template,

respectively (Fig. 8a). Since base pairing with the tem-

plate is not sufficient to hold both NTPs correctly

positioned for catalysis, polymerases can also employ a

number of techniques to stabilise the interaction. The

ReoV RdRp k3 uses a loop that protrudes from the palm

domain to bind the negative triphosphate backbone of the

NTP at position ?1, which is typically GTP [17]. Other

residues in the active site, most notably an arginine

(R518) in motif F and a serine (S682) in motif B, form

hydrogen bonds with the carbonyl and NH group of this

GTP [17], while a conserved glutamine in motif C binds

the 20-OH of the GTP’s ribose [17]. Together these

interactions not only stabilise the initiating GTP, but also

provide nucleoside selection to keep the 30-terminal

cytosine present in both the plus and minus strand of

ReoV RNAs preserved.

Analogously, in some ?RNA virus RdRps a short

polypeptide loop can protrude from the thumb domain into

the active site to perform these functions [24, 25, 116]. In

the Bovine viral diarrhoea virus (BVDV) RdRp, this so-

called primer-loop is assisted with a non-templated GTP

molecule (Fig. 9A). Positioned in a -1 position *6 Å

away from the catalytic site, the additional GTP creates a

stacking platform for NTPs that bind at positions ?1 and

?2 [24] (Fig. 9a). In BVDV, the N1 and N2 of the guanine

are bound by the carbonyl of a motif A threonine, while the

Fig. 8 Modes of initiation. schematic presentation of a de novo

initiation, b primer-dependent initiation, and c protein-dependent

initiation. In the latter scenario, the tyrosine residue that is present at

position 3 of VPg is used as primer
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hydrophobic proline and leucine residues in motif A and

the thumb subdomain stabilise the guanine base. In addi-

tion, positively charged residues in motif E stabilise the

triphosphate backbone of the GTP [24]. GTP also plays a

role in de novo initiation of the JEV polymerase, as dem-

onstrated by Surana et al. [117]. However, in contrast to its

role in BVDV, the GTP here binds in an orientation that

can prevent template binding. Addition of manganese can

resolve this blocked pre-initiation state and it is possible

that this mechanism evolved to limit non-templated RNA

synthesis [117].

The RdRp of /6 stabilises the initiating nucleotides with

an additional, small C-terminal domain in at least three

ways. First, it blocks the RNA exit channel, which fixes the

template strand, not unlike the priming loop in other RdRps

(Fig. 9b) [18]. A Mn2? that is bound *6 Å away from the

catalytic site by residues in the palm subdomain also plays

a role in template binding [18]. Second, it provides a small,

pyrimidine-sized specificity pocket in which a glutamate

hydrogen bonds with the NH2 of the 30-terminal cytosine

that is present in all /6 genome segments (Fig. 9b, panel i).

This also means that an incoming NTP first base pairs with

position ?2 of the template and that position ?1 can be

occupied when the template ratchets back from the cyto-

sine pocket (Fig. 9b, panel ii) [18]. Third and last, the

C-terminal domain contains a tyrosine (or tryptophan) on

which the initiating GTP can stack and stably base pair

with the conserved 30-terminal C at the ?1 site [18].

Crucially, after the formation of the dinucleotide, the

C-terminal domain has to be displaced to allow RNA

translocation and current evidence suggests that the non-

catalytic Mn2? is also involved in this step [26]. A non-

catalytic Mn2? has also been observed in other RdRps

[118].

The RdRps encoded by some -RNA viruses, including

the heterotrimeric RdRp of IAV, can perform both de novo

initiation as well as primer-dependent initiation. The de

novo mechanism is used to start the synthesis of cRNAs

from vRNAs (Fig. 1). In turn, these cRNAs can be used as

template for the production of new vRNAs. This latter

process utilises a prime-realign mechanism that depends on

high concentrations of initiating NTPs [91]. These initiat-

ing NTPs base pair with positions ?4 and ?5 of the cRNA

30 terminus [91] and then translocate to bases ?1 and ?2

after the first nucleotide condensation as dinucleotide

pppApG. Although it has been shown that the structure of

the viral promoter and its sequence play an important role

in this mechanism [91], it is presently unknown which

residues of the -RNA virus RdRp are involved in stabil-

ising the first nucleotide bond. It is also unknown how the

pppApG is transferred to the 30 terminus of the cRNA

template.

