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Most free-swimming bacteria move in approximately straight lines, interspersed

with random reorientation phases. A key open question concerns varying mech-

anisms by which reorientation occurs. We combine mathematical modelling

with analysis of a large tracking dataset to study the poorly understood reorien-

tation mechanism in the monoflagellate species Rhodobacter sphaeroides. The

flagellum on this species rotates counterclockwise to propel the bacterium,

periodically ceasing rotation to enable reorientation. When rotation restarts

the cell body usually points in a new direction. It has been assumed that the

new direction is simply the result of Brownian rotation. We consider three var-

iants of a self-propelled particle model of bacterial motility. The first considers

rotational diffusion only, corresponding to a non-chemotactic mutant strain.

Two further models incorporate stochastic reorientations, describing ‘run-and-

tumble’ motility. We derive expressions for key summary statistics and simulate

each model using a stochastic computational algorithm. We also discuss the

effect of cell geometry on rotational diffusion. Working with a previously pub-

lished tracking dataset, we compare predictions of the models with data on

individual stopping events in R. sphaeroides. This provides strong evidence

that this species undergoes some form of active reorientation rather than

simple reorientation by Brownian rotation.
1. Introduction
The motile behaviour of bacteria underlies many important aspects of their

actions, including pathogenicity, foraging efficiency and biofilm formation. The

study of bacterial motility is therefore of biomedical and industrial importance,

with implications in the control of disease [1] and biofouling [2]. Bacteria swim

by rotating semi-rigid helical flagella, powered by the movement of ions through

a transmembrane rotary motor. The motor can switch between clockwise and

counterclockwise rotation, the change in torque transforming the wavelength

and handedness of the filament helix. Owing to their small size, a flagellate bac-

terium’s free-swimming behaviour is characterized by a Reynolds number of the

order of 1025 [3]. Approximating a bacterium by a 1 mm diameter sphere moving

at 20 mm s21, the coasting distance upon instantaneous cessation of the flagellar

motor is around 4 � 10212 m, or a tenth of the Bohr radius, which approximates

the radius of a hydrogen atom [4]. This calculation demonstrates the well-known

fact that, at such low Reynolds numbers, viscous effects dominate over inertia,

and objects are brought to a halt almost immediately.

Despite not coasting, bacteria are never completely stationary as they exhibit

Brownian motion [3]. This motion arises from the net force acting on a bacter-

ium as a result of the large number of collisions with surrounding molecules in

the liquid. Although the time-averaged displacement as a result of these
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Figure 1. Illustration of a single bacterium undergoing translational (a) and rotational (b) diffusion. Increasing transparency represents position and orientation in
the more distant past. Dashed lines trace the trajectory of the cell centroid (a) or a point on the flagellum to show the angle changes (b).
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collisions is zero, the instantaneous net force is a random

property, causing the bacterium to exhibit ceaseless small

movements. Such Brownian buffeting leads to two related

processes: translational and rotational diffusion (figure 1).

Translational diffusion leads to a shift in the bacterium’s

centre of mass over time, whereas rotational diffusion leads

to a reorientation of the bacterium about its centre of mass.

A further consequence of a bacterium’s microscopic size

is its inability to detect concentration changes in nutrients

or toxins over the length of the cell body. This limitation

affects motile behaviour. Many species, such as the multifla-

gellate Escherichia coli, swim in a series of approximately

straight ‘runs’ interspersed by reorientating ‘tumbles’.

During a run, the flagellar motors turn counterclockwise,

causing the helical flagella to form a rotating bundle that pro-

pels the bacterium forward. Tumbles occur when one or more

motors reverse their rotation, disrupting the flagellar bundle

and causing the cell to reorient in a random manner [5].

A related mechanism exists in the uniflagellate bacterium

Rhodobacter sphaeroides, in which reorientations are, instead,

caused by stopping the flagellar motor [6]. Upon ceasing to

rotate, the flagellum undergoes a conformational change,

transforming from a functional semi-rigid helix to a short

wavelength, high-amplitude coil against the cell body [7].

This leads to reorientation by a mechanism that is not yet

well understood.

By modulating the frequency of reorientation events

based on a temporal comparison of the concentration of var-

ious chemicals in their immediate surroundings, bacterial

species such as E. coli and R. sphaeroides may bias their move-

ments towards sources of nutrients or other substances

(collectively termed chemoattractants), in a process called

chemotaxis [8]. The biochemical pathways responsible for

chemotaxis in R. sphaeroides are less fully elucidated than

those in E. coli, and are known to be more complex [9].

In combination with experimentation, mathematical mod-

elling can help gain insight into patterns of bacterial motility

and chemotaxis. A common approach to modelling run-and-

tumble motility involves a velocity jump (VJ) process, in

which the effect of rotational diffusion is neglected and

runs are assumed to occur in straight lines, interspersed

with stochastic reorientation events [10]. Each running

phase occurs with a constant velocity drawn from an under-

lying distribution. This model has been extended to include

key intracellular signalling pathways in order to study the

response to changes in chemoattractants in the surrounding

environment [11].
While the VJ approach provides a reasonable first approxi-

mation of run-and-tumble motility, in reality rotational

Brownian buffeting prevents bacteria from swimming in

perfectly straight runs. In order to bias their movements

towards nutrient sources, bacteria must swim sufficiently

rapidly to detect a change in nutrient concentration before

rotational diffusion randomizes the direction of swimming.

Purcell [4] has described this requirement as the need to

‘out-swim diffusion’.

An important early discussion of the effect of rotational

diffusion on bacterial motility was given by Berg [3], who

modelled a bacterium as an ellipsoid in order to present

approximate expressions for the variation of the strength of

rotational diffusion with cell dimensions. The author derived

an approximate expression for the effective diffusion coeffi-

cient of a mutant bacterium that swims at a constant speed

without reorientating.

In other work, Mitchell [12] used a self-propelled particle

model to analyse the effect of cell size and swimming speed

on the efficiency and feasibility of bacterial motility in marine

environments. This work suggested that the extent of

rotational diffusion is independent of a bacterium’s swim-

ming speed, but varies as r23 with its effective radius, r.

An important conclusion of this work is that smaller cells

must swim more rapidly in order to undergo chemotaxis.

In a further study, Mitchell [13] found that incorporating fric-

tional effects of the flagellum into his model diminished the

extent of rotational diffusion, as this increases the viscous

drag acting on the bacterium, termed ‘flagellar stabilization’.

