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The mechanical interaction between Schwann cells (SCs) and their micro-

environment is crucial for the development, maintenance and repair of the

peripheral nervous system. In this paper, we present a detailed investiga-

tion on the mechanosensitivity of SCs across a physiologically relevant

substrate stiffness range. Contrary to many other cell types, we find that the

SC spreading area and cytoskeletal actin architecture were relatively insensi-

tive to substrate stiffness with pronounced stress fibre formation across all

moduli tested (0.24–4.80 kPa). Consistent with the presence of stress fibres,

we found that SCs generated large surface tractions on stiff substrates and

large, finite material deformations on soft substrates. When quantifying the

three-dimensional characteristics of the SC traction profiles, we observed a sig-

nificant contribution from the out-of-plane traction component, locally giving

rise to rotational moments similar to those observed in mesenchymal embryo-

nic fibroblasts. Taken together, these measurements provide the first set of

quantitative biophysical metrics of how SCs interact with their physical micro-

environment, which are anticipated to aid in the development of tissue

engineering scaffolds designed to promote functional integration of SCs into

post-injury in vivo environments.
1. Introduction
The biophysical capabilities of Schwann cells (SCs) in the context of their

in vivo-like mechanical environments have remained understudied until

now. SCs in the body require the maintenance and versatility of their bipolar

phenotype across a range of biomechanical environments to perform their

functions. They play a pivotal role in the development, maintenance and

regeneration of axons in the peripheral nervous system (PNS) [1–3]. SCs are

derived from neural crest cells and can either be myelinating or non-myelinat-

ing [3]. In a process called ‘radial sorting’ during development of peripheral

nerves, SCs associate with, and segregate axons based on their thickness

(figure 1a). After sorting is complete, myelin sheaths are deposited by SCs

around axons that are larger than 1 mm in diameter. This provides axons

with the required insulation for fast moving, saltatory conduction of electrical

signals [4] (figure 1b). After injury in the PNS (figure 1c), SCs present at the

distal stump of the nerve become activated, and migrate to the injury site.

There, they enter mitosis, mitigate Wallerian degeneration and provide

axons with a path to grow along by forming an aligned trail of bipolar

cells, commonly referred to as bands of Büngner [5,6]. In injuries, even at

the scale of millimetres, endogenous SCs respond and are capable of guiding

nerve fibres towards the distal stump (figure 1c). Moreover, although natu-

rally not found in the central nervous system, transplantation of exogenous

SCs into the brain [7] or the spinal cord [8,9] has promoted axonal regener-

ation. The means by which SCs accomplish successful migration and

morphological organization across these scenarios remain unknown. Under-

standing the mechanosensitive behaviour of SCs in tailorable mechanical
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Figure 1. SCs perform a range of functions in the body. (a) During devel-
opment, SCs sort axons based on their diameter and (b) deposit myelin on
larger axons to increase conduction velocity of action potentials. (c) SCs aid
axon regeneration by migrating into an injury site after a small injury, or into
a transplanted nerve guidance channel (NGC) after a large injury. Once there,
SCs proliferate and align. NGCs can also be pre-seeded with exogenous SCs to
enhance regeneration. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140247

2

environments could play an important role in guiding scaf-

fold designs to promote efficient functional integration of

SCs in vivo.

It is known that not only do cells interact with their environ-

ment biochemically, but also physically; for example, substrate

stiffness modulates cell functions such as cell adhesion,

motility and spreading [10–14]. While the role of substrate stiff-

ness on SCs has begun to be acknowledged [15], here we

present an experimental system of significance to the nervous

system environment, in its investigation of stiffnesses relevant

to the nervous system, mediated by laminin, a molecule

present in developmental peripheral axon tracts and upregu-

lated following injury. To gain insights into this physical

interaction, we investigated and quantified the three-

dimensional tractions, cell morphologies and cell spreading

behaviour of SCs on polyacrylamide (PA) gels ranging in stiff-

ness from 0.24 to 4.80 kPa. This range is consistent with

reported stiffnesses in the nervous system [16,17]. We also

characterized the correlation of morphology with substrate

stiffness, because SCs are reported to exhibit different types

of morphologies in vitro [18,19]. Interestingly, we found that

the bipolar morphology, the most common morphology

in vivo, is the most prevalent across all stiffnesses in our study.