Primer-dependent initiation

Primer-dependent initiation can be categorised in oligo-

nucleotide-primed, protein-primed, and back-primed

initiation, in which the 30 terminus of the template forms a

small hairpin (Fig. 8b, c). Since the use of a primed tem-

plate requires a template channel that can accommodate

several base pairs of A-form dsRNA, the Corona- and

Picornaviridae polymerases such as PV 3Dpol and SARS-

CoV nsp12 lack the palm or thumb subdomain protrusions

found in most Flaviviridae and dsRNA viruses [33, 83,

Fig. 9 Models for template recognition and de novo initiation by the

BVDV and /6 polymerases. a Model of de novo RNA synthesis by a

BVDV RdRp. The RdRp binds to the 30-end of the viral genome (i).

Then the template, initiating NTPs, and an additional GTP form an

initiation complex that is stabilised by the closed C-terminal loop.

After the first polymerase reaction, the GTP is released by opening of

the C-terminal loop and translocation of the template–nascent strand

duplex (ii). A new NTP can enter the active site via the NTP channel

to start elongation. b Simplified model of de novo RNA synthesis by

the /6 RdRp. Template recognition occurs through the binding of the

30-cytosine of the genome to a pyrimidine specificity pocket (i). At the

same time, a nucleotide base-pairs with the second base of the

template. Its triphosphate group is stabilised by a manganese ion that

is coordinated by the palm domain. The 30-cytosine next translocates

to the n-position to base-pair with a second NTP (ii). After nucleotide

condensation, the manganese ion triggers a rearrangement of the

C-terminal and is subsequently released (iii). In contrast to the GTP in

the NS5 RdRp, the manganese ion must be rebound for subsequent

elongation
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119, 120]. Consistent with this observation, it was found

that the HCV and /6 polymerases can be changed into

primer-dependent polymerases by mutating or deleting

their de novo initiation platforms [121–123].

Although the PV polymerase 3Dpol can initiate on par-

tial dsRNA, it uses a protein primer in vivo. Following its

activation through the self-cleavage of 3CD (Fig. 7c),

3Dpol uridylates the PV protein VPg on the tyrosine 3

(Fig. 8c) using a back-slide mechanism on adenosine res-

idues [124]. This creates a VPg(pUpUOH) molecule that

can hybridise to the viral 30 polyA tail and prime the

synthesis of a complementary strand (Fig. 7c). A study of

the related FMDV RdRp has shown that the terminal

uridylate of this product can enter the active site and prime

a duplication of the genomic 30 end [125]. Furthermore,

VPg(pUpUOH) can anneal to the 30-terminal adenosine

residues of the negative strand and thereby prime ?RNA

synthesis as well [107, 126, 127].

The Orthomyxo-, Arena-, and Bunyaviridae use a pri-

mer-dependent initiation mechanism for transcription. In

IAV, this process begins with the binding of a 50 capped

pre-mRNA molecule by the PB2 subunit (Fig. 7a, panel ii)

[128, 129]. A crystal structure of the IAV PB2 subunit with

cap analogue m7GTP demonstrated that its structure is

similar though different from other known cap-binding

proteins [128]. It coordinates binding via histidine and

lysine residues that hydrogen bond with the 20 OH of the

ribose, a histidine and asparagine that coordinate the

phosphates, and histidine, phenylalanine and lysine resi-

dues that sandwich the m7-methylated guanine base [128,

130]. After cap binding, the PA subunit cleaves the pre-

mRNA 9–15 nt downstream of the cap with a strong

preference for cleaving 30 of guanine bases [59, 131]

(Fig. 7a, panel ii). The endonuclease domain of the

L-protein of Bunyaviridae shows a strong similarity to the

IAV PA subunit [50, 51]. How the 30-OH of the capped

primer is transferred to the polymerase domain in the

L-proteins of the Arena- and Bunyaviridae and the PB1

active site in IAV is presently unknown.

Motion and fidelity

Rates of motion within the polymerase structure

Several steps need to occur to allow the RNA-dependent

polymerase to transition from an apo to a catalytically

active state (Fig. 5c). The first takes place when the poly-

merase binds the template RNA. To facilitate RNA

binding, the template channel has to undergo structural

rearrangements. The thumb domain of the HIV-1 RT, for

instance, has to move 20� relative to its position in the apo

structure [132], whereas the HCV RdRp needs to contract

its template channel from a width of 20.5 to 12.2 Å to

interact with ssRNA [133]. In strong contrast, primer-

dependent RdRps need to expand their template channel

from a constricted apo form to one that can accommodate

dsRNA [20, 27, 134]. In the PV RdRp this means a change

from 15.7 to 18.7 Å [113]. Present evidence also suggests

that the inherently flexible template channel of viral RNA-

dependent polymerases can sample its conformational

space rapidly [27, 133, 135], which thus makes it a very

dynamic structure in apo form and able to respond quickly

to an encounter with RNA.

