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ABSTRACT
Aims To describe two approaches for improving the
detection of glaucomatous damage seen with optical
coherence tomography (OCT).
Methods The two approaches described were: one, a
visual analysis of the high-quality OCT circle scans and
two, a comparison of local visual field sensitivity loss to
local OCT retinal ganglion cell plus inner plexiform (RGC+)
and retinal nerve fibre layer (RNFL) thinning. OCT images
were obtained from glaucoma patients and suspects using
a spectral domain OCT machine and commercially available
scanning protocols. A high-quality peripapillary circle scan
(average of 50), a three-dimensional (3D) scan of the optic
disc, and a 3D scan of the macula were obtained. RGC+
and RNFL thickness and probability plots were generated
from the 3D scans.
Results A close visual analysis of a high-quality circle
scan can help avoid both false positive and false negative
errors. Similarly, to avoid these errors, the location of
abnormal visual field points should be compared to regions
of abnormal RGC+ and RNFL thickness.
Conclusions To improve the sensitivity and specificity of
OCT imaging, high-quality images should be visually
scrutinised and topographical information from visual fields
and OCT scans combined.

INTRODUCTION
At one time, there was only one commercially avail-
able optical coherence tomography (OCT) machine
and glaucoma specialists depended upon the
summary report (figure 1A) based upon the most
commonly used protocol. Numerous studies using
this time-domain (td) OCT machine found that the
average retinal nerve fibre layer (RNFL) thickness
(arrow 1), clock hour thickness (2), and quadrant
thickness (3) provide good sensitivity and specifi-
city for detecting glaucomatous damage (see refer-
ences1–4 for reviews). These RNFL thickness
measures were obtained separately from three scans
and averaged for this report; the machine was too
slow to average multiple images within a scan
protocol. One of these scans is shown in figure 1A
(4) and the raw data for this same scan is enlarged
and presented in grey scale in figure 1B. Given the
relatively poor resolution of this peripapillary
image, the success of this report is a testimonial to
the robustness of these derived RNFL measures, as
well as to those who developed the technique and
this report.5–8

With the advent of newer technology, such as the
spectral domain (sd) OCT, the quality of the images
became substantially better. For example, compare
the scan in figure 1B to the sdOCT scan in
figure 1C. The improvement in quality was partly
due to improved spatial resolution, but was largely

due to the averaging of multiple images within a
scan (50 in the case of figure 1C) made possible by
a substantially faster scan rate. In addition, because
of these improvements, so-called three-dimensional
(3D) scans (ie, cube or volume scans) of the regions
around the disc and macula became possible. In
particular, multiple lines scans can be obtained
within a single scan protocol. From these images,
2D measures of the retinal ganglion cell (RGC) and
RNFL thickness can be derived.
While the sdOCT allows us to see spatial detail

not easily seen on the earlier tdOCT scans, our ana-
lyses have not kept pace in at least two ways. First,
one of the advantages of sdOCT is that it provides
topographical information about RGC and RNFL
abnormalities. Thus, local RGC and RNFL loss can
be topographically compared to local loss in visual
field (VF) sensitivity,9 10 as patients are routinely
tested with static automated perimetry (SAP). This
should improve sensitivity and specificity for detect-
ing glaucomatous damage as SAP measurement
errors should be largely independent of OCT meas-
urement errors. Second, the improved sdOCT
images allow for a direct visual analysis of the scans,
much the way MRI scans are analysed, rather than
depending entirely upon computer-driven summary
statistics.
The purpose here is to describe two approaches

for improving the detection of glaucomatous
damage; one approach combines a topographical
comparison of OCTand VFs and a second involves a
qualitative analysis of OCT scans. These approaches
are illustrated below in a one-page report.

METHODS
The data from five eyes of five patients, were used to
illustrate our approach. All five had glaucomatous
optic neuropathy on stereophotography evaluation
and all were part of previously published studies.11 12

They had 24-2 and 10-2 VFs tests obtained with the
SITA-standard protocol (Humphrey VF Analyzer;
Carl Zeiss Meditec, Dublin, California, USA); for
inclusion, the mean deviation (MD) on the 24-2 VF
had to be better than −6 dB.12 Written informed
consent was obtained from all of the participants.
Procedures followed the tenets of the Declaration of
Helsinki, and the protocol was approved by the insti-
tutional review board of Columbia University.

