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Automated, contour-based tracking and
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complexity and cell density
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Understanding single and collective cell motility in model environments is foun-

dational to many current research efforts in biology and bioengineering. To

elucidate subtle differences in cell behaviour despite cell-to-cell variability, we

introduce an algorithm for tracking large numbers of cells for long time periods

and present a set of physics-based metrics that quantify differences in cell trajec-

tories. Our algorithm, termed automated contour-based tracking for in vitro
environments (ACTIVE), was designed for adherent cell populations subject

to nuclear staining or transfection. ACTIVE is distinct from existing tracking

software because it accommodates both variability in image intensity and

multi-cell interactions, such as divisions and occlusions. When applied to

low-contrast images from live-cell experiments, ACTIVE reduced error in

analysing cell occlusion events by as much as 43% compared with a

benchmark-tracking program while simultaneously tracking cell divisions

and resulting daughter–daughter cell relationships. The large dataset generated

by ACTIVE allowed us to develop metrics that capture subtle differences

between cell trajectories on different substrates. We present cell motility data

for thousands of cells studied at varying densities on shape-memory-polymer--

based nanotopographies and identify several quantitative differences,

including an unanticipated difference between two ‘control’ substrates. We

expect that ACTIVE will be immediately useful to researchers who require

accurate, long-time-scale motility data for many cells.
1. Introduction
The innovative application of cell-tracking techniques in complex in vitro model

environments often enables and precipitates important new insights in biology,

biomedical science and biophysics. In vitro environments have recently been

tailored to have specific biophysical and biochemical properties, including pat-

terned stiffness [1], patterned surface chemistries [2] and ordered topographies

[3,4]. These increasingly complex environments are now broadly employed in

research on morphogenesis [5,6], cancer cell biology [7,8], cell biomechanics

[9] and cell mechanobiology [10].

Although in vitro model environments have traditionally been static, recent

advances in synthetic biomaterials have led to the development of environments

with programmable functionality during cell culture. These in vitro environments

can better mimic dynamic processes that exist in vivo, such as morphogenetic defor-

mations [11–17] and extracellular matrix (ECM) remodelling [18–20]. For

example, materials with mechanically or magnetically actuated surface topogra-

phy or altered stiffness can change cell morphology [21–23] and lineage

specification [24]. Recently, we [25–29] and others [30,31] developed two-

dimensional substrates and three-dimensional scaffolds based on shape-memory

polymers (SMPs)—a class of smart materials capable of undergoing a programmed
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change in shape—that can undergo programmed thermally trig-

gered changes in topography or architecture with attached and

viable cells.

Accurate and efficient tracking of cells in these and other

architecturally and temporally complex environments has

become increasingly challenging. Manual tracking of cells

remains widely used, largely due to the reliability of the tech-

nique and the modest computational resources and operator

training required [32,33]. Manual tracking is, however, time

intensive and therefore typically performed only for small or

sparse cell populations and/or short time scales. To overcome

limitations associated with manual tracking, many semi- or

fully-automated computational techniques have been developed

to identify (segment) and associate (link) cells in consecutive

images [34,35]. Active contour methods have been success-

fully used to trace cells [36,37], cellular components [38]

and animals [37], in high-contrast images, but because these

methods search for compartment boundaries, they are less

useful in noisy, low-contrast images and situations where

cells often change direction [37]. Another commonly used

segmentation method is a noise threshold, in which a specific

intensity value is chosen and all intensities falling below this

threshold value are deemed background noise [39,40]. There

is often high variability in cell fluorescence, however, which

can render thresholding methods ineffective.

Tracking of cells for more than a short period of time has

been found to be particularly challenging. Cell divisions (the

proliferation of cells over time) can result in untracked or mis-

labelled cells, and the number of cell divisions is often a

desirable experimental metric itself [41–43]. Cell-merging

events, in which cells come into close contact with one another

over multiple frames, can make it difficult to locate one or more

cells in several consecutive frames, a challenge that increases in

long-time-scale analyses and with high cell densities [44].

Efforts to address both issues within a single automated cell-

tracking approach have been limited. Notably, Zhou and

co-workers [45,46] reported efforts to employ a smart water-

shed segmentation approach applied to images after

thresholding. However, the approach retained the challenges

and limitations associated with thresholding-based segmenta-

tion—most significantly the high signal-to-noise ratio required

for accurate tracking—and software employing the approach

has not been disseminated. An automated cell-tracking

approach that identifies cell divisions and corrects merging

events in low-contrast images remains an unfulfilled need

for accurate long-term tracking in complex environments.

The challenges associated with long-term tracking are

amplified by the growing need to track and analyse more

than a few cells at a time. Owing to the large variability

observed in cell behaviour [47], it will be necessary to collect

statistically large datasets detailing cell motions and develop

appropriate metrics for analysing them if tracking-based

research is to tease apart subtle differences in behaviour.

