Skip to main content
. Author manuscript; available in PMC: 2014 Oct 24.
Published in final edited form as: Jpn J Appl Phys (2008). 2014;53(7 0):07KF22. doi: 10.7567/JJAP.53.07KF22

Table I.

Expression of the nine investigated PDFs. Here ϕ(z)=exp(z22)2π is the PDF of a standardized normal distribution, Γ(m)=0xm1exdx is the gamma function, ϕlogis(z) = ez(1 + ez)–2 is the PDF of a standardized logistic distribution.

Family Probability Density Function (r ≥ 0 unless specified) Parameter interpretation
Rayleigh (RA) f(r;σ)=rσ2exp(r22σ2) σ > 0: scale
Normal (NM) f(r;μ,σ)=1σϕ(rμσ),rR μ: mean; σ > 0: standard deviation
Lognormal (LM) f(r;μ,σ)=1σrϕ(lnrμσ),r>0 μ: location
σ > 0: scale
Nakagami (NA) f(r;m,Ω)=2mmr2m1Γ(m)Ωmexp(mΩr2) m ≥ 0.5: shape
Ω > 0: scale
Weibull (WE) f(r;α,β)=βαβrβ1exp[(rα)β] α > 0: scale
β > 0: shape
Loglogistic (LL) f(r;μ,σ)=1σrϕlogis(lnrμσ),r>0 μ: location
σ > 0: scale
Gamma (GA) f(r;a,b)=1baΓ(a)ra1exp(rb) a > 0: shape
b > 0: scale
Generalized extreme value (GE) f(r;k,μ,σ)=1σexp[(1+krμσ)1k](1+krμσ)11k with 1+krμσ>0 k ≠ 0: shape
μ: location
σ > 0: scale
Generalized gamma (GG) f(r;a,b,c)=crac1bacΓ(a)exp[(rb)c] a > 0, c > 0: shape
b > 0: scale