OCT protocol
A sdOCT machine (3D OCT-2000, Topcon) and
the following three scan protocols were used:
6.0×6.0 mm 3D disc (512 A-scans by 128
B-scans); 6.0×6.0 mm 3D macula (512 A-scans by
128 B-scans); and 3.4 mm dia. circle (average of 50
scans; 1024 A-scans). The circle protocol involved
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averaging 50 individual scans and thus produced an image of
relatively high-quality. (Note that shadowgrams (see inset in
panel E of figures 3 (green arrow), 5 and 6) can be examined
for artefacts such as excessive eye movements, blinks, etc.)

OCT analysis
Peripapillary RNFL analysis
The high-quality peripapillary image produced by the circle
scan was qualitatively analysed as described in the Results. In
addition, this image was segmented by the machine’s software

and a RNFL thickness plot produced. While the circle scan has
the advantage of being of high quality, it can be off-centre if the
patient has considerable trouble fixating or the operator is not
careful. The fundus photo with the superimposed scan location
(inset in panel A of figures 2, 3, 5 and 6) provides some infor-
mation about how well centred the scan was.

The commercial software also derives a peripapillary RNFL
thickness plot from the segmentation of the 3D disc scan, by
centring a circle after the scan is obtained. To distinguish this
plot from the one based upon the high-quality averaged circle

Figure 1 Peripapillary retinal nerve
fibre layer data from Patient 1,
showing (A) the report from the Zeiss
Stratus time-domain optical coherence
tomography (tdOCT) machine based on
the average of 3 scans for both eyes
(RNFL Thickness (3.4) protocol), (B) the
TSNIT circle scan path on top of
infrared fundus (left) and a single raw
circle tdOCT image (right) for the right
eye, (C) the sdOCT TSNIT circle scan
path on top of fundus (left) and
averaged circle sdOCT image (right) for
the same eye, and (D) the sdOCT
NSTIN circle scan path (left) and
averaged circle sdOCT image (right).
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scan, it will be called the ‘extracted circle RNFL plot’. (Note: As
technological advances improve the quality of the 3D scan, the
circle scan can be replaced by an image of the peripapillary
circle extracted from the 3D scan.)

3D RNFL and RGC+ thickness maps
As previously described,9 RGC+ and RNFL thickness maps
were derived from the macular and disc 3D scans and turned
into probability plots by comparing the thicknesses to normative
values.

RESULTS
Below we describe elements of a report for detecting RGC/
RNFL damage based upon sdOCT imaging. The report is

designed to illustrate the power of combining VF and OCT
information, as well as the value-added in carefully examining
the OCT images.

Reports should display RNFL thickness plots as NSTIN,
not TSNIT plots
In the original tdOCT report, the peripapillary circle scan
(arrow 4 in figure 1A) was presented with the nasal quadrant
(N) in the middle and the temporal (T) quadrant divided
between the left and right ends. The accompanying RNFL thick-
ness plot (arrow 5 in figure 1A) has been called the ‘TSNIT
plot’. Instead, we recommend using a ‘NSTIN plot’, in which
the most important portion of the disc for visual function, the
temporal quadrant, is in the middle (figure 1D). As illustrated

Figure 2 Visual field (VF) and
spectral domain optical coherence
tomography (sdOCT) data for Patient 2
along with models relating VF
locations to OCT, all shown as if for
right eye. (A) The NSTIN averaged
circle sdOCT image with
computer-derived retinal nerve fibre
layer (RNFL) segmentation (green lines)
and corresponding circle scan path on
top of fundus (inset). (B) The averaged
circle RNFL thickness (grey dashed
line) calculated based on the
segmentation in (A) and the extracted
circle RNFL thickness (solid black line),
with regions corresponding to the
superior (magenta) and inferior (dark
blue) macula in unique colours. Both
RNFL thickness plots are superimposed
on coloured regions indicating the
95% to 5% (green), 5% to 1%
(yellow), and less than 1% (red)
ranges of normative data. The red
vertical lines indicate the average
location of the major blood vessels in
a group of patients. (C) The 24-2 VF
for the same patient with (D) a model
relating the locations of the VF to
regions of the circle scans. (E) The
10-2 VF for the same patient with (F)
a model relating the locations of the
VF to regions of the circle scans. The
bold dark blue line indicates the
macular vulnerability zone (MVZ).
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below, this allows for easier visualisation of the relationship
between RNFL thinning and VF defects.