Perhaps our most striking finding is the observation of simi-

lar cytoskeletal architecture with the existence of pronounced

actin stress fibres across all elastic moduli tested, even on

moduli as soft as 0.24 kPa. Because the formation and existence

of stress fibres usually indicates a highly contractile stress

state, we quantified the three-dimensional displacement and

traction signature of SCs as a function of substrate stiffness.

Using a recently reformulated three-dimensional traction

force microscopy (three-dimensional TFM) approach capable

of accounting for finite material deformations, we found that

on the most compliant PA gels, SCs generate strains large
enough to cause significant substrate surface deformations,

highlighting the contractile capability of these cells. By analys-

ing the spatial distribution of the three-dimensional SC

displacement and traction fields, we found that SCs generate

highly localized out-of-plane moments and that their size, dis-

tribution and characteristics are similar to recent findings for

mouse embryonic fibroblasts [20]. Taken together, these results

provide important insights into the mechanocharacteristics of

SCs that should be considered in the design of regenerative

tissue engineering scaffolds and nerve conduits.
2. Material and methods
2.1. Three-dimensional traction force microscopy
Cell-generated full-field displacements and tractions were computed

using our recently developed large deformation three-dimensional

traction force microscopy (three-dimensional LDTFM) method [21].

Briefly, three-dimensional timelapsed volumetric images of fluor-

escent beads embedded in PA substrates were recorded using laser

scanning confocal microscopy (LSCM). A new fast iterative digital

volume correlation (FIDVC) algorithm was used to track the

motion of the embedded fluorescent beads in all three dimensions

between each time increment [22]. Owing to the spatial refinement

of the subvolume correlation windows, the FIDVC is capable of

capturing large nonlinear displacement fields with high spatial resol-

ution while maintaining low computation times (�1.5 min per time

increment for a typical image size of 512 � 512� 160 voxels). The

final subvolume spacing, the parameter that controls the displace-

ment spatial grid resolution, was set to eight voxels (�3.3 mm for

in-plane measurements and 2.4 mm for out-of-plane measurements).

After the full-field displacements, u, were determined, the

deformation gradient tensor, F, of the substrate is calculated

via finite differentiation. Extra precaution is taken to choose a

differentiation kernel that mitigates sampling de-aliasing errors

and measurement noise. The differentiation kernel we used in

this study is an optimal-9 tap filter described in detail by Farid

et al. [23]. The computation of F is necessary to accurately calcu-

late the Cauchy stress tensor, s, because for large deformations,

as those seen in this study, the reference and deformed configur-

ations are no longer identical [21]. For this reason, Hooke’s law of

linear small-strain elasticity used in most previous studies

[24–28] is replaced by a neo-Hookean finite deformation material

model [29]. The relation between the Cauchy stress (s) and the

deformation gradient (F) is mathematically expressed [29] as

s ¼ m

J5=3
B� 1

3
tr(B) � I

� �
þ K(J � 1)I, (2:1)

where the parameters m and K are the shear and bulk modulus

for PA. By using our mechanical characterization results (see

the electronic supplemental material), we can relate these quan-

tities to the elastic modulus and Poisson’s ratio of the material by

m ¼ E
2(1þ n)

and K ¼ E
3(1� 2n)

: (2:2)

The quantities, J and B are the Jacobian of F, and the left

Cauchy–Green deformation tensor, respectively. They are

mathematically expressed as

J ¼ det(F) (2:3)

and

B ¼ F � FT: (2:4)

The tractions acting on the deformed surface, T, with surface

normals n are calculated via the Cauchy relationship,

T ¼ n � s: (2:5)
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The root-mean-squared tractions, TRMS, are defined as

TRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

T2
i

vuut , (2:6)

where Ti, is the traction vector located at every ith point along the

surface within the boundary, enclosing N points (see the elec-

tronic supplementary material, figure S2). More details about

the computation of the RMS integration boundary can be

found in the electronic supplemental material.

Before proceeding to calculate the tractions (T), we must

first determine the true surface normals (n). In brief, we take

advantage of the spatial locations of the embedded fluorescent

beads in the raw LSCM images. A scattered data representa-

tion of the surface is built by finding the local maximum

height of the bead locations using a sliding window. After

least-squared fitting and surface gradient smoothing [30],

the normals were calculated from a Delaunay triangulation

of the surface. The subsequent surfaces in the timelapse were

computed by translating the surface points in the reference

configuration via the displacement field calculated from the

FIDVC algorithm.