Improved automated tracking can aid in data collection, and

the field of statistical physics provides metrics that have been

successfully adapted to extract patterns and characterize col-

lective behaviours in large datasets from several types of

biological systems, including bacterial colonies [48] and

schools of fish [49], at large time scales [50]. If widely adopted,

the adaptation and application of displacement, velocity and

diffusion metrics from statistical physics could be used to stan-

dardize comparison of cell motility across studies and fields.

Yet, use of these tools in tracking research has remained
limited and has generally been performed in conjunction

with manual tracking or semi-automated techniques [8].

Therefore, the goal of this work was to accurately and effi-

ciently track adherent cell populations subject to nuclear

staining or transfection in complex in vitro environments over

sufficiently long time scales to enable statistical-physics-based

analyses of cell motility. To do so, we have developed,

validated and applied a new automated computational

algorithm, automated contour-based tracking for in vitro
environments (ACTIVE), which identifies cell nuclei of

variable staining intensities in low-contrast images, segments

and links the nuclei over long periods of time (large image

stacks) and processes multi-cell interactions (division or mer-

ging events) that have traditionally limited the accuracy of

automated systems. We applied ACTIVE to carefully quantify

subtle differences in two-dimensional cell motility behaviour

on various static topographies and at different cell densities,

studied using adherent mouse fibroblasts stained with nuclear

fluorescent dye. Using several physics-based statistical metrics,

including mean-squared displacement (MSD), velocity autocor-

relation and asphericity, we analysed the cell tracks and tested

for motility differences in the different environments.
2. Material and methods
2.1. Cell tracking and data analysis
In this work, we developed an automated tracking algorithm

designed to process an image stack of stained nuclei, accurately

identify and track cells, and quantitatively analyse cell motility

over long time scales (figure 1). In the algorithm, cell nuclei are

first segmented using a contour-based approach (electronic sup-

plementary material, methods 1.1), based on work pioneered by

Idema and co-workers [51,52] to identify dividing cells in the

Drosophila embryo. The first key innovation of ACTIVE is that

cells that may be interacting with other cells (e.g. dividing or

merging) are identified (tagged) by isolating contour profiles

with multiple-peak intensities and classifying dual peaks (two

cells) that share a parent contour (electronic supplementary

material, methods 1.2 and figure S1.1). Following tagging of

possible cell interactions, linking of both isolated and interacting

cells is achieved through the use of a particle-tracking approach

(electronic supplementary material, methods 1.3) originally

developed by Crocker & Grier [53], and later modified by Gao

& Kilfoil [54]. After particle tracking is complete, the second

key innovation, enabled by the first, is that cells tagged as pos-

sible interactions are analysed and categorized as divisions,

merging events or special cases, and cell tracks are corrected

using a customized cost function (electronic supplementary

material, methods 1.4–1.6 and videos V1.1 and V1.2).

We also have adapted several metrics from statistical physics

to quantify features of the cell tracks that ACTIVE produces.

These functions, included with the ACTIVE tracking software

package, calculate the MSD, velocity autocorrelation and track

asphericity. MSD is defined as

MSD(Dt) ¼
XN

i¼1

([r(tþ Dt)� r(t)]2)

N
, (2:1)

where Dt is the time-interval change, r is the [x,y] distance at a

specific time and N is the total number of cells [55]. To extract

exponents, plots of log10 MSD versus log10 Dt are used. The

velocity-autocorrelation function is given by

Cv(t) ¼ (vi(0) � vi(t)), (2:2)

where Cv(t) is the velocity autocorrelation for a time-step t, vi(0)



1

2
3

4

5

6

7
8

9 10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26
27

28

29

30

31

33 34
35

1000

500

0

–500

–1000

10003.0

2.5

2.0

1.5

1.0

0.5

0

I

II

I

II

–0.5

500

0

–500

–1000

–1000 –500 500 10000

–1000 –500 500 10000
X distance

Y
 d

is
ta

nc
e

largest eigenvector 
direction

sm
al

le
st

 e
ig

en
ve

ct
or

 
di

re
ct

io
n

analysis

post-processing

linking

t = 125 t = 140 t = 153

414
815

815
815

414

segmentation

300 350 400 450 500 550 600

500

550

600

650

700

750

800
2000 400 600 800 1000

200

0

400

600

800

1000

(b)(a)

(c) (d ) (e)

(g)

(h)

(i)

(k)

( j)

(i)

(i) (ii)

(ii) (iii)

( f )