Dusenbery [14] carried out a similar analysis to Mitchell [13],

predicting that planktonic organisms with radii below

around 0.6 mm are unlikely to gain any advantage from loco-

motion and verifying this prediction through a systematic

investigation of known bacteria [14]. It is, however, unclear

whether the more general prediction of Mitchell [13], that

swimming speed should correlate with cell size, holds in

nature; a diverse study of marine bacteria carried out by

Johansen et al. [15] failed to find any such correlation.

An important open question in this field concerns the

varying mechanisms by which bacteria reorientate. Discuss-

ing the implications of their model of bacterial motility,

Mitchell & Kogure [16] hypothesize that R. sphaeroides is too

large to reorientate efficiently by rotational Brownian diffu-

sion alone. Further experimental evidence for an active

reorientation mechanism in R. sphaeroides was obtained

by Armitage et al. [7] using differential interference con-

trast microscopy. However, more recent bead assays in
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Figure 2. Tracks from the experimental dataset used in this study. Black lines
correspond to the non-chemotactic mutant, and grey lines show wild-type
tracks. Several reorientation events are indicated by black arrows.
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R. sphaeroides have provided contradictory evidence, sug-

gesting that the motor does indeed stop [6]. These conflicting

results are likely to be due in part to significant differences in

experimental protocols. Free-swimming methods assess the

behaviour of flagella rotating with low loads on the filament,

while experiments on tethered cells, in which a bead is attached

to the flagellum, may artificially increase the load on the fila-

ment, leading to different results. Indeed, recent analysis

suggests that the number of stators engaged in actively driving

rotation increases with load, and long-term increased loads on

the filament may affect observation of reorientation events,

which are usually very short-lived [17].

To date, a major obstacle in making further progress in this

area is the difficulty in obtaining quantitative data on the free-

swimming behaviour of R. sphaeroides under normal con-

ditions. A common approach for obtaining quantitative data

on bacterial motility involves the tracking of free-swimming

cells using video microscopy. However, the analysis of such

data remains challenging, in particular the identification of

reorientation events in tracks in the face of various sources of

noise within the data. An automated, non-parametric method

of analysing large bacterial tracking datasets was recently pro-

posed by Rosser et al. [18], who demonstrated its validity and

reliability through computational simulations. Using video

microscopy, the authors recorded and analysed thousands of

cell tracks for R. sphaeroides and E. coli. They found that, on

average, R. sphaeroides tends to align with its previous direction

of travel over the course of a reorientation event, a phenom-

enon known as directional persistence. Hence, while the

reorientation process itself is random, angle changes over the

course of a stop do not follow a uniform distribution but

rather a unimodal distribution peaked around zero. Such track-

ing data represent an excellent opportunity to investigate the

role of Brownian rotational buffeting in bacterial motility, in

addition to permitting the study of the poorly understood reor-

ientation mechanism in R. sphaeroides. In particular, the study

provides rich data from a non-chemotactic mutant strain that

is unable to reorientate, permitting a hitherto infeasible direct

analysis of the role of rotational diffusion on a swimming R.
sphaeroides bacterium. Furthermore, Rosser et al. [18] generated

a large tracking dataset of wild-type R. sphaeroides, annotated

to show where reorientation events occurred. To our knowl-

edge, no previous studies have used bacterial tracking to

investigate this phenomenon. A sample of the tracks in the

tracking datasets is plotted in figure 2.

The above work provides a foundation for this study, in

which we demonstrate a phenomenological approach to

study the reorientation mechanism in R. sphaeroides that

exploits the availability of these tracking data. Our primary

motivations for this study are twofold. First, we address the

discrepancy between the idealized VJ description of bacterial

motility and the non-straight line runs evident in experimental

tracks, such as those in figure 2. Second, we wish to use the

newly available tracking data as an alternative method for

comparison with tethered cell studies to address the poorly

understood phenomenon of reorientation in R. sphaeroides.
We use mathematical modelling, combined with novel

analysis of the tracking dataset, to investigate the effect of

rotational diffusion on bacterial motility. We consider three

models of bacterial motility to analyse the role of rotational

diffusion in the free-swimming behaviour of R. sphaeroides,

and other monoflagellates with similar modes of motility.

The first is a model developed by ten Hagen et al. [19] to
describe the motion of a self-propelled particle that is subject

to rotational diffusion only, representing the motion of a non-

chemotactic mutant. The other models are novel and couple

the self-propelled particle model with a simple VJ model of

run-and-tumble motility.

In what follows, we describe the governing equations of

motion. For each model, we develop a stochastic compu-

tational algorithm and derive expressions for key summary

statistics: the first two moments of position and the mean

squared angle change (MSAC). We next use the data generated

by Rosser et al. [18] to estimate the translational and rotational

diffusion coefficients of the observed bacteria and compare

these with theoretical values. The effect of cell geometry on

rotational diffusion is discussed using theoretical results; in

particular, we extend the work of Berg [3] by showing expli-

citly the dependence of the rotational diffusion coefficient on

the dimensions of the ellipsoidal cell body. This enables a com-

parison with the result measured experimentally. Finally, we

reconcile the phenomenon of rotational diffusion with the VJ

process by describing the reorientation of a bacterium during

a stopping phase in terms of rotational diffusion. By compar-

ing each model with data on individual stopping events in

R. sphaeroides obtained using our analysis method, we are

thus able to show that R. sphaeroides needs more than

Brownian rotational motion to reorient.
2. Material and methods
Our mathematical models are based on the overdamped Lange-

vin description of a bacterium as a self-propelled particle. The

Langevin equation is a stochastic differential equation (SDE)

that is commonly used to describe a particle undergoing

Brownian motion in a liquid [20].

Our tracking data are captured in a two-dimensional focal

plane far away from walls [18], with objective magnification

40� and numerical aperture 0.65. The depth of field is therefore

approximately 1.8 mm (see the electronic supplementary mate-

rial for a derivation), which is comparable to the size of a

R. sphaeroides bacterium. The field of view is 76.8 mm by

57.6 mm. Our models therefore assume bacterial motion to be
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Figure 3. Schematic of a three-dimensional bacterium, confined to travel in
the (x, y) plane, which undergoes rotational diffusion. Dashed lines represent
alternative shapes for the cell body. The black cross indicates the centre of
mass of the cell, which is calculated neglecting the effect of the flagellum.
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confined to an infinite planar domain, as only bacteria

swimming within the imaging plane generate tracking data.

In the case of an active propulsive force, we assume for sim-

plicity that the bacterium is propelled forward at a constant

speed of c ¼ 40 mms21, which is the approximate modal speed

exhibited by wild-type R. sphaeroides [18]. Following ten Hagen

et al. [19], we include only rotational diffusion in our models,

as translational diffusion has negligible effect on the motion of

a self-propelled particle when the rate of propulsion is suffi-

ciently high, as is the case here. This is indicated by the large

magnitude of the Péclet number, calculated in §3.2. We consider

the validity of these assumptions further in the Discussion sec-

tion. Nonetheless, the magnitude of translational diffusion in

non-motile bacteria provides a useful consistency check between

experiment and theory, hence we also present relevant theoretical

results on translational diffusion.