Finally, to calculate the work done by the cell to elastically

deform the substrate, we compute the strain energy between

time increments as the volume integral of the strain energy

density U, i.e.

U ¼
ð

V

U dV: (2:7)

For a neo-Hookean solid, the strain energy density is given

by [29]

U ¼ m

2

tr(B)

J2=3
� 3

� �
þ K

2
(J � 1)2: (2:8)
2.2. Fabrication of polyacrylamide gels
Thin films of different PA gels were prepared from 40% (w/v)

acrylamide (BioRad Laboratories, Hercules, CA) and 2.5% (w/v)

N,N0-methylene-bis-acrylamide (BIS, BioRad Laboratories) stock

solutions as described previously [13,27,31] with 20% (w/v)

red fluorescent microspheres (0.5 mm in diameter, carboxylate-

modified, Life Technologies, Grand Island, NY). The final

acrylamide–BIS concentration ratios, 3.0–0.08%, 3.0–0.2% and

5.0–0.1% produced PA gels with elastic moduli of 0.24, 1.70

and 4.80 kPa, respectively (see the electronic supplementary

material, figure S1). Cross-linking was initiated by the addition

of 0.125% ammonium persulfate (APS, Sigma-Aldrich, St Louis,

MO) and N,N,N0,N0-tetramethylethylenediamine (TEMED, Life

Technologies). The PA gel solution was vortexed for 30 s and

20 ml of PA solution was pipetted onto the surface of a microscope

slide and sandwiched with an activated glass coverslip (25 mm in

diameter, Thermo Fisher Scientific, Waltham, MA), yielding a final

gel thickness of approximately 40–60 mm.

PA gels were chemically functionalized with laminin

(LN, Life Technologies) using the heterobifunctional cross-

linker sulfosuccinimidyl 6-(40-azido-20-nitrophenylamino)hexanoate

(sulfo-SANPAH, Thermo Fisher Scientific) to promote cell adhesion

[27,31]. After removal of the excess water, 100 ml of sulfo-SANPAH

(1 mg ml21) was deposited onto the surface of each sample, and

irradiated with ultraviolet light for 15 min to initiate activation.

The darkened sulfo-SANPAH solution was aspirated, and the

procedure was repeated. The samples were rinsed three times

with 1� phosphate-buffered saline (PBS, Life Technologies) and

their surfaces covered with 0.2 mg ml21 LN in Hank’s balanced

salt solution (Life Technologies) overnight at 48C. Excess LN was

removed, and gels were rinsed three times with PBS for 10 min

before cell deposition.
2.3. Cell culture
All cell culture reagents were from Life Technologies, unless

otherwise stated. SCs from adult rat sciatic nerve (generous gift

from Dr Mary Bunge, University of Miami, Coral Gables, FL)

were cultured on tissue culture plastic flasks pre-coated with

100 mg ml21 poly(L-lysine, PLL, Sigma-Aldrich) in Dulbecco’s

modified Eagle’s medium with 10% fetal bovine serum, 4 mM

L-glutamine, 100 mg ml21 penicillin and 100 mg ml21 streptomy-

cin supplemented with 2 mM forskolin (Sigma-Aldrich),

10 mg ml21 bovine pituitary extract (Sigma-Aldrich) and 2 mM

heregulin (Genentech, San Fransisco, CA; SC medium). Cells

used in experiments were between passages 5 and 9. Cultured

cells were maintained in a humidified chamber at 378C with 5%

CO2. Cells were trypsinized using 0.25% trypsin and seeded in

SC medium on functionalized gels at a density of 950 SCs cm22

for 3 h to allow for cellular attachment. Cell-labelling solution,

Vybrant DiD (far red, 30 ml ml21 of SC medium) was applied to

each sample for 30 min at 378C and 5% CO2 followed by three

rinses with medium for 10 min at 378C and 5% CO2.
2.4. Confocal microscopy
After an initial seeding period, three-dimensional image stacks of

