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Many endangered wildlife populations are vulnerable to infectious diseases

for which vaccines exist; yet, pragmatic considerations often preclude large-

scale vaccination efforts. These barriers could be reduced by focusing on

individuals with the highest contact rates. However, the question then

becomes whether targeted vaccination is sufficient to prevent large outbreaks.

To evaluate the efficacy of targeted wildlife vaccinations, we simulate patho-

gen transmission and control on monthly association networks informed by

behavioural data from a wild chimpanzee community (Kanyawara N ¼ 37,

Kibale National Park, Uganda). Despite considerable variation across monthly

networks, our simulations indicate that targeting the most connected individ-

uals can prevent large outbreaks with up to 35% fewer vaccines than random

vaccination. Transmission heterogeneities might be attributed to biological

differences among individuals (e.g. sex, age, dominance and family size).

Thus, we also evaluate the effectiveness of a trait-based vaccination strategy,

as trait data are often easier to collect than interaction data. Our simulations

indicate that a trait-based strategy can prevent large outbreaks with up to

18% fewer vaccines than random vaccination, demonstrating that individual

traits can serve as effective estimates of connectivity. Overall, these results

suggest that fine-scale behavioural data can help optimize pathogen control

efforts for endangered wildlife.
1. Introduction
Vaccines exist for many infectious diseases that threaten wildlife populations

(e.g. [1,2]), yet immunization is rarely implemented as a conservation strategy.

This is partly due to logistical difficulties in administering vaccines to large

enough portions of wildlife populations to substantially drive down trans-

mission. In particular, models based on homogeneous mixing typically indicate

that a majority of individuals must be vaccinated to eliminate most pathogens

[3]. Further, because vaccination is economically costly, logistically difficult and

can carry its own risks [4], high coverage levels can be infeasible or undesirable,

particularly when dealing with endangered animals. For many wildlife species,

individuals vary in contact rates (e.g. [5]). Thus, vaccination efforts focused on

animals with the highest contact rates might lower the level of coverage needed

to curb large outbreaks (i.e. achieve a high level of herd immunity), relative to

vaccinating randomly selected individuals [6,7].

A major challenge to developing wildlife pathogen control strategies is that

data on infection and pathogen transmission are notoriously difficult to obtain

for wild animals. Collecting biological samples can require risky immobilizations

and epidemics often sweep through populations quickly, leaving researchers

with inadequate time to ascertain the infection status of more than a few animals

[8]. Given these obstacles, behavioural association data can provide useful esti-

mates for transmission pathways when infection data are not available [9].
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Network epidemiology (which represents individuals as nodes

and interactions allowing for pathogen transmission as edges)

uses association data and infectious disease models to predict

the dynamics of pathogen transmission for populations with

heterogeneous contact rates [6,9,10]. While traditionally applied

to human–pathogen systems, network analysis tools have

recently gained traction among ecologists studying wildlife

disease dynamics [11–13]. Here, we present how network

epidemiology can be used to develop efficient vaccination

strategies for a social wildlife species.

Great apes have experienced considerable declines from

infectious diseases such as Ebola and respiratory viruses

[14,15]. Apes also demonstrate substantial heterogeneity

in individual contact rates that can induce tremendous individ-

ual variation in the risk of acquiring or spreading infections

[16–18]. While network data are not always available for

wildlife populations, easily measured demographic and be-

havioural traits (e.g. sex, age, dominance and family size)

might correlate with connectivity. For example, previous

work on the Kanyawara chimpanzee community showed

individuals with large families (i.e. adult females and juven-

iles) that range in the core area of the Kanyawara territory

were consistently more central to the social network than

other community members [19]. Thus, when detailed network

data are not available to explicitly identify the most central

individuals, immunizing animals with high-risk social traits

may be an alternative approach to preventing large outbreaks

with less coverage than random vaccination.

We investigated how contact heterogeneity within the

Kanyawara chimpanzee community affects the spread and

control of directly transmitted pathogens using network

epidemiology and empirically derived contact networks.