0 200 400 600 800 1000 1200
Dt

<
v(

0)
v(

Dt
)>

x time constant: 0.0061
y time constant: –0.015

x direction
x exp fit

y direction
y exp fit

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1

2

3

4

5

6

long timescale x slope: 1.12
short timescale x slope: 1.78

long timescale y slope: 1.10

short timescale y slope: 1.57

log10(time) (mins)

lo
g 10

(d
is

ta
nc

e)
 (

µm
)

1

2
3

4

5

6

7
8

9 10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26
27

28

29

30

31

32

33
34

35

Figure 1. Scheme depicting example segmentation, linking, interaction event post-processing and long-time-scale analyses performed by the ACTIVE automated approach. (a)
Cells are stained with Hoechst 33342 dye and imaged for 24 h. (b) A highlighted image subsection illustrates varying intensities present in the nuclei of stained cells. (c) Images are
initially processed using the Kilfoil bandpass filter and (d ) contour profiles are established based on nuclear intensity fluctuations. (e) For single peak contours, cells are fit with a
representative ellipse at half height, while multi-peak instances are tagged as two separate ellipses for division and merging event cases. (f )(i) Cell identification tags (IDs) are
established and (ii) IDs are linked between consecutive frames using the Kilfoil linking system. (g)(i) Post-tracking, interaction events are identified, (ii) processed using a customized
cost function and (iii) cell track information is updated for more complete and accurate complex interaction event analysis. To characterize the diffusivity and velocity dynamics of cell
behaviour, cell motility behaviour is then quantified using (h) MSD (I and II for x and y data, respectively), (i) velocity-autocorrelation analyses (I and II for x and y data, respectively),
( j) diffusion plots of cell tracks in which the final position for each cell was plotted after the starting location was renormalized to the plot origin and (k) final cell locations rotated by
the principal axis of the gyration tensor. Images shown in the segmentation, linking, post-processing and analysis portions were all extracted from the same experimental dataset;
however, referenced cells in the segmentation, linking and post-processing portions do not necessarily relate to one another unless otherwise stated above.
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is the initial velocity and vi(t) is the velocity at time t [55]. Track

asphericity was measured by first calculating the gyration tensor

(S) for each cell track

Smn ¼
1

2N2

XN

i¼1

XN

j¼1

(mi �mj)(ni � nj), (2:3)

where m and n refer to the Cartesian coordinates (x or y), N is

the total number of track positions, and i and j are given track

positions [56]. We then extracted the largest and smallest eigen-

values for the gyration tensor, l2
2 and l2

1, respectively, and

calculated the track asphericity (A) [57–59]:

A ¼ (l2
2 � l2

1)

(l2
2 þ l2

1)
: (2:4)

2.2. Segmentation validation
To validate the contour-based segmentation used in ACTIVE, syn-

thetic datasets of particles—representing cell nuclei—at different

densities were generated and tracked (electronic supplementary

material, methods 2.1–2.2 and video V2.1). The synthetic data

were only employed to test ACTIVE segmentation accuracy

when compared to an accepted, established tracking technique

(Kilfoil). All other analyses were performed on experimental data.

2.3. Substrate preparation
To provide new insights into cell behaviour in anisotropic

environments and to benchmark ACTIVE, cell motility was

studied at varying densities on highly anisotropic wrinkled sub-

strates and on isotropic flat substrates. Anisotropic substrates of

aligned micrometre-scale wrinkles were prepared as previously

described [28]. Briefly, gold-coated substrates with wrinkles of

400 nm amplitude and 1 mm wavelength were fabricated to pro-

vide substrates of anisotropic topography. Flat gold-coated

substrates of the same material type were fabricated to provide

isotropic substrates. Flat tissue culture polystyrene (TCPS) was

also used as an isotropic control.

2.4. Cell culture
For cell experiments, C3H10T1/2 mouse fibroblasts (ATCC) were

seeded on wrinkled, non-wrinkled and TCPS substrates at 5000,

10 000 or 20 000 cells cm22 (electronic supplementary material,

methods 3.1).

2.5. Cell staining and imaging
To image cell nuclei for tracking analysis, cells were stained

with Hoechst 33342 nuclear dye and imaged over 24 h (electronic

supplementary material, methods 3.2). Hoechst dye was added

to complete growth medium at a concentration of 0.01 mg ml21.

A concentration (0.01 mg ml21) significantly lower than the

recommended staining concentration (0.2–2 mg ml21) was deliber-

ately selected both to test the ability of ACTIVE to segment cells of

low contrast and to ensure cell divisions throughout the 24 h time

period (as Hoechst dye at the recommended concentration of

0.2 mg ml21 almost completely suppressed cell division; data not

shown). At a concentration of 0.01 mg ml21 and with an image

captured every 3 min with a 350 ms exposure time, cells began

to apoptose after 24 h; however, further decreasing the staining

concentration or the image frequency allows for longer image

acquisition before cell apoptosis occurs.