individual SCs on PA gels were acquired using a Nikon A-1 con-

focal system mounted on a TI Eclipse inverted optical microscope

controlled by NIS-ELEMENTS Nikon Software (Nikon, Tokyo,

Japan). The temperature in the microscope chamber was con-

trolled and regulated to 378C using a feedback-controlled

heater (Air-Therm heater, World Precision Instruments Inc., Sar-

asota, FL). PA gel samples containing stained SCs were mounted

into a Chamlide magnetic chamber (Live Cell Instrument, Seoul,

Korea), filled with SC medium and placed in the microscope

chamber where 5% CO2 was injected. All samples had an equili-

bration time of 1 h before the start of the timelapse experiments

to avoid thermal drift. A 40� CFI APO Lambda S water objective

with a numerical aperture of 1.25 was used in all experiments.

The green fluorescent microspheres used as fiducial markers

were excited with an argon ion laser (488 nm), and the fluor-

escent cell membrane label was excited with a Diode (640 nm)

laser. Confocal image stacks of size 512 � 512 � 160 voxels

(212 � 212 � 48 mm3) were acquired every 10 min for 1 h (see

the electronic supplementary material, movie S1). For all cases,

the area surrounding a cell was scanned to ensure the selection

of an isolated cell. Experiments for each stiffness were performed

in triplicate, and at least 15 cells were recorded per experiment.

Cellular surface outlines were determined either from phase

images or from fluorescent membrane labels.
2.5. Fluorescence staining
All reagents were from Life Technologies, unless otherwise

stated. Unlabelled SCs were plated on gels without beads and

cultured under the same experimental conditions as previously

described in §2.4. After 5 h in culture, cells were fixed with 2%

paraformaldehyde in 0.1 M PBS (pH 7.4) for 30 min. After rin-

sing three times with PBS, samples were incubated with 0.1%

Triton X-100 (VWR, Radnor, PA) in 0.1 M PBS for 5 min,

rinsed two times with 0.1 M PBS and incubated with 1%

bovine serum albumin (Sigma-Aldrich) in 0.1 M PBS for

30 min. Alexa 488-phalloidin methanolic stock stain solution

was diluted 1:40 in PBS and added to samples for 1 h followed

by two rinses with PBS. Cell nuclei were stained with TO-PRO-

3 iodide (Sigma-Aldrich) diluted to 1 mg ml21 in PBS. Samples

were rinsed two times with PBS before they were imaged. To

image the cells, two different lasers were used. A diode laser

(640 nm) was used to image the nuclei of the cells in the far

red spectrum, and an argon ion laser (488 nm) was used to

image phalloidin-488.
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Figure 2. Substrate stiffness affected morphological distribution of SCs
in vitro. (a) Maximum projection confocal micrographs of representative
SCs exhibiting unpolarized, bipolar and multipolar morphologies (bottom
to top) stained with phalloidin for actin, and TO-PRO-3 iodide for nuclei.
Scale bar represents 20 mm. (b) Bar plot of the percentage occurrence of
unpolarized (black), bipolar (grey) and multipolar (white) morphology occur-
rence per stiffness shows that the bipolar phenotype is most prevalent across
all elastic moduli; 0.24 (n ¼ 298), 1.70 (n ¼ 382) and 4.80 kPa (n ¼ 156).
(Online version in colour.)
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bottom boxes: upper and lower quartiles, whiskers: standard deviations, and
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for each elastic modulus are shown. Scale bar represents 20 mm.
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3. Results and discussion
3.1. Schwann cells exhibited varying morphologies

depending on substrate stiffness
When SCs were cultured on PA gels with elastic moduli of

0.24+0.05 kPa, 1.70+0.09 kPa, and 4.80+0.29 kPa, three

distinct types of morphologies were observed: unpolarized,

bipolar and multipolar (figure 2a). The unpolarized mor-

phology was characterized by a general circular shape with

the cell nucleus located symmetrically in the centre of the cell.