Specifically, we simulated pathogen spread on a series of nine

monthly contact networks (n ¼ 37 chimpanzees) to assess

how final outbreak sizes were affected by (i) the network pos-

ition of the index case (first individual to be infected), (ii) the

timing of the initial case (across months that differed in connec-

tivity), and (iii) pathogen contagiousness. Our simulations used

estimated values of the basic reproductive number (R0)

reported in the human literature for a range of low to highly

infectious pathogens that show potential for infecting wild

apes [1,3]. We then identified key traits of individuals likely to

initiate large outbreaks (similar to high-risk groups identified

for human diseases such as HIV, e.g. [20]), and we compared

the effectiveness of a random (null) vaccination strategy to

two network-based strategies: (i) vaccinations focusing on the

most central individuals and (ii) vaccinations targeting individ-

uals with high-risk social traits. We predicted that final

outbreak size would increase with index case centrality and

that infections starting in core-ranging adult females and juven-

iles with large families would lead to the largest outbreaks. We

also expected the centrality-based vaccinations to require the

least coverage to mitigate outbreaks; however, given that

detailed network data are not available for many wildlife popu-

lations, trait-based vaccinations might be the most logistically

feasible to implement in the field.
2. Material and methods
2.1. Field data collection
Over a nine-month period (December 2009–August 2010), we col-

lected behavioural contact data on the habituated, wild
Kanyawara chimpanzee community (n ¼ 48) in Kibale National

Park, Uganda. Further information on the studysite and community

is provided in the electronic supplementary material, text S1. Chim-

panzees have dynamic, fission–fusion societies, where individuals

within communities break off into smaller parties of variable size

and composition over periods of hours to months [21]. Each morn-

ing, we randomly selected a focal chimpanzee from a party (i.e.

individuals within a 50 m radius) to follow. At 15 min intervals,

we scanned the focal animal’s party to record party member identi-

ties based on individuals within a 50 m radius, a common criterion

for estimating chimpanzee party sizes [22]. At the 15 min intervals,

we also recorded pairs of individuals that were within 5 m of each

other. Our total sample size was 37 individuals (adults: 12 males

and 12 females; juveniles: seven males and six females), excluding

dependent offspring (less than 4 years old). On average, we followed

each chimpanzee as a focal subject for 27.79 (+3.6) h, comprising

a total of 1028 focal observation hours and 4114 fifteen-minute

scans. Our analysis included 306 212 pairwise party associations

and 14 673 pairwise 5 m associations. Data are available upon

request. See Rushmore et al. [19] for full data collection details.

2.2. Quantifying contact networks
We created monthly contact networks at two spatial scales (proxi-

mity networks and party networks) across nine months, in which

nodes represented chimpanzees. Proximity networks were con-

sidered a proxy for pathogen transmission by direct contact or

respiratory droplets, whereas party networks were a proxy for

pathogens spread via fomites or fecal oral transmission. Because

many pathogens require close contact for transmission, results in

the main text pertain to proximity networks unless otherwise

stated. Party network results are in the electronic supplementary

material, figures S2–S4.

To quantify party association indices (PAIs) used to weight

party network edges, we determined the number of scans in

which chimpanzees A and B were observed in the same party

relative to the total number of scans in which either A or B

was observed in any party:

PAIAB ¼
SAB

SA þ SB þ SAB
, (2:1)

where SAB represents scans in which A and B were observed in the

same party, SA represents scans where A was observed in a party

without B, and SB represents scans where B was observed in a

party without A. To quantify 5 m association indices (5 mAIs)

used to weight edges of proximity networks, we calculated the

probabilities that individuals A and B would be both within

the same party and within 5 m of each other:

5 mAI ¼ PAIAB
SAB5

SAB

� �
, (2:2)

where SAB5 represents scans in which A and B were observed within

5 m of each other. Thus, this index, which could range from 0 to 1,

represents the overall proportion of time that individuals A and B

were within 5 m of each other.