2.6. Benchmarking of execution time and accuracy
ACTIVE was benchmarked by comparing execution time and

accuracy to that of the Kilfoil code [54]. The Kilfoil tracking algor-

ithm supplies a standard linking approach that is also used in
ACTIVE. It is also a well-established stand-alone tracking algor-

ithm, employing a local high-intensity-based segmentation

routine distinct from the contour-based approach introduced in

ACTIVE and not possessing ACTIVE’s post-linkage correction

for divisions, merging events and special cases. For these reasons,

comparison to the Kilfoil code allowed benchmarking of both the

contour-based segmentation (electronic supplementary material,

methods 2.1 and 2.2 and figure S2.1) and execution time and accu-

racy, as follows. Using cropped image substacks (electronic

supplementary material, methods 4.1), execution time for manual

tracking was determined as the total time taken to manually gener-

ate tracks for all cells in all frames. Execution times for the two

automated approaches, ACTIVE and the Kilfoil approach, were

determined as the total time required to segment and link all

cells in all frames. Occlusion accuracy was determined as the

number of events that were correctly labelled divided by the total

number of events that could be manually tracked with confidence

(electronic supplementary material, methods 4.2).

2.7. Division detection and analysis
To assess the ability of ACTIVE to accurately detect division

events, cell interaction events classified by ACTIVE as divisions

were manually analysed (electronic supplementary material,

methods 4.3). The accuracy of division detection was evaluated

by manually determining the number of false positives—divisions

flagged by ACTIVE that are not actually divisions—and the

number of false negatives—divisions that occur but are not

flagged by ACTIVE. The directionality of cell division was also

investigated to determine the influence of substrate topography

on cell divisions (electronic supplementary material, methods 7.1).

2.8. Quantification of cell motility
We quantified cell motility for varying cell densities on anisotro-

pic and isotropic substrates using the statistical physics functions

described in §2.1. This analysis was enabled by ACTIVE’s ability

to construct cell tracks over long time scales with high accuracy.

The MSD was calculated for each Dt and a plot of log10 MSD

versus log10 Dt was generated for each substrate and cell density

studied. Decomposition of the MSD into the x- and y-directions

was also performed, with the x-direction representing the direc-

tion parallel to the wrinkle direction. Wrinkle direction was

determined from phase contrast images using IMAGEJ (National

Institutes of Health, Bethesda, MD, USA). Quantification of cell

motility was achieved through comparison of MSD slopes at

short and long time scales, as well as comparison of a mobility

parameter, d, which uses the intercept of a line fit to the long-

time-scale MSD data to describe how fast cells displace. Diffusive

migration, or migration via a ‘random walk’, generates a slope

equal to unity in the log10 MSD versus log10 Dt plot. In these

plots, superdiffustive trajectories have a slope greater than one,

and ballistic migration, where cells move in a constant direction

with a constant velocity, corresponds to a slope equal to two. The

mobility parameter, introduced for the first time in this work, is

defined as d ¼ 10b, where b is the intercept of a line fit to the

long-time-scale behaviour of log10 MSD versus log10t. With this

definition, d is equal to the square of the average cell velocity if

motion is purely ballistic and equal to one-fourth of the diffusion

constant if the motion is purely diffusive. For the cell motions in

this work, which were found to be intermediate between ballistic

and diffusive, d is a quantitative measure of how fast cells dis-

place. For calculation of the velocity-autocorrelation function,

cell velocities were estimated using the central finite difference

approximation [60], with decomposition of the velocity into

x- and y-directions. For wrinkled substrates, the coordinate

system was rotated so the x-direction was parallel to the wrin-

kles. Plots of velocity autocorrelation as a function of time were

generated for each group, and each curve was fit with an



Table 1. Execution time comparison of the three tracking approaches for
tracking of cells on wrinkled (stack 1) and TCPS (stack 2) substrates seeded at
10 000 cells cm22. The manually processed stacks have fewer tracked cells and
total number of frames compared with the results presented in §§3.5 – 3.6.

tracking
method

stack
no.

no. cells
identified

time for
analysis (s)

manual 1 48 3600

rsif.royalsocietypublishing.o

5
exponential decay to extract a time constant, which was com-

pared between all groups. This time constant quantifies how

long a single cell tends to move in the same direction. Cell

track asphericity was additionally calculated for each group,

and the average asphericity for each substrate was compared.

Asphericities range from 0 to 1, with a larger asphericity indica-

tive of more directed cell migration. Cell motility was further

qualitatively assessed through the construction of diffusion

plots, in which the final position for each cell was plotted after

the starting location was renormalized to the plot origin.
2 38 2040

Kilfoil 1 49 5

2 36 4

ACTIVE 1 46 13

2 37 12
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J.R.Soc.Interface

11:20140386
2.9. Statistics
Statistical analyses for comparison of MSD exponents, velocity

autocorrelation time constants and asphericity parameters within

and between substrates and densities were performed using

non-parametric statistics due to deviations from the assumption

of normality as revealed by Shapiro–Wilks testing. Spearman’s

rank correlation testing was used to evaluate the effect of density

on motility parameters, and significance testing performed on the

resulting correlation coefficients using a 95% confidence level.