The bipolar morphology was characterized by two processes

extending away from the nucleus. In general, the bipolar exten-

sions were thin and elongated, sometimes displaying wide

lamellar-like features at the tip of each extension. The multi-

polar morphology was characterized by the presence of three

or more processes. Figure 2b shows the percentage occurrence

of each morphology across elastic moduli to assess the influence

of matrix stiffness on SC phenotype. These results suggest that

the substrate’s elastic modulus can be used to predetermine the

morphology of SCs. This result takes particular significance

considering studies showing that cellular morphology can

influence growth and function [32]. Additionally, we found

that the bipolar morphology was dominant across elastic

moduli with increasing occurrence on stiffer substrates within

this physiological range. Incorporating these stiffnesses in

nerve regeneration strategies for targeting SCs to the injury

site could be of great benefit, because recent studies have

shown that the bipolar phenotype is characteristic of motile

and migratory SCs [18].

3.2. Schwann cells’ spreading area was unaffected by
substrate stiffness

Focusing on bipolar SCs, the most common phenotype and the

most relevant to in vivo function, we examined SC spreading. It
is well known that the mechanical rigidity of the substrate

alters the cellular shape and spreading area [33,34]. Further-

more, cell shape has been reported to affect cell fate

[32,33,35], and cytoskeletal tension has been shown to be

important for SC cycle progression [19]. Kidney epithelial

cells [13], fibroblasts [13,35], vascular smooth muscle cells

[36], aortic endothelial cells [35] and neutrophils [12] cultured

on substrates of varying stiffness all showed reduced spreading

area on the softest substrate. Unlike many other cells, SCs were

able to adhere and extend protrusions, regardless of substrate

stiffness. Additionally, figure 3 shows that SC spreading area

was comparable across elastic moduli; median values of

1540 mm2 for E ¼ 0.24 kPa, 1160 mm2 for E ¼ 1.70 kPa and

1210 mm2 for E ¼ 4.80 kPa, respectively. This suggests that

SC spreading behaviour is relatively insensitive to the under-

lying mechanical substrate stiffness, contrary to almost all

other mesenchymal or ameboid cell types.
3.3. Schwann cells exhibited stress fibres on soft
materials

To investigate how SCs maintained a consistent spreading

area across the different elastic moduli tested, we examined

the structural organization of the SC cytoskeleton with the

primary focus on filamentous actin. SCs were grown on the

different elastic moduli as described before and their actin

filaments were stained with phalloidin. As can be seen

from figure 4, SCs exhibited a mature actin cytoskeleton

with the presence of pronounced stress fibres across all

moduli. In contrast to most other cells, SCs produced clearly

visible stress fibres on gels of 0.24 kPa, which is indicative of

a contractile phenotype with significant cell traction gener-

ation [37–39]. Intrigued by these findings, we quantified

SC tractions across the different moduli to investigate what

parameters supported the observed cytoskeletal arrangement

and cell spreading areas presented in figures 3 and 4.



E = 0.24 kPa E = 1.70 kPa E = 4.80 kPa

Figure 4. SCs exhibited a mature actin cytoskeleton, including stress fibres
across all moduli. Maximum projection confocal micrographs of representative
SCs cultured on elastic moduli of 0.24, 1.70 and 4.80 kPa that were stained
with phalloidin for actin, and TO-PRO-3 iodide for nuclei. White box shows a
two-times zoomed in image to highlight the stress fibres. Scale bars
represents 20 mm. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140247

5

3.4. Schwann cells induced large three-dimensional
tractions and material deformations

Motivated by our results, that both SC spread area and

F-actin arrangement appeared to be unaffected by substrate

stiffness, we quantified the material deformations caused

by SCs across our substrate stiffnesses. Using our recently

improved three-dimensional large deformation traction

force microscopy technique [21], we quantified the three-

dimensional SC displacement and traction field as a function

of substrate stiffness. One of the key improvements in

our technique is the incorporation of finite deformation

constitutive models that allow proper determination of cell

tractions in the presence of large deformations. This is a

significant departure from most traditional TFM approaches

that intrinsically assume infinitesimal material deforma-

tions. Figure 5 shows colour contour maps of the

magnitudes of the three-dimensional displacement vector

(a–c), the three-dimensional displacement gradient (d– f )

and the three-dimensional surface tractions (g– i) across our

three substrate moduli. To provide a robust comparison

between cellular traction generation and cytoskeletal arrange-

ment, we analysed both immunocytochemical images and SC

tractions of a large population of cells and time points under

identical experimental conditions. Consistent with the F-actin

arrangement shown in figure 4, the spatial distribution of SC

displacement and surface tractions was concentrated at both

distal ends of the cells, indicating a highly polarized cell.