A major challenge in quantifying contact networks for wildlife

is that it is often difficult to observe all study subjects within a

given time frame. In our monthly networks, 1.72% of the monthly

pairwise interactions were undefined because neither individual A

nor B was observed within the given month, making it impossible

to directly quantify the amount of time the two individuals spent

together. To circumvent this issue, we used a Bayesian logistic

mixed effects model (with pairwise predictor variables of age,

sex, relatedness, difference in rank, difference in family size and

number of females in estrus in a given month) to predict the miss-

ing pairwise association indices. The model details are described

in Rushmore et al. [19].

When simulating pathogen transmission on contact networks,

it is important to assess host interactions at a time scale that reflects
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the transmission dynamics of real-world pathogens. Notably,

aggregating the contact data across the entire study period would

overestimate the connectedness of the community during a time

frame in which a pathogen is likely to spread. Close-contact diseases

occurring in chimpanzees and humans typically have an infectious

period that ranges from several days to a month (e.g. influenza: 2–3

days, Ebola: 4–11 days, measles: 6–7 days, Streptococcus spp.: 14–30

days [3,23,24]) and published reports of respiratory disease out-

breaks in wild chimpanzee communities indicate that epidemics

often last two weeks to two months [25,26]. Previous work on our

study system (with the same behavioural interaction dataset)

demonstrated that the inter-individual associations in two-week

versus month-long time steps were significantly correlated for

both the proximity and party networks [19]. Thus, here we use

only the monthly association networks when simulating pathogen

transmission and control. Importantly, the networks were highly

dynamic across months, changing in both overall connectivity

and topology in ways that might determine temporal variation in

the probability of pathogen invasion and final outbreak size.

2.3. Individual trait data
For each individual, we recorded age, sex, dominance rank and

family size, following Rushmore et al. [19]. Adult male chimpan-

zees tend to follow a linear hierarchy, which is not the case for

eastern chimpanzee adult females [27]. In the Kanyawara commu-

nity however, adult females that occupy the territory core tend to

be higher ranking than those occupying the territory edges [28].

Adult females and their juveniles typically travel in family units,

but not adult males or females without juveniles [29]. We con-

sidered large families to be a mother with two or more juveniles

(electronic supplementary material, table S1).

2.4. Calculating centrality measures
We used UCINET [30] to calculate the weighted degree centrality

(the sum of a node’s edge weights [31]) for each individual in

each month. We selected weighted degree as a centrality metric

because it generally performs better than alternative centrality

measures (unweighted degree, betweenness, closeness, farness

and eigenvector centrality) for predicting individual risk of infec-

tion [32] and predicting outbreak size given the centrality of the

index case [9]. Additionally, Salathé et al. [9] showed through simu-

lations on empirical human contact networks that vaccination

strategies based on weighted degree centrality were more effec-

tive in mitigating outbreak spread than strategies based on other

centrality metrics.

2.5. Simulating pathogen transmission on
observed networks

We simulated pathogen transmission on observed contact

networks using bond percolation, a computationally tractable

approach to estimate the final outbreak size of a stochastic, net-

work-based susceptible–infected–recovered (SIR) model [6,33].

In a bond percolation model, the probability of pathogen trans-

mission (T ) along an edge connecting nodes i and j, given that

one of the nodes is infected, is related to the contact rate between

individuals (cij), the pathogen transmission rate (b) and the

infectious period (t) as follows [33]:

Tij ¼ 1� e�cijbt: (2:3)

In our case of weighted networks, we parametrized cij using pair-

wise association indices from monthly networks. We assumed that

for a given pathogen, the transmission rates and infectious periods

were the same across all transmission events and individuals.

In each simulation, the bond percolation method simpli-

fied the observed network by removing edges (with probability
1 2 T ) that would not lead to transmission events. The remain-

ing graph represented transmission events, where nodes

connected to the index case represented individuals that

became infected during the simulation. Therefore, the size of

the component (i.e. connected network) with the index case rep-

resented the final outbreak size. Unlike methods that reproduce

temporal outbreak dynamics, such as chain-binomial models

[34], bond percolation does not track temporal changes in

individual infection status, and hence substantially reduces

computational time. To check the validity of our models, we

simulated time-series pathogen transmission for a subset of

parameter combinations using the chain-binomial method,

which yielded identical results to our percolation-based

simulations (electronic supplementary material, figure S1).