The open complex that is formed after template binding

is highly selective for base-pairing [20], in part due

to motif D (see Sect. ‘‘The RNA-dependent polymerase

domain’’). In ?RNA virus RdRps, correct nucleotide

binding triggers the alignment of motif A to motif C and

forces the N-terminal aspartate of motif A to bind metal

ions [20]. This ostensibly subtle change completes the

RRM-fold of the palm subdomain (the closed complex,

Fig. 5a) and optimally positions the NTP for ribose binding

by motifs A and B [20]. Interestingly, in some RNA

polymerases the formation of the closed complex is fun-

damentally different. The HIV-1 RT, for instance, relies on

large finger domain movements to close the active site and

position the nascent RNA into the catalytic site, similar to

DdDps [20, 132]. In the RdRps of dsRNA viruses, the

RRM fold is already fully structured in the apo form, which

means that only minor rearrangements of the side-chains

are required to close their active site [17, 18].

The rate at which the residues in the active site sample

their space is faster (k = 500-800 s-1) than the rate-lim-

iting phosphoryl transfer step (k = 300 s-1) [136] (Fig. 5c,

kslowest). Biochemical evidence suggests that the rate with

which motif D takes the polymerase-RNA-NTP complex to

a closed state is k = 520 s-1 [137], which is only some-

what faster than chemistry (Fig. 5c, kslow). So far the

conformational change of motif D has only been observed

with NMR [44], because it has proved too transient for

crystallography. It is likely that the pre-catalytic confor-

mational step is also dependent on the stabilisation of

motifs A and F [27, 137].

After catalysis, the polymerase reverts to an open

complex to allow translocation of the template-nascent

strand duplex and pyrophosphate (PPi) release at

k = 8,100 s-1 (Fig. 5c) [20, 136]. Viral polymerases that

initiate de novo, however, must also transition from an

initiation to an elongation conformation. As discussed in

Sect. ‘‘Template recognition, initiation, elongation and

regulation’’, this involves rearrangements of several ång-

ström in the thumb domain and the C-terminus of the /6

RdRp [18] (Fig. 9b). Analogously, elements that stabilise

the initiation of ?RNA viruses such as the priming loop

need to undergo a conformational change as well.
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Furthermore, such RdRps need to expand their template-

nascent RNA exit channel again to facilitate the translo-

cation of the now partially dsRNA template [133]. It is

possible that such events, which only take place once

during the synthesis of an RNA molecule, direct the

polymerase briefly into a separate state or pause state

(Fig. 5c), possibly akin to the pause states that can be

observed during elongation [138]. Currently no experi-

ments, which would likely require single-molecule

techniques, have been performed to explore this.

Fidelity

As discussed in Sect. ‘‘The RNA-dependent polymerase

domain’’, polymerase fidelity is largely determined by the

conserved motifs of the polymerase domain. Furthermore,

in vitro experiments have shown that the incorporation of

nucleotides is indeed relatively robust [139, 140]. How-

ever, the error rate of RNA virus polymerases is

nevertheless several orders of magnitude higher than the

mutation rate of DNA genomes [141–143]. Moreover, it is

also easily influenced by many environmental factors. The

fidelity of the HIV-1 RT, for instance, can decrease 9-fold

when the pH of the in vitro reaction is raised from pH 6.5

to pH 8.0 [144]. Similarly, nucleotide analogues can have a

dramatic impact on the mutation rate of RNA virus RNA

synthesis as well [145], as do various divalent metals [136].

It has been argued that the relative low fidelity of RNA

virus polymerases is responsible for the ability of RNA

viruses to overcome bottlenecks imposed by host defences

and antivirals. Indeed, RNA virus strains that contained

high-fidelity polymerase were attenuated in vivo [46, 146].

Moreover, the growth of IAV, PV, FMDV, Chikungunya

virus (CHIKV), and Human enterovirus 71 (EV71) in the

presence of the nucleotide analogues such as ribavirin or

5-fluorouracil readily leads to the appearance resistance

after several passages [147–151]. It is likely that the

resistance mutations alter the positioning and dynamics of

the motifs involved in nucleotide selection, which in turn

optimises the RdRp’s ability to discriminate between NTPs

[27].

In spite of the typically high error rate of viral RNA

synthesis, dramatic mutations or deletions can be repaired.