The spatial distribution of displacement and traction profiles

looked similar across the three substrate moduli, which is

qualitatively consistent with the cytoskeletal arrangement

shown in figure 4. While the distributions of SC displacements

and tractions appeared minimally affected by the underlying

substrate stiffness, the magnitude of the displacement values

decreased as the substrate became stiffer, whereas the tractions

increased. These results are consistent with general trends

observed in other cell types; however SCs’ displacement

attenuation in our study is distinct and contrasts with other

cells’ across stiffnesses ranging from 1 to 10 kPa or greater

[27]. Interestingly, when we performed additional TFM exper-

iments of SC on PA gels of moduli greater than 5 kPa, we found

no notable cell-generated material displacements during

spreading and locomotion.

Because SCs were capable of forming visible stress fibres

on the soft PA gels, we investigated the material defor-

mations that SCs might generate to maintain their stress

fibres. Figure 5d–f shows the magnitude of the displacement
gradient across stiffnesses. In linear elastic theory, the basis of

most traditional TFM formulations that use the Boussinesq

solution approach, the gradient term is deemed small,

i.e. � 1. However, as shown in figure 5d, the deformation

gradient on the 240 Pa gels was significant with peak levels

above 0.5, indicating the existence of large deformations.

Given the compliant nature of these gels, and the existence

of stress fibres, it was not surprising that the cell would

need to apply large enough deformations to maintain stable

adhesion contacts conducive to the formation of stress

fibres. Examining figures 5a,d,g and 4, we see that stress

fibre formation was supported both by large material trac-

tions and also through large material deformations. Given

that the material deformations originate from intracellular

force generation and regulation, we note that the magnitude

of the displacement gradient decreased as the substrate stiff-

ness increased, which supports the idea that less compliant

substrates require less material deformation to achieve the

necessary adhesion to produce stress fibres [37].

Figure 6a–c summarizes our displacement and traction

results in a statistical bar plot format across all moduli to

present a cumulative distribution of our findings for the

bipolar morphology (see electronic supplementary material,

figures S3 and S4, for more information about the unpolar-

ized and multipolar phenotypes). We included calculations

of the applied strain energy as an indication of the work car-

ried out by the cells on the material (figure 6d ). We believe

this metric is useful as it is an integral measure of both the

applied displacements and tractions. The strain energy of

the SCs followed the same trend as the tractions across

moduli showing that cells worked harder on the stiffer sub-

strates to spread and locomote. Furthermore, as shown in

figure 6a,b, we found significant differences between the in-

plane (shear) and out-of-plane (normal) displacement and

traction components, which are strongly attenuated by the

underlying substrate stiffness. In particular, the normal trac-

tion component plays a significant role in the SC traction

signature as the material stiffness increases.

To investigate the observed shear and normal traction

differences further, we plotted the shear and normal traction

distribution of representative SCs across the three different

moduli in figure 7. Consistent with the stiffness scaling

observed in figure 6a–c, the shear tractions increase only

slightly with increasing substrate stiffness, whereas the

normal tractions show a significant increase in their magnitude

(figure 7a–c). The spatial distribution of both the shear and

normal tractions shows a highly polarized cell with most of

the tractions applied at the distal ends.

3.5. Schwann cells generated significant normal
tractions and out-of-plane moments

Perhaps even more interesting is the alternating dipole pattern

in the normal SC traction profile prevalent across all stiffnesses

(figure 7). These normal traction dipole patterns give rise to

local rotational moments, which can be seen clearly in the

bottom row of figure 7. Here, the local variation in the cell trac-

tion vector is plotted along the arbitrarily drawn line in figure

7a–f. Motivated by recent findings, Legant et al. [20] showing

that embryonic mesenchymal fibroblasts are capable of gener-

ating local rotational out-of-plane moments stemming from

an intracellular force transmission of actomyosin onto an

adhesion patch of discrete size, we investigated whether our
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observed traction patterns shared a similar structural origin.

Analogous to Legant et al., we constructed a simple finite-

element model (FEM) of a discrete cellular adhesion patch
with similar dimensions, diameter � 6 mm, height ¼ 150 nm.