The basic reproductive number depends on the probability of

transmission (Tij) and network connectivity. The following three

equations demonstrate how we calculated the basic reproductive

number (and the associated values of bt) in the context of our

study population. First, for each individual in each monthly net-

work, we set R0(i,m) for an individual (i) in a given month (m) to

the sum of the transmission probabilities between individuals i
and j in the network:

R0(i,m) ¼
X
i=j

Tij: (2:4)

We then set R0(m) for a monthly network to the mean of R0(i,m) for

all 37 individuals in that monthly network:

R0(m) ¼
1

37

X
i

R0(i,m): (2:5)

The average R0 (�R0) across networks was then equivalent to the

mean of R0(m) for all nine monthly networks at a given spatial

scale (i.e. proximity versus party networks):

�R0 ¼
1

9

X
m

R0(m) ¼
1

9

X
m

1

37

X
i

X
i= j

Tij: (2:6)

Averaging R0 across monthly networks allowed us to measure

the effect of network structure (month) on outbreak size for a

given level of pathogen contagiousness, where i and j were the

indices of the 37 individuals (electronic supplementary material,

table S1). Thus, our final definition for �R0 (equation (2.6)) rep-

resents the mean number of secondary infections that arise

from a randomly infected index case, averaged across all nine

monthly networks. We calculated pathogen transmission rate

(b) such that the resulting �R0 values matched estimates for infec-

tious pathogens reported in the human literature showing

potential for infecting wild apes. Specifically, we used values

of �R0 ¼ 0:7 (representing pathogens with low contagiousness

in which the average index case does not consistently infect

at least one other individual), �R0 ¼ 1:5 (mildly contagious patho-

gens, such as influenza [35,36]), �R0 ¼ 3:0 (moderately contagious

pathogens, such as Ebola [37,38]), and �R0 ¼ 10 (highly conta-

gious pathogens, such as measles [3]) to simulate pathogen

transmission on each of the nine monthly contact networks.

Given that we used consistent �R0 values in simulations for

each month, differences observed in outbreak size across

months arise from changes in network structure. Notably, the

referenced R0 values were calculated for a small number of

human populations and should be extrapolated to other

human and great ape populations with caution. Estimates of R0

are not readily available for most wildlife pathogens, and we

are not aware of any published reports of R0 for these diseases

in wild primates. Nevertheless, while the �R0 for the referenced

diseases might vary slightly in our study population, their

respective ranks as pathogens with low, mild, moderate and

high levels of contagiousness should be consistent. Further infor-

mation regarding our definition of �R0, which differs slightly from
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another definition often used in network epidemiology, is in the

electronic supplementary material, text S2.

To examine the effect of index case centrality, month of initial

case and pathogen infectiousness (�R0 ¼ 0.7, 1.5, 3.0, 10.0) on out-

break size (the cumulative number of individuals infected during

an outbreak), we ran 1000 simulations per unique combination of

these three parameters at two spatial scales (i.e. proximity net-

works and party networks), resulting in 2 664 000 simulations.

All simulations and subsequent analyses were run in R v. 2.15

[39]; code is available from J. Rushmore upon request.

2.6. Parametrizing trait-based vaccination strategies
To determine which individuals were associated with larger out-

breaks, we used permutation-based regressions with 30 000

permutations per test (electronic supplementary material, text

S2). Rushmore et al. [19] showed that the most important

predictors for individual centrality in the chimpanzee community

examined here were family size and range location (core versus

edge area of the community territory) for adult female and juvenile

groups, and dominance rank for males. Thus, we placed individ-

uals in trait-based groups (i.e. based on the individual’s rank

and family size; electronic supplementary material, table S1) and

verified that our classification scheme predicted outbreak sizes

using permutation-based regression tests (electronic supple-

mentary material, text S2). For each �R0 value, we examined

relationships between mean outbreak size and the trait-based

group of the index case while controlling for month. To account

for multiple comparisons across �R0 values, we applied a Bonfer-

roni correction and considered relationships where p , 0.013

(i.e. p , 0.05/4) to be significant.