Reports should contain an enlarged image of the circle scan
Figure 2A shows the averaged circle scan from Patient 2 with
the computer-derived borders of the RNFL in green. There are
two reasons for including an image larger than seen in the
tdOCT report in figure 1A (arrow 4). First, the validity of the
computer-marked borders can be assessed. All current OCT
computer algorithms make mistakes (segmentation errors),
which will be typically overlooked if the scan image is presented
as a small inset as in figure 1A. Epiretinal membranes, vitreous
detachments, and poor image contrast can lead to segmentation
errors and thus errors in the associated RNFL thickness mea-
sures. The enlarged, averaged circle scan has sufficient detail so
that these errors can be identified.

Second, the high-quality image allows for a qualitative assess-
ment of the details of the scan. For example, in figure 2A local

RNFL thinning can be seen in two regions (see white arrows).
Other details of interest can be seen in some circle scans as illu-
strated below.

Look for regions of abnormal thinning on the RNFL plot and
compare to scan
After scrutinising the averaged circle scan image, the RNFL
thickness plots should be examined. The dashed and solid
curves in figure 2B are the RNFL thickness plots from the aver-
aged circle and 3D scans, respectively. If these curves agree and
the segmentation seen on the scan appears accurate, these plots
can be trusted. If they disagree, it is usually possible to decide
why.

For example, the averaged circle (dashed) and extracted circle
(solid) RNFL thickness plots from Patient 3 in figure 3B disagree
in two locations. First, the thickness in the temporal quadrant
and part of the superior quadrant is slightly greater in the case
of the averaged circle, probably because the circle scan is off-

Figure 3 The single-page spectral domain optical coherence tomography report for Patient 3 showing (A) an enlarged averaged circle scan in
NSTIN view as in figure 2A, (B) the corresponding retinal nerve fibre layer (RNFL) thickness as in figure 2B, (C) the 2D RNFL thickness from the 3D
disc scan, (D) the 2D RNFL (left) and retinal ganglion cell (RGC)+ (right) thicknesses from the 3D macular scan, (E) the co-registered macular and
disc 2D RNFL thickness probability plots in field view with the 24-2 and 10-2 visual field (VF) test point probabilities superimposed (see colour bar)
with an inset of the co-registered shadowgrams of the 3D scans (green arrow), and (F) the macular 2D RGC+ thickness probability plot in field view
with the 10-2 VF test point probabilities superimposed (see colour bar) as in (E).
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centre; see the fundus photograph (inset in panel A). Second,
and more important, there is a suggestion of a small local defect
on the extracted circle RNFL plot (solid), but not on the aver-
aged circle plot (dashed). A close examination of the scan in
panel A, indicates a small, local thinning, which the algorithm
appears to underestimate on the averaged circle scan. This is dis-
cussed further below.

After assessing the veracity of the RNFL plot (figure 2B), the
regions of abnormal thinning can be identified. In this case,
the RNFL plot falls well below the 99% confidence limit in the
same regions (black arrows in figure 2B) that show local thin-
ning on the scan in figure 2A (white arrows).

Examine the general topographical agreement between
peripapillary RNFL thinning and loss in VF sensitivity
With a little practice, the topographical agreement between peri-
papillary RNFL thinning and VF defects can be assessed qualita-
tively. To make this assessment, one needs to take into
consideration the relationship between regions of the disc and
regions of the VF.