The effect of density was evaluated atop each substrate using

n ¼ 12. Kruskal–Wallis one-way analysis of variance was conducted

to reveal statistical significance between substrates, followed by

Wilcoxon rank-sum testing for individual comparisons. Multiple

comparison testing was then performed using the Holms–Sidak cor-

rection for familywise error. Comparison of the changes in slopes as

well as the difference in velocity autocorrelation time constants

within groups was conducted using a paired t-test. All testing was

conducted using 95% confidence levels (a value of 0.05). For each

of the three substrate combinations, an n of four technical replicates

was used. Therefore, substrate comparisons used n ¼ 12, whereas

for paired testing within a group n ¼ 4.
3. Results
3.1. Results overview
The subsections that follow report the results of ACTIVE con-

tour-based segmentation validation (§3.2), benchmarking

(§3.3), cell division identification and division orientation

(§3.4), cell trajectory analysis (§3.5) and quantitative MSD,

velocity autocorrelation, diffusion and asphericity analyses

(§3.6). In addition, detailed, multimedia results that fully

illustrate the functionality and output of ACTIVE can be

found in the electronic supplementary material, with the fol-

lowing included: synthetic data videos detailing ACTIVE

segmentation (electronic supplementary material, video

V2.1), along with comparisons of ACTIVE and Kilfoil accu-

racy results at multiple densities (electronic supplementary

material, figure S2.1); cell segmentation information (elec-

tronic supplementary material, table T5.1); substrate-specific

results summary tables for MSD (electronic supplementary

material, table T5.2) and velocity autocorrelation and track

asphericity (electronic supplementary material, table T5.3);

average cell density correlation summary tables for MSD

(electronic supplementary material, table T5.4) and velocity

autocorrelation and cell track asphericity (electronic sup-

plementary material, table T5.5); decomposed MSD plots for

each sample (electronic supplementary material, figure S5.1),

with the longer and shorter time scale decomposed slopes

for each sample provided; velocity-autocorrelation plots

for each sample with exponential fitting for time constant

extraction (electronic supplementary material, figure S5.2);

representative diffusion plots of final cell positions (electronic
supplementary material, figure S5.3); plots of asphericity for

each sample (electronic supplementary material, figure S5.4);

density cell motility correlation behaviour summary (elec-

tronic supplementary material, figure S5.5); videos of track

diffusion for the lowest density (electronic supplementary

material, videos V5.1–V5.3); an example event analysed for

benchmarking the accuracy of automated approaches (elec-

tronic supplementary material, video V6.1); example videos

displaying correct and incorrect labelling of cell divisions (elec-

tronic supplementary material, videos V7.1–V7.3); angular

spread and division orientation summary (electronic sup-

plementary material, tables T7.1 and T7.2, and figure S7.1);

and statistical analysis summaries for MSD, velocity auto-

correlation and track asphericity comparisons (electronic

supplementary material, tables T8.1–8.3).
3.2. Automated contour-based tracking for in vitro
environment validation

When the known tracks of synthetic data were compared

with those produced from ACTIVE, it was found that

97.5% of the tracks were correctly identified through the

entire 480 frames of the synthetic data at low cell density,

and 95.7% of the tracks were correctly identified through

the entire 480 frames at high cell density (electronic sup-

plementary material, figure S2.1). By comparison, the Kilfoil

approach yielded 96.8% and 92.9% accuracy at low and

high density, respectively.
3.3. Automated contour-based tracking for in vitro
environment benchmarking

When benchmarked against manual tracking and the Kilfoil

approach in analysis of low-contrast images from live-cell

experiments, ACTIVE execution speed was comparable to

that of the Kilfoil method and was two orders of magnitude

faster than that of manual tracking (table 1).