2.7. Simulating vaccination strategies
Using bond percolation as described above, we simulated vacci-

nation strategies on observed monthly networks with the

assumption that vaccination conferred full protection to treated

individuals. For each strategy, we ran 5000 simulations per

unique combination of month, �R0, and coverage level (which

varied sequentially from 1 to 37 individuals).
3. Results
3.1. Effects of network heterogeneity on outbreak size
The network position of the index case, the month of initial

infection and pathogen contagiousness strongly affected mean

outbreak size for the chimpanzee community in our simu-

lations. Within a given monthly network, mean outbreak size

generally increased with index case centrality across all �R0

values (figures 1 and 2). Notably, when �R0 was low, index

case centrality showed a nearly linear relationship with mean

outbreak size; however, when �R0 was moderate or high, this

relationship became saturating. In particular, when �R0 ¼ 10:0,

mean outbreak size levelled off as the outbreak approached

the size of the largest component (i.e. fully connected network

including the index case) for a given month (figure 2).

Across months, mean outbreak size varied considerably

and generally increased with monthly network density (i.e.

mean edge weight; electronic supplementary material,

figure S2). This relationship was strongest for low to moder-

ate �R0 values, as high �R0 values had large outbreak sizes for

most months (electronic supplementary material, figure S2).

Notably, months with higher levels of network connectivity

allowed less contagious pathogens (�R0 ¼ 0:7) to invade and

affect up to 30% of the community provided that the infection
started with a highly central index case, whereas months

with low network connectivity could result in no outbreaks

of even highly contagious pathogens (�R0 ¼ 10) if the infection

started in a less central index case (figure 1). Additionally, the

mean outbreak size linked to an index case varied across

months, as a less central individual in one month could be

a moderately central individual in another month (figure 1).

The dynamic nature of the contact structure might thus

appear as an obstacle to efficient network-based vaccinations.

However, for our study system, an index case’s average

weighted degree centrality (i.e. averaged over the study

period) strongly predicted outbreak size; thus, vaccination

based on average weighted degree should be robust to

monthly network variation.

Time-series chain-binomial models (which were run for a

subset of network months and index cases: Material and

methods) revealed that outbreaks parametrized with infec-

tious periods and �R0 values for low to highly infectious

pathogens lasted less than a month (electronic supplementary

material, figure S1). This finding suggests that the one-month

static networks used in our simulations should capture host

interactions at a temporal scale that reflects realistic pathogen

transmission. Additionally, pathogen simulation results were

consistent across proximity (5 m) and party (50 m) networks,

with the exception of a positive relationship between mean

outbreak size and the number of estrous females in a given

month for party networks (electronic supplementary

material, figure S4), but not for proximity networks (figure 2).
3.2. Parametrizing vaccination strategies
As compared to a random (null) vaccination strategy, we

investigated the efficacy of two network-based vaccination

approaches: (i) targeting individuals from high to low average

weighted degree centrality and (ii) targeting individuals based

on social traits that predict high centrality. To this end, we first

verified that our trait-based classifications accurately predicted

outbreak sizes (figure 3). Results showed that for adult females

and juveniles, infections starting in core-ranging indivi-

duals with large families (hereafter, CR-L) led to significantly

larger outbreaks across all �R0 values than infections starting

in core-ranging individuals with small families (CR-S) or

edge-ranging (ER) individuals (figure 3). Infections starting

in ER individuals led to significantly smaller outbreaks than

for any other trait-based group, making ER individuals poor

targets for vaccination (figure 3). For low �R0 values, high

rank (HM) adult male index cases tended to cause larger out-

breaks than mid- (MM) or low-ranking (LM) adult males but

this pattern was not consistent across �R0 values, and differ-

ences were never significant. Thus, we collapsed HM, MM

and LM into a single adult male group (M) and found that

infections originating in CR-L individuals, but not CR-S indi-

viduals, generally caused significantly larger outbreaks than

infections starting in adult males (figure 3).