Figure 8a shows a schematic representation of how an

SC might apply force onto the discrete adhesion patch. We
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assumed firm bonding of the adhesion patch to the underlying

substrate and applied uniform shear traction across the

adhesion patch simulating the intracellular actomyosin
contractile force. The shear traction magnitude loading was

determined by matching the maximum displacement magni-

tudes of the simulated to the experimentally observed ones.

This procedure allows us to obtain an order of magnitude esti-

mate of the intracellular force generation that is transmitted via

the SC stress fibres. All simulations were performed using

39123 four-node, linear, tetrahedron continuum elements

(C3D4) in ABAQUS/STANDARD v. 6.12-2 (Dassault Systèmes

Simulia, Providence, RI).

Based on the geometry of our simulations, the applied

shear tractions we determined are 180, 700 and 1000 Pa for

each increasing stiffness, which fall within the range of pre-

viously reported stress values sustained at cellular adhesion

sites [40–43]. Our finite-element simulation shows that it

qualitatively reproduces the experimentally observed dipole

behaviour in the measured out-of-plane displacements

(figure 8b,c and see the electronic supplementary material,

figure S5 for the FEM results for each displacement com-

ponent). Figure 8d depicts the average normal and shear

maximum displacement ratios from our experimental

measurements and our finite-element analysis across the

three different elastic moduli. As can be seen in figure 8d,

the qualitative behaviour of the displacement ratios across

the different stiffnesses is similar in the simulations when

compared with our experimental measurements, and on the

same order of magnitude, suggesting that our model is

capable of qualitatively describing the appropriate cellular

deformation behaviour. The quantitative differences between

the experimental and modelling ratios are not surprising

given the simple nature of our model and the large possible

parameter space within a real adhesion plaque. Furthermore,

these qualitative observations are consistent with the cellular

deformation signature previously reported for embryonic

mesenchymal fibroblasts [20].
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4. Conclusion
In this study, we have presented a detailed biophysical

characterization of SCs across a range of elastic moduli typi-

cally encountered in the PNS. Given the importance of SCs

during nerve development, axon maintenance and neuronal

regeneration following an injury [2], our results provide sig-

nificant insights into the mechanosensitivity of these cells.

In particular, we find that SCs have a strong preference to

acquire the prevalent in vivo bipolar morphology even in

the absence of environmental cues. This preference seems to

be further stabilized by increasing substrate stiffness. We

found that approximately 48% of all SCs exhibited a bipolar

phenotype on our soft (0.24 kPa) substrates, a number that

increases to 77% on 4.80 kPa, our stiffest substrate examined.

Of note and contrary to most anchorage-dependent cells,

we observed that SC spread area was unaffected by the mod-

ulus of the underlying substrate and that cells on all

stiffnesses showed pronounced stress fibres as part of their

actin cytoskeleton. This was true even for SCs attached and

locomoting on 0.24 kPa PA gels. Motivated by previous

results showing that the existence of actin stress fibres

requires substantial force transmission onto the cell substrate,

we quantified the three-dimensional SC deformation fields.

We found that on our softest (0.24 kPa) PA gels, SCs gene-

rate large deformations, albeit small tractions, that required

careful analysis within a finite deformation, rather than a tra-

ditional linear elastic framework. We believe that these large

deformations are necessary to stabilize the formation of actin
stress fibres on such highly compliant surfaces. Consistent

with previous observations, SC tractions increased with

increasing substrate stiffness; however, cell-generated displa-

cement magnitudes decreased to the point of negligible

cell displacements during locomotion on substrates with

stiffnesses greater than 5 kPa. When comparing SC in-plane

to out-of-plane tractions, we find that SCs exert significant

out-of-plane tractions on all moduli investigated. Further-

more, we show that these out-of-plane tractions give rise to

local rotational moments, which we qualitatively attribute

to the deformation signature of actomyosin force trans-

mission at discrete adhesion plaques similar to that shown

by Legant et al. for mesenchymal embryonic fibroblasts.

Taken together, these findings provide the first set of quanti-

tative biophysical measurements on the mechanosensitivity

of SCs across a range of tissue stiffnesses typically encoun-

tered in the PNS in vivo. We believe these results will

provide critical information for the development of improved

nerve guidance channels and regenerative scaffolds by

considering the mechanosensitive characteristics of SCs.
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