We do not consider other possible sources of rotational noise

in our models of cellular propulsion, such as rotational drift due

to noise in the motility apparatus. There is currently little

evidence to suggest that this is a significant phenomenon. Teth-

ered cell experiments have indicated that the variability in

flagellum rotation rate is limited [21,22]. Furthermore, there is

no evidence linking small changes in motor speed to changes

in the direction of motion. However, internal dynamics or flagel-

lar conformation may be responsible for the reorientation

mechanism during a stopping phase, as discussed in §4.

2.1. Bacterial cell geometry
As illustrated in figure 3, the bacterium is modelled as either a

sphere or an ellipsoid [23,24] that is propelled by a single flagel-

lum, represented by a rigid helix. In the case of a prolate

ellipsoid, we denote the lengths of the axial and equatorial

semi-principal axes by a and b, respectively (noting that the

two equatorial semi-principal axes are degenerate), and quantify

the geometry by the axial ratio, r ¼ a/b, whose value is greater

than one. When the cell body is ellipsoidal, the flagellum is

attached at the midpoint of the long axis as is generally observed

experimentally [25]. The unit vector in the axis that runs through

the centre of the flagellum and the centre of the cell is the orien-

tation vector m, whose angle to the horizontal is denoted f. As

we consider only two-dimensional motion, we assume that m

lies in the (x,y) plane. Note, however, that the cell body is

three-dimensional in our models.

The translational and rotational diffusion coefficients of

a general ellipsoid may be calculated using multiplicative

adjustments to the translational and rotational frictional drag

coefficients of a sphere of equivalent volume, respectively.

These corrections are known as Perrin friction factors [26]. Berg

[3] gives approximate expressions for these; however, we use

the exact forms here to ensure greater accuracy when r � 1. As

we consider a bacterium with a medially attached flagellum

(figure 3), we are concerned with rotation about the equatorial
semi-principal axis; rotation about the axial axis would cause

the bacterium to swim out of the plane, breaking the assump-

tions of the model. For a prolate ellipsoid, a valid expression

for Perrin’s friction factor for rotation about the equatorial

semi-principal axis is given by [26]

Feq ¼
4

3

(1/r)2 � r2

2� S[2� (1/r)2]

" #
, (2:1)

where for brevity we have defined a new variable

S ¼ 2r(r2 � 1)1=2 tanh r�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

p� �
: (2:2)

The volume of a prolate ellipsoid is given by 4pab2/3. To com-

pute the rotational frictional drag coefficient for an ellipsoidal

cell, we multiply the value for a sphere of equivalent volume

by Feq.
2.2. Translational and rotational Langevin equations
The Langevin equation describing the translational diffusion of a

particle in two dimensions is given by [20]

m
d2x(t)

dt2
¼ �zt

dx(t)
dt
þ j(t), (2:3)

where x(t) ¼ (x(t), y(t)) denotes the time-dependent position of

the particle, m is its mass (in kg), zt is the translational frictional

drag coefficient (in kg s21) and j(t) ¼ (jx(t), jy(t)) is a random

fluctuating force (in kg m s22) with independent components.

The right-hand side of (2.3) represents the force exerted on the

particle, which is equal to the sum of a deterministic viscous

drag term and a force arising from the random collisions of the

surrounding molecules in the liquid. The latter, j(t), is given

by a Gaussian white noise, with correlation function

kjx(t)jy(t0)l ¼ 2kTztd(t� t0), (2:4)

where k is Boltzmann’s constant (in m2 kg s22 K21), T is the

temperature (in K), k � l denotes an ensemble average and d(.) is

the Dirac delta function (in s21).

The delta correlation summarized in (2.4) reflects the

assumed separation of the viscous relaxation time scale and the

time scale of the motion of the surrounding molecules. To justify

this simplification, we first note that the motion of the molecules

surrounding the particle is correlated on a time scale of 10212 s

[20]. We next calculate the approximate viscous relaxation time

scale, given by m/zt for a sphere of radius r ¼ 1 mm (the approxi-

mate diameter of many bacteria, including R. sphaeroides [27])

moving through buffer at room temperature. We may calculate

a theoretical value of zt for a sphere of radius r surrounded by

a fluid with viscosity h using Stokes’ law,

zt ¼ 6phr: (2:5)

The viscosity of water at room temperature is approximately

1023 Pa s, which gives zt � 1028 kg s21 for a cell in water.

Assuming that the density of a cell is approximately equal to

that of water at room temperature, m � 10215 kg. Hence the

characteristic viscous relaxation time scale, m/zt, is around

1027 s, several orders of magnitude slower than the correlation

time scale for the motion of surrounding molecules. The white

noise force is therefore a suitable approximation to the true fluc-

tuating force acting on a Brownian particle. For comparison, the

time scales on which we observe bacterial motility are of the

order of 1023 s or greater. We therefore make the standard

approximation of (2.3) by the overdamped translational

Langevin equation

dx(t)
dt
¼ z�1

t j(t): (2:6)
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In the case of rotational diffusion, we consider an ellipsoidal

body of uniform density with mass m and an orientation

vector m(t), as described above and shown in figure 3. The Lan-

gevin equations describing the rotational diffusion of this body

in three dimensions are given by [20]

dm(t)
dt
¼ v(t)� m(t) (2:7)

and I
dv(t)

dt
þ zrv(t) ¼ j(t), (2:8)

where zr is the rotational drag coefficient (in kg m2 rad22 s21),

I ¼ 2mr2/5 is the moment of inertia of the sphere (in kg m2

rad22), v is the angular velocity (in rad s21) and j(t) is a white

noise term described by substituting zr for zt in (2.4) (hence,

j(t) is measured in kg m2 rad21 s22). The rotational drag coeffi-

cient for a sphere of radius r is given by the rotational

analogue of (2.5),

zr ¼ 8phr3: (2:9)

As before, we make the standard approximation of (2.7) and (2.8)

by the overdamped rotational Langevin equation

zr

dm(t)
dt
¼ j(t)� m(t): (2:10)

Finally, to reflect the assumed planar motion of the bacterium, we

derive the simplified two-dimensional form of equation (2.10)

used by ten Hagen et al. [19]. In this case, we write the orientation

vector as m(t) ¼ (cosf, sinf, 0)T. Taking the dot product of

equation (2.10) with the unit vector in the x-direction, we obtain

df(t)
dt
¼ z�1

r jz(t): (2:11)

Here, and in the remainder of this work, we assume without

loss of generality that x(0) ¼ y(0) ¼ f(0) ¼ 0, because the initial

location and direction of travel of a bacterium are arbitrary.