Given these findings, we parametrized the trait-based vac-

cination strategy to preferentially vaccinate in the following

order: CR-L, M, CR-S, ER. Thus, for each simulation, individ-

uals were first immunized randomly within the CR-L group.

Once all individuals in this group were vaccinated, individuals

in the M group were randomly immunized, and so on until the

predetermined coverage level was reached. To ensure that col-

lapsing the adult male categories did not influence results, we

also simulated vaccinations with the following order: CR-L,
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HM, MM, LM, CR-S, ER. The main text and figures present

results for a single male category; however, results for both

scenarios are shown in table 1.
3.3. Evaluation of vaccination strategies
We evaluated vaccination strategies in two ways: (i) to assess

coverage needed to protect against the central outbreak

tendency (hereafter, the minimum coverage threshold

approach), we determined the coverage required to constrain

the mean outbreak size to less than 10% of the community

and (ii) to assess coverage needed to protect against rare out-

break events (hereafter, the conservative coverage threshold

approach), we determined the coverage required to reduce at

least 95% of the simulated outbreaks to less than 10% of the

community. Constraining outbreaks to 30% of the community
(instead of 10%) showed qualitatively similar results for both

approaches (electronic supplementary material, table S2).

Results based on the minimum coverage threshold showed

that pathogens with mild and moderate �R0 values required

randomly vaccinating between 35 and 50% of the community,

and highly contagious pathogens required randomly vaccinat-

ing roughly 65% of the community (table 1 and figure 4). By the

conservative coverage threshold, pathogens with low to inter-

mediate �R0 values required randomly vaccinating up to 75%

of the community, with 86% coverage required for a highly

contagious pathogen (table 1 and figure 5).

Across all �R0 values, network-based strategies consist-

ently required less coverage than random vaccinations to

achieve the same level of protection. These network-based

strategies offered the greatest advantage for pathogens with

low to moderate infectiousness (figures 4, 5 and table 1;
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individuals with small families; ER, edge-ranging individuals. Open circles show outbreak size averaged across 1000 simulations per unique combination of monthly
network and index case for a given �R0. Black diamonds mark the mean outbreak size averaged across each trait-based group. Note the different y-axis scale for the
first panel (�R0 ¼ 0:7). Significant relationships are indicated after Bonferroni correction as follows: 2p , 0.013, *p , 0.01, **p , 0.001, ***p , 0.0001. (Online
version in colour.)
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electronic supplementary material, figure S3 and table S2).

While centrality- and trait-based strategies occasionally per-

formed equivalently, centrality-based vaccinations typically

required less coverage (figure 5 and table 1; electronic sup-

plementary material, figure S3 and table S2). The

conservative coverage threshold showed that as compared

to random vaccinations, the number of individuals requiring

vaccination was reduced by up to 18% with the trait-based

strategy and by up to 35% with the centrality-based

approach. Lastly, by preventing immunized individuals
from contributing to disease spread (i.e. effectively removing

immunized nodes and adjacent edges), each vaccination

strategy uniquely changed the underlying network for a

given month. Thus, responses to the three vaccination strat-

egies differed across months. For example, when �R0 ¼ 3:0,

April required twice as much coverage as March with net-

work-based strategies, whereas the two months required

equal coverage with random vaccinations (figure 4). None-

theless, network-based vaccinations were considerably more

effective than random control when averaged across months.
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Figure 4. Evaluation of vaccination strategies by minimum coverage threshold. Mean outbreak sizes (as proportions of the community) are shown for varying levels
of vaccination coverage (as percentages of the community) when �R0 ¼ 3:0. Coloured dots show mean outbreak size by month, and thick black lines show mean
outbreak size averaged across months. Red dotted lines indicate the minimum coverage threshold (with the number of chimpanzees in parentheses) required to
constrain outbreaks to less than 10% of the community. Black dotted lines show upper 95% CIs, which are equivalent to the conservative coverage thresholds
depicted in figure 5. For all coverage levels and vaccination strategies, the lower 5% of simulations had a mean outbreak size of 2.7%, indicating that only
the index case was infected.