It was shown, for instance, that the RdRp of Turnip crinkle

virus (TCV) is able to repair mutations in the 50-
CCUGCCCOH sequence of the 30-end of its genome using a

3-step process. Counter intuitively, the first step in this

process is the non-templated synthesis of an RNA primer,

which can next be aligned to the 30-end and extended in a

primer-dependent fashion [152]. A variant of this repair

mechanism has been observed for the DV RdRp, provided

that deletions were smaller than 6 nt and did not impair

circularisation of the genome [153]. Although the use of

non-templated nucleotide condensation for repair seems

paradoxical, since the reaction mostly creates a pool of

quasispecies, it is possible that the wild-type sequence is

eventually ‘filtered’ back from the quasispecies population

[153]. As non-templated polymerisation has been observed

for -RNA, dsRNA, and ?RNA RdRps [154–157]—in

some cases for polyA tailing of viral transcripts [155]—it

will be interesting to see if the conserved mechanism is

universally used for template repair.

Excision reaction

Although RNA virus polymerases do not contain a separate

30-to-50 exonuclease activity, they are able to perform a

reversal of the polymerase reaction (Fig. 5c) that is typi-

cally referred to as pyrophosphorolysis. Hence, using PPi

and the same active site residues as those involved in

nucleotide condensation, 30 nucleoside monophosphates

can be removed from the nascent strand, including misin-

corporated nucleotides or nucleoside analogues such as

lamivudine (3TC), zidovudine (AZT), and 30-dNTPs [158–

160]. Crucially, chain-terminated complexes are stable in

the presence of heparin, suggesting that pyrophosphoroly-

sis typically occurs in cis [160].

Some RNA virus polymerases can substitute PPi for an

NTP molecule (typically ATP) [159]. These triphosphates

are accommodated by an additional nucleoside binding

pocket, which orients the c-phosphate of the NTP towards

the active site to accept the leaving monophosphate group

[159]. In contrast to normal pyrophosphorolysis, this

reaction results in the formation of dinucleoside tetra-

phosphate molecule. Through mutation of the NTP binding

pocket, the NTP-dependent mechanism of excision can

evolve into a mechanism that confers resistance to nucle-

oside analogues [132, 159, 161].

Unknowns and closing remarks

The RdRp ensures that the viral genetic code is replicated

and transcribed, but only for some viruses it is understood

how these two processes are separated. In infections with

Alphaviridae, for instance, the switch between the two

processes is largely conducted by the viral protease, since

incompletely processed polyproteins only support replica-

tion [162]. In contrast, it is still unclear what dedicates the

IAV RdRp to either replication or transcription [163].

Various co-factors have been discovered that bias the

activity of the RdRp towards one or the other pathway,

including other viral proteins [164] and small viral RNAs

(svRNA) [165]. In Nidoviridae, the regulation of tran-

scription and replication also has to account for the

synthesis of both full-length and multiple subgenome-
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length mRNAs [166]. Again, additional viral proteins have

been proposed to guide this process, such as nsp1 of EAV

[167], but the molecular details are still unclear.

Ultimately, our knowledge of RNA virus replication

should lead to the discovery and development of new RNA

virus inhibitors. A promising new inhibitor that has already

been shown to affect the replication of many RNA viruses,

including IAV, PA, WNV, YFV, and MACV, is the

nucleotide analogue Favipiravir (T-705) [168]. Specific

virus-specific inhibitors have also been found based on new

polymerase structures. Co-crystallisation of IAV PB1 and

PB2, for instance, has let to the discovery of peptides that

interfere with RdRp assembly [169, 170]. In addition,

screening assays are rapidly becoming invaluable for drug

discovery and have led, for instance, to the identification of

compounds that act as in vitro inhibitors of the IAV

endonuclease activity [171]. Research has also demon-

strated that general polymerase principles exist that may

inspire strategies for a rapid and standardised design of

live, attenuated vaccine strains [44]. In part, this latter

insight relies on polymerase dynamics, which is also

pointing to new druggable sites elsewhere in the structure

[27, 133, 172].

In conclusion, it is clear that the RNA replication and

transcription strategies vary greatly among RNA viruses.

But many of the biochemical and biophysical properties

of the polymerase domain have been uncovered, allow-

ing for the development of novel antiviral strategies.

Fundamental research into RNA-dependent polymerases

is thus proving to be invaluable, and will likely continue

to be, in combating current and emerging RNA virus

infections.