Integrating (2.11), we obtain

f(t) ¼ z�1
r

ðt

0

jz(u) du ¼ z�1
r B(t), (2:12)

where B(t) denotes the Wiener process [28], which is normally

distributed with zero mean and variance t.

2.3. Run-only model
In the run-only model, we assume that the propulsive force is

active at all times, hence the bacterium travels at constant

speed c. This is a simplified representation of the R. sphaeroides
non-chemotactic mutant strain, which is unable to stop [6]. The

governing overdamped Langevin equations for the run-only

model are thus given by

dx(t)
dt
¼ c cosf(t), (2:13)

dy(t)
dt
¼ c sinf(t) (2:14)

and
df(t)

dt
¼ z�1

r jz(t): (2:15)

2.4. Run-and-stop model
In the run-and-stop model, we assume that the propulsion force

undergoes stochastic switching events between running and stop-

ping states as a Poisson process. Rotational diffusion continues to

act regardless of the state of the propulsion force, hence the bacter-

ium undergoes passive diffusional reorientation in the stopping

phase. This model attempts to capture the details of a wild-type

R. sphaeroides cell, assuming that during stops rotational diffusion

is solely responsible for reorientation of the cell.
To incorporate the effect of this random switching in the

equations of motion of the self-propelled particle, we introduce a

continuous time Markov process, F(t), on the state space f0, 1g.
The bacterium is in a stopping phase when F(t)¼ 0, and in a run-

ning phase when F(t) ¼ 1. We denote the rate of switching from a

run to a stop by ls, and that of switching from a stop to a run by

lr. We assume that the stochastic processes F(t) and jz(t) are

independent, and that the bacterium is initially running, so that

F(0) ¼ 1. The Langevin equations governing the motion of the

running and stopping particle are thus given by

dx(t)
dt
¼ cF(t) cosf(t), (2:16)

dy(t)
dt
¼ cF(t) sinf(t) (2:17)

and
df(t)

dt
¼ z�1

r jz(t): (2:18)
2.5. Run-and-active-stop model
In the run-and-active-stop model, we incorporate an additional

stochastic rotational force of magnitude a, which acts as a multi-

plier to the rotational diffusion coefficient in stopping phases

only, so that reorientation occurs more rapidly. The governing

equations are thus given by

dx(t)
dt
¼ cF(t) cosf(t), (2:19)

dy(t)
dt
¼ cF(t) sinf(t) (2:20)

and
df(t)

dt
¼ z�1

r F(t)þ (1� F(t))
ffiffiffi
a
p� �

jz(t): (2:21)

This model represents a first step towards investigating the

mechanism of reorientation in R. sphaeroides.

2.6. Numerical implementation
To verify our analytic results and gain quantitative insight where

such results are not possible, we perform numerical simulations of

each of the self-propelled particle models numerically. We employ

the Euler–Maruyama (EM) method [29], a discrete-time approxi-

mation to the underlying equations. The EM method requires that

we specify a simulation time step, Dt, which must be sufficiently

small to ensure numerical stability. The Matlab code used to

implement these simulations is provided as the electronic sup-

plementary material and allows the simulation of each model as a

special case of the run-and-active-stop model (2.19)–(2.21). The

run-only model (2.13)–(2.15) is simulated by setting ls ¼ 0, and

hence preventing stops. The run-and-stop model (2.16)–(2.18)

is simulated by setting a¼ 1, in which case there is no additional

reorientation force. All simulations carried out had a time-step

Dt¼ 0.02 s and a total simulation time of 10 s. The other parameter

values used were T ¼ 300 K, h ¼ 1023 N s m22 and k ¼ 1.38�
10223 kg m2 s22 K21. We simulate 5000 tracks each time the algor-

ithm is run. To ensure consistency, the results of the run-only and

run-and-stop simulations are compared with the analytic

expressions for the first and second moments of the models. Their

derivations are provided in the electronic supplementary material,

together with a demonstration of good agreement of simulation

and analytic results (see the electronic supplementary material,

figures S3 and S4).

2.7. Experimental methods
Full details of the experimental protocol for generating the bac-

terial tracking datasets used in this study, as well as the

algorithm used to extract cell tracks, are given in Rosser et al.
[18]. Strains used were R. sphaeroides WS8N (wild-type) [30],

JPA 1353 (non-chemotactic) deleted for chemotaxis operons 1, 2
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displacements (solid line), with overlaid best fit to the x distribution (dashed line). The three shades denote different values for the sampling interval, t.
Black: t ¼ 0.02 s; dark grey: t ¼ 0.04 s; light grey: t ¼ 0.1 s.
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and 3, cheBRA, and CheY4 [6] and JPA 467 (non-motile) [31].

Cultures were grown aerobically in succinate medium to

mid-log phase, at which point they were maximally motile [30].

The analysis method used here enables the non-parametric

annotation of reorientation phases in the tracks and is compatible

with any motile behaviour that is well approximated by the run-

and-stop model described previously [18]. The approach takes

advantage of the availability of non-chemotactic and non-motile

mutants to gain empirical knowledge of the appearance of run-

ning and stopping phases in the observed motion. The methods

are based on a modification to the hidden Markov model and

are applicable to any bacterial species where such mutants exist

and sufficiently long reorientation events are discernible using

video microscopy. A Python implementation of the analysis soft-

ware is freely available to download at http://www.maths.ox.ac.

uk/groups/mathematical-biology/software. The tracking dataset

is provided as the electronic supplementary material.

In this study, we used the same protocol described in the

referenced article, with the exception of a minor modification

to the censoring process. We removed the top 10% of tracks

based on median curvature, compared with the 5% removed in

the original study. This results in the removal of an additional

85 tracks from the non-chemotactic mutant dataset and 160

tracks from the wild-type dataset, leaving 1531 and 2878 tracks,

respectively. The implications of jagged tracks in the dataset

are discussed in [18]; in particular, their presence generates a

large number of spurious reorientation events and large

between-frame angle changes. Our modified censoring stage is

necessary as the analyses in the original study are more robust

to such effects than those in this study. We find that failure to

filter these tracks results in very severe departures from linearity

in the MSAC (§3.2). We discuss this in more detail in the

electronic supplementary material.
3. Results
In this section, we analyse each model to obtain experimentally

testable predictions. We make several independent comparisons

between our theoretical results and both simulated and exper-

imental data. We shall use various statistics relating to the

experimental data, including the displacements observed

between consecutive sample points, denoted framewise displa-

cements (FDs), the angle change between consecutive pairs of
sample points, denoted framewise angle changes (FACs), and

the angle change observed over the course of a reorientation

event, denoted stopwise angle changes (SACs).