An important feature of ACTIVE is that it allows identifi-

cation of cell interaction events during segmentation (i.e.

before linking). Therefore, to compare the accuracy of the

two automated approaches, ACTIVE segmentation was

used to identify 100 interaction events. These 100 events

were then manually investigated to determine the accuracy

of both automated methods during merging events (see the



Table 2. Accuracy of merging event tracking for the two automated approaches. For each cell density (low ¼ 5000 cells cm22, medium ¼ 10 000 cells cm22

and high ¼ 20 000 cells cm22), a single representative sample was chosen, due to a wide distribution of proliferation rates sample to sample. For each sample
analysed, 100 merging events were isolated and manually evaluated for accuracy. Those events identified as capable of being tracked manually with confidence
were analysed to determine the accuracy of the automated approaches in event cell tracking. The selected events included cases where ACTIVE used both
positional and fingerprint analysis.

seeding density tracking method no. events analysed no. events correct no. events incorrect error (%)

low Kilfoil 91 70 21 23

ACTIVE 91 79 12 13

medium Kilfoil 98 76 24 22

ACTIVE 98 78 22 20

high Kilfoil 89 72 28 20

ACTIVE 89 72 28 20

Table 3. Accuracy of division events as determined by false positive and
false negative occurrence. For each cell density (low ¼ 5000 cells cm22,
medium¼ 10 000 cells cm22 and high¼ 20 000 cells cm22), a single
representative sample was chosen, due to a wide distribution of proliferation
rates sample to sample. For each sample analysed, 100 division events were
isolated and manually evaluated for accuracy. Those events identified by
ACTIVE as being divisions that are manually determined to not be divisions
contribute to the false positive rate. Separately, modified videos of the raw
image sets (example shown in the electronic supplementary material, video
V7.3) were manually evaluated to calculate the number of divisions not
identified by ACTIVE, contributing to the false negative error.

seeding
density

no.
divisions
identified

false positive
rate (%)

no. false
negatives

low 275 20 11

medium 206 29 15

high 114 65 9

rsif.royalsocietypublishing.org
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electronic supplementary material, video V6.1, for example)

using a sample from each cell seeding density. At a low cell

seeding density, ACTIVE reduced the error in identifying

the appropriate cell IDs and in analysing cell–cell interactions

by 43% compared with the error rate of the standard Kilfoil

method (13% versus 23% error; table 2) at the expense of

the observed slight decrease in execution speed (table 1).

Error rates for the medium and high cell seeding densities

were comparable between the two approaches.

3.4. Cell division identification and division orientation
To evaluate the capability of the ACTIVE approach to track

cell divisions, cell events identified during segmentation as

divisions were isolated and cell track videos were produced

(electronic supplementary material, videos V7.1–V7.3). Div-

ision analysis was conducted for three separate densities

atop a wrinkled substrate to evaluate the influence of cell den-

sity on division accuracy. For each sample, 100 events

identified as divisions by ACTIVE were manually evaluated

to determine the false positive rate, or how many events ident-

ified as divisions are not divisions. With increasing cell

density, the false positive rate increased (table 3) due to the

combination of increased number of complex cell interactions

with more than two merging cells and under-segmentation

resulting in the loss of cell IDs. It appears that the false positive

rate increases substantially at a critical density, observed in this

work as the false positive rate increased from 29 to 65% when

cell seeding density increased from 10 000 to 20 000 cells cm22.

For each sample, the number of false negatives, or divisions

that ACTIVE does not identify, was also manually determined

(electronic supplementary material, video V7.3) and only 15

divisions or less were missed by ACTIVE, with no apparent

effect based on density.

Analysis of cell division revealed surface topography has

an effect on the orientation of cell division. Cells on anisotro-

pic wrinkled substrates divided parallel to the wrinkle

direction, as noted by the narrow distribution in division

angles (electronic supplementary material, figure S7.1)

centred around 908 (wrinkle direction). Cells on the isotropic

non-wrinkled and TCPS substrates showed no preferential

division orientation as noted by the broad distribution in div-

ision angles (electronic supplementary material, figure S7.1).

Differences in the distributions were statistically significant

when comparing the anisotropic substrate to the isotropic

substrates, and there were no differences in the distributions
between the two isotropic groups (electronic supplementary

material, tables T7.1 and T7.2).
3.5. Cell trajectory analysis
As expected, the average number of cells identified by

ACTIVE increased with increasing seeding density (electronic

supplementary material, table T5.1). This was coupled with a

higher standard deviation of cell number for higher density

experimental groups, indicating larger attachment and/or

proliferation variation as seeding density increased. Qualitat-

ive analysis of cell tracks indicated that cell migratory

behaviour is influenced by substrate topography (figure 2).

Cells on the wrinkled substrates moved preferentially parallel

to wrinkles, indicative of cell migration along the wrinkles.

This behaviour was not observed on the non-wrinkled and

TCPS substrates, as cell tracks showed a random orientation

indicative of more random migratory behaviour.
3.6. Quantitative and qualitative autocorrelation
analyses

Analysis of the slope of log10 MSD versus log10 Dt showed

differences between substrates (figure 3 and electronic
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supplementary material, figure S5.1 and table T5.2).