Figure 2 illustrates this relationship. The 24-2 pattern devi-
ation (PSD) plot for this eye is shown in panel C. The red and

light blue arrows in panel B mark the temporal half of the
circle scan, that is, they extend from +90° to −90° as shown in
panel D. The corresponding region of the 24-2 VF is enclosed
within the light blue and red contours in panel C. These con-
tours were drawn to be in general agreement with previous
work.13 14 While these contours are approximate, and will
differ somewhat among individuals,13 15 they are useful for
deciding whether there is agreement among the OCT and VF
findings.

The dashed red and blue horizontal lines along the x-axis in
figure 2B show the regions of the RNFL plot that correspond to
the abnormal regions of the VF (ie, the points falling within the
dashed ellipses in C). In this case there is excellent agreement.

The RNFL plot also suggests there is damage in the macula,
defined here as the central ±8°. To facilitate the detection of
macular damage on the RNFL plots, the regions of the scan
associated with the RGC fibres from the central ±8° retina are
coded as magenta (superior retina/lower VF) and dark blue
(inferior retina/upper VF). These boundaries (see panel F), as
well as the corresponding regions on the 10-2 (panel E), are
based upon a recent map of the macula.16 Note that macular
damage is confirmed by the 10-2 VF in panel E.

Figure 4 (A) The 24-2 and (B) 10-2 visual field (VF) data for Patient 3. (C) The 10-2 VF data for Patient 4, (D) the 24-2 VF data from 2013 for
Patient 5, and (E) enlargements of a hole observed in the averaged circle scan of Patient 5 in both 2013 (left) and 2010 (right).
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Look for macular damage especially in the macular
vulnerability zone
We have identified two types of macular damage on OCT
scans.12 One type, considered below, is diffuse/widespread and
is typically relatively shallow and difficult to identify with RNFL
scans. The second tends to be deeper and to occur in a relatively
narrow portion of the inferior disc labelled macular vulnerabil-
ity zone (MVZ) in figure 2F.

This local macular damage easily can be missed if one does
not look closely at the high-quality averaged circle scan and the
RNFL plots. Figure 3A,B shows what appears to be a relatively
normal RNFL thickness plot, although there is probably local
nasal thinning far outside the 24-2 VF. The commercial report
(not shown) indicated normal RNFL thickness in the inferior,
temporal and superior quadrants and the associated clock
hours. The 24-2 VF (figure 4A) appeared normal as well with a
MD of −1.50 dB, a PSD of 1.16 dB, and a glaucoma hemifield
test (GHT) within normal limits. However, as mentioned above,
the extracted circle RNFL plot from the 3D scan (solid curve in
figure 3B) shows a very local abnormal region (arrow). Given the
VF results, this local abnormality could easily be overlooked. In
any case, the scan in figure 3A shows a small local thinning (white

arrow). This local thinning is in the middle of the MVZ, which is
shown as the horizontal dark blue line. The damage in the MVZ
can be missed on 24-2 VF tests because they poorly sample the
region of glaucomatous damage of the macula seen on OCT.16

The patient’s 10-2 VF (figure 4B) shows a subtle defect in the
general region one would expect from the model of macular
damage.16 However, given the subtle nature of both the OCT
and VF changes, there is reason for scepticism. Figure 3 is our
one page report of RGC/RNFL damage; the other panels,
described below, confirm the damage is real.

Examine the RGC layer thickness maps obtained from the
macular 3D scan
RGC thickness maps are useful for identifying macular
damage, which can be missed on peripapillary RNFL analysis.
In general, the commercial machines supply an analysis of
macular 3D scans that includes RGC thickness. In some cases,
this is the thickness of the combined RGC, inner plexiform
layer (IPL) and RNFL, while in others it is the thickness of the
combined RGC+IPL (called here RGC+). Figure 3D (right
panel) shows the patient’s RGC+ thickness derived from the
macular 3D scan and displayed in pseudo-colour. By

Figure 5 The single-page spectral domain optical coherence tomography report for Patient 4 as in figure 3 showing diffuse retinal ganglion cell
(RGC)+ thinning (panel D, right). The agreement of the RGC+ (panel F) and retinal nerve fibre layer (RNFL) (panel E) probability plots with the
visual field (VF) probability plot suggests diffuse macular damage.
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comparing the local thickness values to healthy controls, a
probability plot can be created as shown in figure 3F. This
probability plot is displayed in field view. The abnormally thin
RGC+ layer (black arrows in figure 3D,F) argues for macular
damage in this eye.