Acknowledgments Apologies to colleagues whose work could not

be cited due to length restrictions. This work was supported by Grants

021.001.037 and 825.11.029 from the Netherlands Organization for

Scientific Research (NWO), Grant 098721/Z/12/Z from the Wellcome

Trust and a Kemp postdoctoral fellowship from Lincoln College

Oxford. Dr. Eric Snijder, Dr. Ervin Fodor, and Dr. Frank Vreede are

kindly acknowledged for helpful comments and suggestions.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

1. Butel JS (2000) Viral carcinogenesis: revelation of molecular

mechanisms and etiology of human disease. Carcinogenesis

21:405–426

2. Baltimore D (1971) Expression of animal virus genomes. Bac-

teriol Rev 35:235–241

3. Fraaij PL, Bodewes R, Osterhaus AD, Rimmelzwaan GF (2011)

The ins and outs of universal childhood influenza vaccination.

Future Microbiol 6:1171–1184

4. Medina RA, Garcı́a-Sastre A (2011) Influenza A viruses: new

research developments. Nat Rev Microbiol 9:590–603

5. Patel MM, Glass R, Desai R, Tate JE, Parashar UD (2012)

Fulfilling the promise of rotavirus vaccines: how far have we

come since licensure? Lancet Infect Dis 12:561–570

6. Kyle JL, Harris E (2008) Global spread and persistence of

dengue. Ann Rev Microbiol 62:71–92

7. Perlman S, Netland J (2009) Coronaviruses post-SARS: update

on replication and pathogenesis. Nat Rev Micro 7:439–450

8. Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA,

Cummings DA, Alabdullatif ZN, Assad M, Almulhim A,

Makhdoom H, Madani H, Alhakeem R, Al-Tawfiq JA, Cotten

M, Watson SJ, Kellam P, Zumla AI, Memish ZA, KSA MERS-

CoV Investigation Team (2013) Hospital outbreak of middle

east respiratory syndrome coronavirus. N Engl J Med

369:407–416

9. Elliot RM, Brennan B (2014) Emerging pleboviruses. Curr Opin

Virol 5:50–57

10. Bruenn JA (2003) A structural and primary sequence compari-

son of the viral RNA-dependent RNA polymerase. Nucleic

Acids Res 31:1821–1829

11. Bruenn JA (1991) Relationships among the positive strand and

double-strand RNA viruses as viewed through their RNA-

dependent RNA polymerases. Nucleic Acids Res 19:217–226

12. Hu WS, Hughes SH (2012) HIV-1 reverse transcription. Cold

Spring Harb Perspect Med 2:a006882

13. Gorbalenya AE, Pringle FM, Zeddam J, Luke BT, Cameron CE,

Kalmakoff J, Hanzlik TN, Gordon KH, Ward VK (2002) The

palm subdomain-based active site is internally permuted in viral

RNA-dependent RNA polymerases of an ancient lineage. J Mol

Biol 324:47–62

14. Gorbalenya A, Pringle F, Zeddam J, Luke B, Cameron C,

Kalmakoff J, Hanzlik T, Gordon K, Ward V (2002) The palm

subdomain-based active site is internally permuted in viral

RNA-dependent RNA polymerases of an ancient lineage. J Mol

Biol 324:47–62

15. Lang DM, Zemla AT, Zhou CL (2013) Highly similar structural

frames link the template tunnel and NTP entry tunnel to the

exterior surface in RNA-dependent RNA polymerases. Nucleic

Acids Res 41:1464–1482

16. Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-

dependent RNA polymerase of poliovirus. Structure 5:1109–1122

17. Tao L, Farsetta DL, Nibert ML, Harrison SC (2002) RNA

Synthesis in a Cage—structural studies of reovirus polymerase

k3. Cell 111:733–745

18. Butcher SJ, Grimes JM, Makeyev EV, Bamford DH, Stuart DI

(2001) A mechanism for initiating RNA-dependent RNA poly-

merization. Nature 410:235–240

19. Bressanelli S, Tomei L, Rey FA, De Francesco R (2002)

Structural analysis of the hepatitis C virus RNA polymerase in

complex with ribonucleotides. J Virol 76:3482–3492

20. Gong P, Peersen OB (2010) Structural basis for active site

closure by the poliovirus RNA-dependent RNA polymerase.

Proc Natl Acad Sci USA 107:22505–22510

21. Ding J, Das K, Hsiou Y, Sarafianos SG, Clark JA, Jacobo-

Molina A, Tantillo C, Hughes SH, Arnold E (1998) Structure

and functional implications of the polymerase active site region

in a complex of HIV-1 RT with double-stranded DNA and an

antibody Fab fragment at 2.8 Å resolution. J Mol Biol
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