Wrinkled substrates exhibited a slope significantly higher

than that of non-wrinkled (gold) slopes at short time scales,

and TCPS substrates exhibited a slope significantly lower

than both wrinkled and non-wrinkled gold-coated samples at

long time scales (electronic supplementary material, table

T8.1). In other words, cells move more ballistically on the

wrinkled substrates.
ACTIVE also allowed the study of accurate cell tracks over

longer time scales. The slope on the log10–log10 plots

decreased significantly at the longest time scales across all

substrates, indicating that cell motion becomes more diffu-

sive. When decomposing the MSD and analysing the

intercept of a line fit to the long-time-scale slope, which we

have termed the mobility parameter (d), we find significant

difference between the mobility parameter for wrinkled
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substrates when comparing the mobility parallel (x) and per-

pendicular (y) to the wrinkles (electronic supplementary

material, table T8.3), with higher mobility in the wrinkled

direction. No significant difference between mobility par-

ameters was observed atop the isotropic substrates (electronic

supplementary material, table T8.1).

Temporal velocity-autocorrelation analysis revealed stat-

istically significant differences between cell velocities on

anisotropic and isotropic substrates (electronic supplemen-

tary material, tables T5.3 and T8.2). For the anisotropic

wrinkled substrates, a statistically significant difference

between the time relaxation constants for the x-velocity auto-

correlation functions was observed when compared with the

TCPS substrates (figure 4 and electronic supplementary

material, figure S5.2). The time relaxation constant for the

wrinkled samples was less than the relaxation constant for

the non-wrinkled substrates, though the difference was not

statistically significant.

Qualitative assessment of motility behaviour was per-

formed by generating diffusion plots for each group. After

renormalization for the starting position, it was observed that

cell migration on anisotropic substrates was greatest parallel

to the wrinkle direction (figure 5; electronic supplementary

material, videos V5.1–V5.3, and figure S5.3), as noted by the

majority of final cell positions resting along the x-axis. This
directed migration was not observed atop the isotropic sub-

strates, noted by the radial distribution of final cell positions.

Cell track asphericity revealed statistically significant

differences between all substrates (electronic supplementary

material, table T8.2). Track asphericities for anisotropic sub-

strates were higher than those for both non-wrinkled and

TCPS substrates (figure 6 and electronic supplementary

material, figure S5.4). When rotating each cell track so the lar-

gest gyration tensor eigenvector is parallel to the x-axis, this

difference is qualitatively observed (figure 6b,c). A difference

between the two isotropic substrates was also observed, with

cell track asphericity atop non-wrinkled substrates being

significantly higher than atop TCPS substrates.

ACTIVE also revealed significant correlation between

average cell density and cell motility behaviour. Atop the iso-

tropic substrates, a strong trend of decreasing short-time-scale

slope with increasing cell density was observed (electronic

supplementary material, figure S5.5 and table T5.4), whereas

atop the anisotropic substrate this correlation was weak, as

noted by the Spearman’s rank correlation coefficients, rs

(rs ¼ 20.551, 20.592 and 20.189 for non-wrinkled, TCPS

and wrinkled substrates, respectively). Interestingly, cell

track asphericity had a strong positive correlation with cell

density atop the anisotropic and isotropic TCPS substrates

(rs ¼ 0.762 and 0.524 for wrinkled and TCPS, respectively;
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figure 6a and electronic supplementary material, table T5.5),

but a weak positive correlation atop the isotropic gold

substrate (rs ¼ 0.259).

4. Discussion
Despite large cell-to-cell variability, here we demonstrate stat-

istically significant differences between motility behaviour on

wrinkled and non-wrinkled substrates at cell seeding den-

sities ranging from 5000 to 20 000 cells cm22. The motility

differences included differences in the velocity decorrelation

time and track asphericity between anisotropic and isotropic

substrates, and a more surprising difference between cell

track asphericity on the flat ‘control’ substrates, which have
different material compositions. We also found differences

in the short-time-scale motility behaviour as a function of

cell density—at low densities cells move more ballistically,

while at high densities they move more diffusively. These

results suggest that a careful analysis of statistically large

datasets generated by ACTIVE can provide new insights

into how cells behave as a function of their environment.

This analysis of very large datasets was enabled by our

new, automated algorithm, ACTIVE, that accurately and effi-

ciently tracks adherent cell populations subject to nuclear

staining or transfection in complex in vitro environments

over sufficiently long time scales to enable statistical-physics-

based analyses of cell motility. Our results indicate that

the robust tracking over long time scales enabled by
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ACTIVE can be used to tease apart subtle differences in col-

lective cell motility despite large cell-to-cell variability.

Notably, ACTIVE analysed low-density cell–cell interactions

with the error rate reduced by as much as 43% compared

with the benchmark. In addition, ACTIVE simultaneously

identified cell divisions and demonstrated the capability to

track daughter–daughter cell relationships (functionality not

present in the benchmark). Currently implemented for adher-

ent cell populations subject to nuclear staining or transfection,

the robust and flexible contour-based approach used in

ACTIVE could be modified in the future for application to

whole-cell staining or transfection and/or for non-adherent

cells that swim or glide.