Table 1. Comparison of coverage thresholds across vaccination strategies and pathogen contagiousness. For each vaccination strategy, the coverage threshold is
provided as a percentage of the community, with the number of individuals vaccinated in parentheses, for (A) the mean outbreak size to affect less than 10%
of the community (minimum coverage threshold) and (B) an outbreak to affect less than 10% of the community in at least 95% of the simulations
(conservative coverage threshold). The table shows results for trait-based simulations using a single adult male category (M). Results were identical for
simulations using this category M or three adult male categories (HM, MM, LM; see Results), except for a few instances, denoted by superscripts (*) and (**) in
which simulations using HM, MM and LM categories required vaccinating one less or one more individual, respectively.

control strategy �R0 ¼ 0:7 �R0 ¼ 1:5 �R0 ¼ 3:0 �R0 ¼ 10:0

(A) minimum coverage threshold

centrality-based 0% (0) 24.3% (9) 40.5% (15) 56.8% (21)

trait-based 0% (0) 29.7% (11) 43.2% (16)* 59.5% (22)

random 0% (0) 35.1% (13) 51.4% (19) 64.9% (24)

(B) conservative coverage threshold

centrality-based 29.7% (11) 51.4% (19) 59.5% (22) 81.1% (30)

trait-based 37.8% (14)* 54.1% (20)* 64.9% (24) 81.1% (30)**

random 46.0% (17) 64.9% (24) 75.7% (28) 86.5% (32)
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4. Discussion
Our study supports the hypothesis that contact heterogeneity

predicts outbreak probability and thus is crucially important

to consider for wildlife vaccination programmes. Outbreaks

were largest when the index case had high centrality, and

these individuals were generally core-ranging females or juven-

iles with a large family. Compared to random vaccination,

targeted vaccinations based on weighted degree centrality or

high-risk traits reduced the number of chimpanzees requiring

vaccination by up to 35% and 18%, respectively. Thus, our

simulations show that targeting individuals with high contact

rates effectively reduces the level of vaccination coverage
required to prevent large outbreaks and could help make

wildlife vaccination a more tractable management tool.

Models that assume homogeneous mixing show that

outbreak size is larger for high R0 values than for R0 values

close to one [3]; however, our analysis showed this was not

always the case when accounting for heterogeneous contact

rates. We observed that outbreaks of pathogens with low

infectiousness could affect up to 30% of the community if

introduced via highly connected individuals during a well-

connected month, whereas an extremely infectious pathogen

was unlikely to spread to anyone when starting in a periph-

eral index case during a sparsely connected month. These

findings lend support to a growing body of literature
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resulting in an outbreak, defined as at least 10% of the community being infected) for centrality-based vaccinations, trait-based vaccinations and random vacci-
nations at varying levels of coverage (shown as a proportion of the community) when �R0 ¼ 3:0. Vertical lines below 0.05 outbreak probability mark the
conservative coverage threshold, at which no more than 5% of the simulations result in outbreaks. Panel (b) shows this conservative coverage threshold as a
percentage for each vaccination strategy and �R0 combination. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140349

8

indicating that contact structure can play a fundamental role

in pathogen emergence and evolution (e.g. [40,41]). For

example, a pathogen that infects a highly central index case

during a well-connected month could establish a long chain

of transmission (e.g. as compared to infections starting in

less central individuals), which could result in the pathogen

becoming more contagious through selection [42]. Although

a growing number of studies have used temporal contact

variation to predict disease outbreaks for human populations

(e.g. [43]), few studies have demonstrated these dynamics for

endangered wildlife species.

Interestingly, Carne et al. [44] built a network by aggregat-

ing several years of wild chimpanzee contact data (Budongo,

Uganda) and found that the network structure (i.e. clustering

and path length) was robust to removal of the most central

individuals; this may suggest that vaccinating central chimpan-

zees would offer only a slight advantage over random

vaccinations. However, by breaking the contact structure into

monthly networks (which better reflect the transmission of

close-contact pathogens presented here: Material and methods)

and simulating disease spread with various levels of trans-

missibility, our simulations indicate that network-based

vaccinations can indeed offer benefits over random vacci-

nations for wild chimpanzees. Given that many pathogens

spread through chimpanzee populations in less than a month

(both in our temporal simulations and in observed outbreaks

[25]), prophylactic vaccination is likely a more effective inter-

vention option than treating sick individuals in the midst of

an epidemic. Owing to herd immunity, our results predict

that even the least effective (random) strategy would not

require vaccinating the entire community to prevent an out-

break. Of the random and network-based strategies we

tested, the most effective method was prophylactically vacci-

nating individuals based on weighted degree centrality.