Examine the RNFL layer thickness maps obtained from
macular and disc 3D scans
From the 3D scans of the disc most commercial machines
produce RNFL thickness plots as shown in figure 3C. A RNFL
thickness plot can also be produced for the macular 3D scans
as shown in figure 3D (left). By comparing the thickness values
to healthy controls, this thickness plot can be turned into a
probability plot. For the report, the RNFL probability plots
from the macular and disc 3D scans are combined by aligning
the blood vessels and then displayed in field view (figure 3E).
The local macular damage is clearly apparent in this RNFL

thickness analysis as indicated by the red arrows in panels C, D
(left) and E.

Examine the topographical agreement between local RNFL
and RGC+ thinning and local loss in VF sensitivity
The best way to assess the topographical agreement between
RNFL thinning and VF sensitivity loss is to superimpose the
probability plots for each as previously described.9 This analysis
is shown on the right side of our report.

Figure 3F shows the points from this patient’s 10-2 VF
(figure 4B) superimposed on the field view of the RGC+ prob-
ability plot. The significance levels of the 10-2 points and RGC
+ thickness are colour-coded using the same continuous prob-
ability scale. To make this comparison, the locations of the VF
points need to be adjusted to account for the displacement of
the RGCs in the fovea.9 10

In a similar manner, in figure 3E the points of the 24-2 and
10-2 VF are superimposed upon the RNFL probability plot

Figure 6 The single-page spectral domain optical coherence tomography report for Patient 5 as in figure 3 illustrating the need for a close scrutiny
of peripapillary scans (panel A). The peripapillary retinal nerve fibre layer (RNFL) thickness plot (panel B) and the RNFL probability plot (panel E)
suggest an abnormally thin RNFL associated with the upper visual field. However, this is probably a false positive, as indicated by a close
examination of the location of the inferior temporal blood vessels (red arrow in panel A) in this eye to the average location in a group of patients
(purple arrow in panel B), as well as the abnormally thick RNFL in the temporal quadrant. The repeat visual fields (VFs) are consistent with this
interpretation. On the other hand, the presence of a hole (black arrow in panel A) suggests that there may be very early glaucomatous damage in
the superior disc.
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(field view) and coded with the same continuous probability
scale. There is good local agreement between the OCT and VF
results for the upper VF/inferior retina.

While it may be difficult for manufacturers to incorporate VF
data into their software, it should be relatively easy for them to
indicate the 24-2 and 10-2 locations on the OCT probability
plots and leave it to the clinician to circle the VF points that are
abnormal.

Using the report to detect diffuse macular damage
The report for Patient 4 in figure 5 illustrates an example of
what we believe is diffuse macular damage.12 This patient’s
10-2 VF (figure 4C) had a MD of −4.15 dB (p<1%) and the
total deviation values showed a relatively homogeneous loss
across the VF. Given that the PSD was normal, many would
attribute this diffuse loss of sensitivity to non-glaucomatous
factors. The peripapillary RNFL plot in figure 5B is also
ambiguous with the region corresponding to the macula
(magenta and dark blue) falling in the normal (green) or border-
line (yellow) region. The comparison of RGC+ and VF abnor-
malities in panel F, however, suggests diffuse macular damage.
The RNFL and VF comparison in panel E agrees. On exam, this
patient did not have cataracts, but did have a best corrected
visual acuity (BCVA) of 20/50, also consistent with diffuse
damage.

Carefully examine the actual scan images
There is much to be learned by carefully examining the actual
OCT scan images. Below, we illustrate three examples.