As noted, the experimental data used for comparison are

obtained from a tracking study in R. sphaeroides in which

wild-type and mutant strains were observed. Before com-

mencing analysis of the models, we first consider the

simple case of the non-motile strain. This is an important

consistency check, because the foregoing theory dictates

that the observed motion of such cells will be fully described

by Brownian translational diffusion. It also provides a well-

known example with which to introduce some of the

mathematical concepts used throughout this study to obtain

summary statistics from SDE models.
3.1. Translational diffusion in non-motile bacteria
The translational motion of a non-motile bacterium under-

going isotropic translational diffusion in a fluid is given by

equation (2.6). A common means of testing whether observed

motion is diffusive involves the time evolution of the mean

squared displacement (MSD). This quantity is derived in

the electronic supplementary material and is given by

k x(t)k k2 l ¼ 4
kT
zt

t ¼ 4Dtt, (3:1)

where Dt ¼ kT/zt is the translational diffusion coefficient.

The MSD of the non-motile dataset is shown in figure 4a.

The plot does not appear linear for t & 0:2 s, so we fit to

data outside this region in order to estimate Dt. We attribute

this departure from linear behaviour to artefacts generated by

the tracking process: the tracking algorithm may fill in any

missed detections by assuming that the intervening motion

took place with a constant velocity, leading to an over-

estimation of the FDs. This would lead to a nonlinear MSD

with a steeper slope, as observed. This effect is only present

over short time intervals, as the tracking algorithm may

only fill in short gaps. At longer time intervals, linear

behaviour is resumed.

We carry out an additional check that the motion observed

experimentally is approximately diffusive by plotting the

http://www.maths.ox.ac.uk/groups/mathematical-biology/software
http://www.maths.ox.ac.uk/groups/mathematical-biology/software
http://www.maths.ox.ac.uk/groups/mathematical-biology/software


Table 1. Theoretical and estimated values of the translational diffusion
coefficient of the non-motile strain of R. sphaeroides using data obtained
by Rosser et al. [18].

method Dt (mm2 s21)

theoretical 0.22

MSD linear fit 0.29

x fit, t ¼ 0.02 s 0.19

x fit, t ¼ 0.04 s 0.26

x fit, t ¼ 0.1 s 0.31
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distribution of cell displacements R(t) for various time inter-

vals t, achieved by successively downsampling the data.

This distribution is derived in the electronic supplementary

material and has probability density function (PDF)

fR(r; t) ¼ 1ffiffiffiffiffiffiffiffiffiffi
2Dtt
p fx

rffiffiffiffiffiffiffiffiffiffi
2Dtt
p , 2

� �
, (3:2)

where fx(., k) denotes the PDF of the x distribution with k
degrees of freedom. We fit PDF (3.2) to the experimental

data to extract an estimate of Dt. The observed and best fit dis-

tributions are shown in figure 4b for three values of t. The fit

becomes progressively better as t increases, although it shows

good qualitative agreement for all time lags. The distributions

observed experimentally further support our hypothesis that

the departure from the theoretically predicted behaviour is

due to an overestimation of step lengths by the tracking algor-

ithm: the observed distributions show a heavier tail than

predicted for all values of t.

Table 1 displays the estimates of Dt calculated using

a linear fit to the MSD, and by fitting (3.2) to the experimen-

tally observed distribution of displacements. These estimates

lie in the range 0.19 2 0.31 mm2 s21. Table 1 also shows

the theoretical value of Dt calculated by approximating a

bacterium as a sphere and applying equation (2.5). We take

r ¼ 1 mm and the values for k, T and h given in §2.6, which

yields Dt ¼ 0.22 mm2 s21. Recalculating the theoretical value

with r ¼ 0.75 mm, corresponding to a bacterium of slightly

smaller size, we obtain Dt ¼ 0.29 mm2 s21. We note an appar-

ent ‘time dependence’ of the estimate for Dt with increasing t;

this is likely to be due to an improved fit to the x distribution

at greater lags.
3.2. Run-only model
As discussed previously, we neglect translational diffusion in

our models. This omission is best motivated by calculation of

the Péclet number, defined as the ratio of advection to diffu-

sion in a fluid. Using speed, length and diffusion constants

relevant to bacterial motility, c ¼ 40 mm s21, r ¼ 1 mm and

Dt ¼ 0.2 mm2 s21, the Péclet number is given by

Pe ¼ cr
Dt
� 200: (3:3)

This indicates that the propulsion of a bacterium dominates

over translational diffusion. We therefore do not consider

translational diffusion further in our models.
3.2.1. Theoretical results
Electronic supplementary material, figure S1a, shows 20

sample trajectories obtained by simulating the run-only

model (2.13)–(2.15) numerically, as described in §2.6. It is

not generally possible to measure the orientation of a cell in

tracking experiments, due to limited microscope video

image quality. When comparing model predictions with

experimental data, we therefore wish to consider changes in

orientation angle over a time interval t, denoted Df(t),

rather than the absolute orientation angle f. Using this quan-

tity, we may approximate Df with the angle changes observed

in tracks over a time lag t. As figure 5a illustrates, this measured
angle change, denoted Dfmeas(t), is not equivalent to the true

angle change, Df(t).

All the models considered are stationary processes with

initial condition f(0) ¼ 0, therefore Df(t) follows the same
distribution as f(t). The first and second moments (mean

angle change and MSAC) are given by

kDf(t)l ¼ 0 (3:4)

and kDf2(t)l ¼ 2Drt, (3:5)

where Dr ¼ kT/zr is the rotational diffusion coefficient.

A derivation is provided in the electronic supplementary

material.

Figure 5b shows the MSAC of an ensemble of simulated

particles. The use of simulated data here allows us to com-

pare true angle changes, Df(t) (solid line), with the

approximate measured angle changes, Dfmeas (dashed

line). As expected, the true MSACs agree well with (3.5).

Figure 5b demonstrates that the measured MSACs also

scale linearly with the time lag, but with a constant of pro-

portionality that is 60% of that in the true MSACs. Misuse

of the MSAC, by assuming that Df(t) � Dfmeas(t) and

using the latter quantity to compute Dr, could therefore

lead to a substantial underestimate of the rotational

diffusion coefficient.