While a community’s network could theoretically change

from year to year, there is evidence of long-term stability

in association patterns (of the order of 5–10 years) for the

chimpanzee community examined here [21].

Further, our results suggest that strategic control strat-

egies are feasible even without detailed interaction data. In

these cases, immunizations targeting host traits associated

with high contact rates could offer a more practical approach
than centrality-based vaccinations. In this study community

(n ¼ 37), the impacts of trait-based control on the total

number of animals requiring vaccination were somewhat

modest; however, we expect that trait-based immunizations

could substantially decrease the number of animals requiring

vaccination for larger communities (such as the Ngogo

chimpanzee community, n � 150, in Kibale National Park,

Uganda [45]) or for large populations of other wildlife

species. Moreover, because many vaccines are administered

to wildlife via hypodermic dart, there is always some expense

and risk associated with immunizing endangered animals.

For example, the darted animals could experience wounds,

falls or adverse effects from the vaccine, and veterinarians

or researchers could experience counterattacks or loss of

trust from habituated animals. Thus, even moderate coverage

reductions offer a valuable conservation advantage.

We recognize there are limitations of our study, including

our ability to generalize findings to other habituated chimpan-

zee communities. A goal of future great ape studies might be

to identify traits associated with centrality to shed light on

inter-site differences, which could provide crucial informa-

tion for designing vaccination strategies across populations.

Second, our simulations revealed that the benefits of net-

work-based immunizations over random vaccination could

be minimal for highly contagious pathogens (where extremely

high coverage is needed to protect populations from out-

breaks). Third, we lack the detailed ecological data needed

to determine the cause(s) of monthly differences in network

connectivity (and thus outbreak size) in the proximity net-

works (but see the electronic supplementary material for

evidence of an effect from the number of estrous females in

party networks). Nevertheless, targeted vaccinations showed

marked improvements over random control when averaged

across months. Fourth, as is common among network epide-

miology papers, our study assumes our definition of contact

(i.e. proximity) corresponds to opportunities for pathogen

transmission. While this assumption holds for many patho-

gens, it is not universal. Lastly, our models assumed that

vaccinated individuals received full protection and that

infected individuals had equal-length infectious periods.

Future work aimed at relaxing these assumptions could

help clarify the role that individual immunity plays in
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pathogen transmission dynamics and could further improve

disease control efforts.

Despite some controversial cases (e.g. [46]), vaccination

campaigns aimed at wildlife reservoirs [47,48] and endangered

wildlife hosts [49,50] have successfully controlled some dis-

eases. In particular, recent work on rabies in Ethiopian

wolves showed that low vaccination coverage (informed by

demographic and metapopulation distribution data) can effec-

tively curtail large outbreaks and reduce the likelihood of host

extinction [2]. Our finding that network-based vaccinations

require less coverage than random vaccinations should apply

broadly to other social wildlife species. New technologies,

such as proximity-logging collars, have made collecting fine-

scale association data more feasible than ever, even for elusive

or nocturnal wildlife [51]. Thus, our methods for developing

and assessing network-based control could readily be adapted

to other host systems. Further, because index case centrality

was highly associated with outbreak size, our results indicate

that contact rates generate useful predictions for which in-

dividuals to vaccinate, even in lieu of mechanistic modelling.

Overall, we argue that incorporating temporal contact
variation into epidemiological models can help optimize dis-

ease control efforts across a range of host systems and could

aid in the success of future wildlife vaccination campaigns.
The University of Georgia Institutional Animal Care and Use
Committee approved our protocols (A2009-10062).
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