False positives and the location of blood vessels
Figure 6 shows our report for the right eye of Patient 5. A glau-
coma specialist noted peripapillary atrophy and diffuse thinning
on fundus stereo photograph. The report from the commercial
machine showed abnormal RNFL thinning in the inferior quad-
rant. Our report appeared to confirm this finding (black arrows
in figure 6B). However, while the OCT analysis was consistent
with local damage, the fundus exam and VF (figure 4D) were
consistent with diffuse damage. On closer analysis, we con-
cluded that the OCT result was a false positive, an example of
what has been called ‘red disease’.17 Notice the abnormally
thick RNFL in the temporal quadrant in figure 6A,B. The major
blood vessels (BVs) in this eye are located more temporally than
the average location for the controls. The red lines in panel B
show the average locations of the major four groups of BVs for
a group of patients.18 The red arrow in panel A indicates the
location of the inferior-temporal (IT) BVs in this eye, while the
purple arrow shows the average location of the IT BVs. As
expected, the location of the IT BVs correspond to the location
of the inferior peak of the RNFL plot (peak of green in panel
A) in healthy controls.19 This is, in part, due to the direct con-
tribution of the BVs to the RNFL thickness and in part due to
the fact that the thickest region of RNFL tends to be close to
the major BVs.19 In any case, the location of the IT BVs in this
eye is probably the reason for the abnormally thick RNFL in the
temporal quadrant and the abnormally thin RNFL in the infer-
ior quadrant. The 24-2 VF is probably a false positive as well.
Note that the 24-2 test from 2012, 1 year earlier, was normal,
while the 24-2 VF obtained 2 years earlier showed diffuse loss.

Hypodense (holes)
While the inferior quadrant of the RNFL profile of this eye
illustrates a false positive OCT result, the scan in figure 6A has
evidence of local damage in the superior quadrant of the disc.

In particular, there is a hypodense region (white arrow in
figure 6A). We have shown that these holes are actually tunnels
that follow an arcuate pattern and are almost surely very local,
and very small, RNF bundle defects.20 We have only seen them
in patients with glaucoma or patients who are glaucoma sus-
pects.21 They also show progression as seen for this eye in
figure 4E.

Examine horizontal and vertical macular scans for outer retinal
damage
Finally, we routinely examine the 3D macular scans, as well as a
high-quality horizontal line scans through the macula, for signs of
outer retinal damage. This is particularly important in eyes with
reduced visual acuity. It is common to see previously unnoticed
signs of epiretinal membranes, age-related macular degeneration,
oedema, and macular holes in glaucoma patients and suspects.22

DISCUSSION
While once there was a single OCT report used to identify glau-
comatous damage, now every commercial machine offers more
than one glaucoma report. However, by and large, these reports
fail to take full advantage of the spatial detail available. We
argued above that the effectiveness of the OCT could be
improved by a qualitative analysis of enlarged, high-quality
images and by a topographical comparison of the abnormal
regions seen on OCT to those seen on VFs. Our one-page
report was developed to incorporate this information.

However, no one report will suffice. The high-quality OCT
scans have all the complexities of MRI scans, as well as better
spatial resolution. Yet, MRI scans are not analysed by computer
algorithms and summarised in simple summary statistics and
diagrams, as is typically the case with OCT scans. In fact, relying
solely on summary statistics plays a major role in apparent dis-
agreements between the results of VF and OCT tests.23 In the
case of MRI scans, radiologists read and interpret the scans for
other specialists, while in the case of OCT scans, ophthalmolo-
gists are left to interpret the scans on their own.

While the report developed here is meant to help ophthal-
mologists in this interpretation, it will not suffice. On one hand,
the summary statistics and diagrams seen in figure 1A are still of
use and new summary statistics combining VF and OCT infor-
mation are being developed.24–30 The sensitivity and specificity
of these various summary statistics need to be compared to
alternative analyses, such as the report describe here with and
without summary statistics. On the other hand, the full power
of the OCTwill rely on a careful analysis of high-quality images
performed by individuals trained to read these scans, much the
way a radiologist reads an MRI. This will be increasingly the
case as OCT image quality continues to improve. Admittedly,
for many cases a simple report or summary statistic may do.
However, for difficult and ambiguous cases, the non-specialist
may need to rely on a member of their department/group who
has considerable experience analysing OCT scans.
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