Just as for the MSD, it is possible to check not only the

MSAC, but also the distribution of angle changes, against

data. As given by (2.12), the true distribution of Df(t) is a

wrapped normal, with variance proportional to t. It is not,

however, obvious how Dfmeas(t) is distributed. To address

this question, we simulate a particle undergoing a run-only

process with rotational diffusion. Figure 5c shows the

observed distribution of the measured angle changes for

two different values of the sampling time-step t. We find

that the distribution is indiscernible from the normal

distribution in each case.
3.2.2. The effect of cell geometry on rotational diffusion
We now consider how the geometry of the cell body affects

the role of rotational diffusion on bacterial motility. We

assume that there is little variation in the length of the equa-

torial (shorter) semi-principal axis in bacteria, and hence

consider cells with a constant equatorial radius, b ¼ 1 mm.

We then vary the length of the axial radius a, hence the

axial ratio r, to study a range of prolate ellipsoids (for

which a . b). Figure 6a shows the effect of varying r on the

rotational drag coefficient, zr. The solid line corresponds to

the drag coefficient for rotation in the equatorial axis, and

the dashed line indicates the drag coefficient for the sphere

of equivalent volume. This plot demonstrates that as the

axial ratio increases, the rotational drag coefficients for a

sphere and for an ellipsoid of equal volume diverge from
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each other, and ellipsoidal bacteria are more stable to

rotational diffusion than spherical bacteria. Figure 6b shows

the variation of the diffusion coefficient for rotation in the

equatorial axis with r for an ellipsoid of fixed volume. We

see that the rotational diffusion coefficient decreases with r,

again indicating that an ellipsoidal geometry stabilizes the

cell towards Brownian reorientation.

We further illustrate this point by returning to the work of

Mitchell [13], who derived equations for the minimum useful

swimming speed for bacteria in terms of the size of the
bacterium. For a chemoattractant with molecular translation

diffusion coefficient Dm � 1000 mm2 s21, Mitchell defined a

characteristic length, L ¼
ffiffiffiffiffiffiffiffiffi
Dmt
p

, over which the change in

the concentration of chemoattractant is sufficiently large to

be detected by the bacterium in time t. The minimum

useful speed is given by vmin ¼ L/t. Hence, from (3.5),

we have

vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrDm

kDf2l

s
: (3:6)
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We solve equation (3.6) with kDf2l ¼ (p/2)2, indicating that a

cell must travel a distance L before its mean reorientation

angle exceeds p/2 [13]. We note that this interpretation is

an approximation, as the equality kDf2l ¼ (p/2)2 does not

imply that kjfjl ¼ p/2. Figure 7a shows the variation of

vmin with axial ratio, r, for cells with various equatorial

radii, b. Most wild-type R. sphaeroides cells have an equatorial

radius in the range 0:5mm , b & 1mm [27,32]. Figure 7b
shows the mean swimming speed for each track in the

R. sphaeroides non-chemotactic bulk dataset. The absence of

measurements of the diameters of tracked cells limits any

quantitative analysis of these data; however, we are able to

determine that the plots in figure 7 are consistent in the

sense that most cells swim sufficiently quickly to meet the

minimum useful speed, assuming that 0:5mm & b & 1mm

and r � 1:5.
3.2.3. Comparison with experimental data
We now seek to estimate the rotational diffusion coefficient,

Dr, in the run-only model for the non-chemotactic strain of

R. sphaeroides. These tracks are approximately described by
our run-only model. The MSAC in this model grows linearly

with time, as given by (3.5). Furthermore, we expect that

angle changes should follow a wrapped normal distribution

with zero mean and variance equal to the MSAC. Figure 8

shows the comparison of the non-chemotactic dataset with

the predictions of the model. As for the experimentally

observed MSD, the MSAC is approximately linear for

t � 0:2 s. Estimating Dr from the linear portion of the data

in figure 8a yields Dr ¼ 0.13 rad2 s21. However, in §3.2.1

we show that the method of estimating angle changes, sub-

stituting Dfmeas for Df, underestimates Dr by around

60%. Correcting for this error, we obtain an estimate of

Dr ¼ 0.21 rad2 s21.

Figure 8b shows the observed distribution of angle

changes for three values of the sampling time step, t, overlaid

with the predicted wrapped normal distribution with zero

mean and variance calculated from the data. There is a sig-

nificant discrepancy between the observed and predicted

distributions, for which we offer two possible explanations.

First, errors in finding cell centroids, in addition to artefacts

generated by the tracking algorithm, may contribute to the

departure of the results from the predicted normal distri-

bution. In particular, the tracker developed by Wood et al.
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Table 2. The proportion of false positives outside the acceptance region for
the simulated dataset generated by Rosser et al. [18].

stop
duration (s)

proportion false
positives (HMM
speed only)

proportion false
positives (HMM
full)

0 – 0.1 0.613 0.658

0.1 – 0.2 0.476 0.407

0.2 – 0.3 0.281 0.232

0.3 – 0.4 0.222 0.191

0.4 – 0.5 0.140 0.106
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[33] that is used to generate the experimental datasets in [18]

is based on a constant velocity motion model with additional

Gaussian noise terms. This is expected to overestimate small

observed FACs, leading to a more peaked distribution, as

observed. Second, our computation of Df(t) is based on the

assumption that FACs may be used to approximate changes

in the orientation of the cell. While this cannot explain the

non-normal distribution of observed FACs, it is expected to

produce a distribution with lower variance than the true dis-

tribution (figure 5b), which is similar to that seen in figure 8b.

The theoretical value of the rotational diffusion coefficient

is calculated using equation (2.9). Approximating a bacterium

as a sphere of radius r ¼ 1 mm, we obtain Dr ¼ 0.16 rad2 s21,

in close agreement with the value estimated from the data.

We note, however, that the theoretical estimate is highly sen-

sitive to the value of r; for example, choosing r ¼ 0.75 mm

gives Dr ¼ 0.39 rad2 s21.

3.3. Run-and-stop model
3.3.1. Theoretical results
As for the run-only model, we begin by comparing numerical

and analytic results. Analytic expressions for the first and

second moments of the angle change Df(t) and x and y coordi-

nates satisfying the run-and-stop model (2.16)–(2.18) are

derived in the electronic supplementary material. Figure S2

shows the analogous plots to those in the electronic supplemen-

tary material, figure S1, for the run-and-stop model. The mean

and standard deviation of x(t), and the standard deviation of

y(t), have lower magnitudes than the run-only analogues as

stopping phases cause the cell to halt sporadically, which

reduces the extent of travel and dispersion.

3.3.2. Comparison with experimental data
We now compare the predictions of the run-and-stop

model with experimental data, in order to assess how well

the model captures the observed motile behaviour of

R. sphaeroides. For this purpose, we use the wild-type dataset.

We focus on the predicted variation of the variance of SACs

with stop duration. According to the run-and-stop model,

the evolution of the orientation angle f during both running

and stopping phases is described by equation (2.18), which
states that angle changes follow the wrapped normal distri-

bution with zero mean and variance equal to 2Drt, where t

is the stop duration. According to the model, stop durations

are distributed exponentially with mean 1/lr. The theoretical

distribution of SACs is shown in figure 9a for several different

stop durations.

A direct comparison of figure 9a with the experimental

data requires that we estimate the variance of the observed

SACs, denoted s2
u, for a variety of stop durations. This pro-

cess is complicated by the presence of artefacts from the

analysis procedure, as discussed in Rosser et al. [18]. The

authors demonstrate using a simulation study that the pro-

cess of identifying stops in experimental tracks leads to a

systematic bias in the form of falsely inferred stops (termed

false positives). These are shown to occur with higher fre-

quency at low SACs (see table 2 and figure 9b). As a result,

stopping events in the experimental tracking data are more

likely to be spurious if they have a lower SAC. The presence

of false positives is expected to lead to errors when calculat-

ing the variance of SACs. Estimation of the exact distribution

of false positives in the experimental dataset is not possible,

so we instead define an acceptance region, juj . a, in which

we assume that the density of false positives is negligible.

Based on the results in [18], we choose a ¼ p/2. We first

bin the observed stops by their duration. For each group,
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we estimate the total density of SACs in the acceptance region

in two ways:

(1) Assume no false positives, by taking the number of angle

changes in the acceptance region divided by the total

number of angle changes.

(2) Use the simulated dataset from Rosser et al. [18] to esti-

mate the false positive level outside the acceptance

region, and hence to estimate the density within the

acceptance region, taking false positives into account.

Method (1) provides a lower bound on the density of SACs in

the acceptance region, and therefore on the value of s2
u,

because the presence of false positives outside the acceptance

region is ignored. These false positives are clustered around

the mean (i.e. zero), hence they artificially reduce the appar-

ent variance. Method (2) constitutes an improved estimate

that is corrected in an approximate fashion for false positives;

note that this is not an upper bound, nor is it necessarily an

accurate estimate; however, it is likely to be more accurate

than method (1). The estimated proportion of false positives

outside the acceptance region in the simulated dataset is

shown in table 2. We use the data simulated with the level

of noise given by D ¼ 0.288 mm2 s21, as this value is in

close agreement with the estimates of Dt listed in table 1.

We now seek an expression linking the total density in the

acceptance region to the variance of the wrapped normal

distribution with zero mean. The PDF of this distribution is

given by

fQ(u; su) ¼ 1

su

ffiffiffiffiffiffi
2p
p

X1
k¼�1

e�(uþ2pk)2=2s2
u : (3:7)

Note that this distribution is symmetric about u ¼ 0. The total

density in the acceptance region is thus given by

F(a) ¼ 2
X1

k¼�1

1

su

ffiffiffiffiffiffi
2p
p

ðp
a

e�(uþ2pk)2=2s2
udu: (3:8)

Each term in the summation is given by

Ik ¼
1

su

ffiffiffiffiffiffi
2p
p

ðp
a

e�(uþ2pk)2=2s2
udu

¼ 1

2
erf

p(2k þ 1)

su

ffiffiffi
2
p

� �
� erf

aþ 2pk
su

ffiffiffi
2
p

� �	 

, (3:9)

where erf(.) denotes the error function. Substituting (3.9) into

(3.8), we obtain

F(a) ¼
X1

k¼�1

erf
p(2k þ 1)

su

ffiffiffi
2
p

� �
� erf

aþ 2pk
su

ffiffiffi
2
p

� �	 

: (3:10)

Having obtained an estimate for F(a) using either of the

methods described above, we use trust-region constrained

numerical optimization [34] to find su from (3.10). The results

of this calculation, along with the theoretically predicted

result for an ellipsoidal bacterium with an equatorial diam-

eter of 0.5 mm, are shown in figure 10. The geometry of the

model bacterium is selected as an approximate match to the

true dimensions of R. sphaeroides. The discrepancy between

the lower bound estimate of s2
u and the theoretical value is

striking; the theoretical variance is an order of magnitude

smaller than the lower bound. This demonstrates that

R. sphaeroides does not reorientate passively by rotational

Brownian diffusion: the bacterium is too large for this to be

an effective mechanism for reorientation.
3.4. Run-and-active-stop model
Figure 10 also shows predictions from the run-and-active-

stop model. The multiplicative factor a increases the variance

of angle changes linearly. The data are too noisy to permit us

to fit a accurately, but the data suggest that wild-type

R. sphaeroides reorientate between five and 20 times more

rapidly than predicted by the run-and-stop model. This

result strongly suggests that there is active movement, pre-

sumably slow or transient motor rotation, during a stop,

which increases the rate of reorientation.
4. Discussion
In this study, we have considered the role of Brownian dif-

fusion in flagellar-mediated bacterial motility. We focused

on rotational diffusion, ignoring translational diffusion,

because it is the former that leads to fundamental limit-

ations in the way that bacteria propel themselves through

a liquid medium. The absolute magnitude of the pertur-

bation from a straight line trajectory caused by rotational

diffusion varies with the speed at which a cell travels,

whereas translational diffusion has a fixed effect regardless

of the rate of propulsion. This work is motivated by the

need to reconcile the idealized VJ model, considered in

Rosser et al. [35], with the immediately apparent depar-

ture from the model in experimentally observed tracks

(figure 2) and the differences seen in experiments with

tethered cells and free-swimming cells.

We used an overdamped Langevin equation, in the con-

text of a self-propelled particle model, to model rotational

diffusion. This approach was motivated by a related study

by ten Hagen et al. [19]. We described three minimal

models for bacterial motility in a planar domain. This geo-

metrical simplification was justified by our use of

experimental data of free-swimming tracks within a focal

plane. The three models were chosen to describe the
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motion of R. sphaeroides wild-type and non-chemotactic

mutant bacteria.

We tested several hypotheses arising from our models

against the experimental data, comparing the observed PDF

of angle changes with the theoretically predicted distribu-

tion, demonstrating that the mean swimming speeds of

R. sphaeroides agree well with theoretical minimum bounds,

and testing a model for the poorly understood mechanism of

reorientation in this monoflagellate. All experimental data

were analysed using the methods presented in Rosser et al. [18].

While similar studies have been undertaken in other bio-

logical systems, such as human dermal keratinocytes [36]

and the amoeba Dictyostelium discoideum [37], to our knowl-

edge our work is the first such comparative study in

bacteria. Furthermore, in [37], the authors take a more gen-

eralized approach to their analysis, allowing departures

from the standard Langevin formulation. It is not clear

how this more general approach relates to the underlying

physical theory of motion, or the biological processes

involved. By contrast, in this study we have robustly

tested our model predictions.

Our results show good agreement between the theoretical

and observed translational diffusion coefficients Dt, inferred

using non-motile strain data. In particular, we found that the

distribution of displacements matches the theoretical predictions

well. This test is often ignored in favour of simply testing the

MSD for linearity [38,39]. Our analysis shows that a full com-

parison of the distribution, when possible, is a useful test.

We note that, while estimation of diffusion coefficients based

on MSDs is standard in the literature, a recently developed

unbiased covariance-based estimator can be superior [40].

We found that the observed dimensions and shape of

R. sphaeroides in the experimental data are consistent with

the mean speeds observed in the tracks. We also found

good agreement between the non-chemotactic dataset and

the predictions of the run-only model, quantified through

comparison of the MSAC. The rotational diffusion coefficient

Dr estimated in this way agreed with the theoretically pre-

dicted value. However, we identified significant departures

from the predicted distribution of angle changes, which we

attributed to errors in the image analysis and tracking pro-

cedures, in addition to the method used to estimate FACs.

Regarding this latter point, we demonstrated the difference

between the true orientation of a bacterium, which is not

observable using present experimental protocols, and an

approximation that is easily computed from the tracking

data. Assuming that these two quantities are equal leads to

an underestimate for Dr.

In order to compare the predictions of the two models

incorporating stochastic stopping events with our wild-type

data, we needed to circumnavigate the issue of artefacts in

the dataset. The simulation study carried out in Rosser et al.
[18] was of great utility in this regard. Guided by this, we

were able to demonstrate the important biological result

that R. sphaeroides cannot reorientate purely passively by

rotational diffusion. This was clear from the strong incompat-

ibility between the predictions of the run-and-stop model and

the observed data. Our work provides evidence to reinforce

this conclusion, using robust analysis of tracking data with

reference to a well-stated model to address the question of

the mechanism of reorientation in bacteria.

Motivated by this discrepancy, we also compared the

experimental data with the predictions of the run-and-
active-stop model, in which a stochastic rotational force

leads to an increased rate of reorientation during stops. Sig-

nificant variability in the data, coupled with a need to

compensate for potential bias introduced by the analysis pro-

cess, prevents us from estimating the strength parameter a

with a high degree of confidence in this study.

We do not consider the precise nature of the active

rotational force in this work, as it is not the goal of our analy-

sis; however, several previous studies suggest plausible

mechanisms. The mechanism of reorientation in R. sphaeroides
and related bacterial species has been discussed before in

the literature, with no strong consensus [6,7,13,16]. The

hypothesis that R. sphaeroides exhibits some form of active

reorientation mechanism was briefly discussed by Armitage

et al. [7]. The authors present a study in which they observed

the various flagellar conformations of swimming and stop-

ping R. sphaeroides cells. In particular, a conformation was

observed in stopped cells in which ‘once coiled against the

cell body, the flagellum often slowly rotated’. In the context

of this work, we speculate that such a low-frequency move-

ment of the flagellum during a stopping phase may lead to

enhanced rotational diffusion. An alternative speculative

mechanism is suggested by Vogel & Stark [41], who model

rapid polymorphic transformations in the bacterial flagellum

during the stop-to-run transition, demonstrating that these

lead to rotation of the cell body. Analysis of the predictions

of this model is beyond the scope of this study; however,

such a detailed comparison may give valuable insight into

the source of the active rotational force.

A recent study has shown that the number of engaged

motor stators increases with the force applied to the filament.

It seems probable that a certain rotational force is required to

drive reformation of the functional flagellum following a

reorientation phase, causing a period of rotation of the

relaxed filament before that torque is reached. Previous

work on the mechanism of reorientation in R. sphaeroides [6]

suggests that the braking torque during a stop is greater

than the stall torque of a disengaged motor, but used a teth-

ered cell assay with filaments under increasing loads, and

therefore may have artificially increased the number of

engaged stators.

Further detailed microscopy studies of individual free-

swimming cells and their flagella are required to elucidate

the mechanisms involved, as much detailed information on

flagellar dynamics is gained from this type of study [42,43].

We did not include the additional frictional effects of

the flagellum in this work, which may be expected to reduce

the reorientation rate even further [13]. This additional flagellum

drag is expected to be less significant in R. sphaeroides than E. coli,
as the former possess a single, thin flagellum, compared with the

flagellar bundle in peritrichous bacteria such as E. coli. Further-

more, in order to reduce the number of free variables in this

study, we computed theoretical results of the run-and-stop

and run-and-active-stop models using a single representative

bacterial cell geometry. Longer, thinner ellipsoidal bacteria

would experience reduced rotational diffusion.

The use of minimal models together with quantita-

tive comparison with the largest available tracking dataset of

free-swimming R. sphaeroides demonstrated here suggests sev-

eral opportunities for gaining further insight into bacterial

motility. We identified several departures from the theoretical

predictions, particularly when comparing the non-chemotactic

dataset with the run-only model. We suggested that these
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differences may be explained by artefacts introduced by image

analysis and cell tracking, or due to the method of calculating

the angle change. Further studies could test whether these

departures contain useful information about the biological pro-

cesses underlying bacterial motility or are indeed due to

artefacts introduced in the various analysis stages.

A related consideration is variation in swimming speeds

across individuals. Several studies have noted the highly

heterogeneous nature of bacterial populations in terms of

swimming speeds [7,44,45]. In our models, we fixed the

swimming speed; an obvious extension is to replace this

with a fluctuating quantity. Random velocities have been

considered in the context of random walks [46], but have
not been coupled with a model of rotational diffusion. This

may further explain the departure of the experimental results

from the run-only model predictions. It is, however, unclear

how the random velocities should be distributed: a popu-
lation-level distribution of velocities was measured by

Rosser et al. [18], but a distribution on an individual level

would be required for this extension.
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 meaning
 description
VJ
 velocity jump
 a mathematical model of run-and-tumble bacterial motility
SDE
 stochastic differential equation
PDF
 probability density function
MSD
 mean squared displacement
MSAC
 mean squared angle change
FD
 framewise displacement
 the distance between two consecutive observations in a track
FAC
 framewise angle change
 the angle change between two consecutive pairs of observations in a track
SAC
 stopwise angle change
 the angle change over the course of a stopping event in a track
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