A major contribution of ACTIVE is the use of contour-

based segmentation to enable detection of cell divisions and

cell-merging events during segmentation and post-processing

of tagged cell interactions to correct mislabelled tracks and

reconnect incomplete cell tracks due to cell divisions. Inaccur-

acy resulting from division and merging events is a recognized

challenge of automated tracking that only a few approaches

have sought to address simultaneously. Jaqaman et al. [44]

developed an algorithm that could link broken tracks of line-

arly moving particles to construct full tracks; however, the

analysis did not correct for particles that may have been mis-

labelled. Zhou and co-workers [46] have investigated the use

of smart watershedding to segment merging and dividing

cells. Yet, this thresholding-based approach is unlikely to pro-

vide high accuracy results unless high signal-to-noise images

are available, and it is unclear how the approach would per-

form for increased cell densities. ACTIVE uses contours to

identify cell divisions and merging events, and the approach

is effective when applied to low signal-to-noise ratio images.

At the lowest cell seeding density (5000 cells cm22) we

studied, ACTIVE reduced cell-merging-event-derived track-

ing errors by 43% compared with that of a benchmark

approach (13% versus 23% error; table 2). At the higher

densities studied (10 000 and 20 000 cells cm22), cell-merging-

event-derived tracking errors increase slightly (20% for both

densities) and are comparable to that of the benchmark.

These results suggest that ACTIVE is as accurate as or more

accurate than alternative approaches for cell seeding densities

up to 20 000 cells cm22. The accuracy for cell densities higher

than 20 000 cells cm22 and for cells with motility behaviour

substantially different than that of the cells studied here

remains to be determined.

Importantly, further improvements in accuracy should be

possible in future iterations of ACTIVE. Most of the errors

observed in this work were due to higher order interactions,

where more than two cells come together across several

frames. An important feature of ACTIVE, absent in other

tracking software, is that cell-merging and division events

are identified at the segmentation stage rather than the link-

ing stage. Therefore, ACTIVE already identifies these higher

order interactions during segmentation, and future versions

of the software could further improve accuracy by correcting

the linking for these situations. In addition, we have

implemented a hybrid manual–automated approach that

identifies problematic (low confidence) multi-body inter-

actions, displays only those events to the user and allows

the user to manually link the tracks. This allows our tracking

software to approach the gold standard of manual tracking,

even for very complex merging events, while requiring a

fraction of the user time needed for manual tracking.
In addition to accurately tracking cells in low-contrast live-

cell image stacks, ACTIVE identified cell divisions and tracked

daughter–daughter cell relationships, a capability often absent

from cell-tracking approaches. Analysis of cell divisions also

revealed an influence of surface topography on the orientation

of cell division. Cells preferentially divided parallel to the

wrinkles on the anisotropic substrates and showed no prefer-

ential division orientation on the isotropic substrates. From a

low seeding density stack, a division accuracy of 80% was

determined from manually analysing a set of 100 events classi-

fied as divisions, where 20% of the classified divisions were in

fact false positives. At higher cell densities, however, this accu-

racy significantly drops to 30%, a limitation with the current

implementation of the automated analysis. These inaccuracies

can generally be attributed to complex merging events invol-

ving more than two cells (electronic supplementary material,

video V7.2) and increased under-segmentation with increasing

cell density. To address these inaccuracies, we have included a

user-friendly graphical user interface that enables the user to

manually evaluate each identified division and correct for

any false positives. Manual analysis of undetected divisions

identified a maximum of 15 false negatives during the 24 h

live-cell image stack, highlighting the ability of ACTIVE to

identify most division events.

The large, virtually complete datasets generated by ACTIVE

are especially suitable for analysis using tools from statistical

physics. For example, the movement of individual elements

(particles or cells) can be used to calculate ensemble-averaged

functions such as the MSD [61] or velocity autocorrelation.

Differences in collective migration driven by gradients in mech-

anical properties or cell–cell interactions can be quantified

using scalar quantities derived from these functions, including

diffusion or time relaxation constants [62]. Finally, statistical

physics metrics are particularly well suited to capture changes

in the behaviour of groups of cells as a function of cell density,

which could be important for understanding cell behaviour

in vivo. While MSD, velocity autocorrelation and asphericity

have already been included in the embodiment of ACTIVE

introduced here, other types of analysis can easily be adapted

and added in the future to capture additional subtle differences

in cell motility. For example, pair correlation functions of the

positions, orientations and velocities could be used to visualize

how patterns of cell locations and orientations change with sub-

strate and cell density [55]. In particular, we anticipate that these

analyses might show signatures of ‘phase transitions’ in cell

behaviours at the highest densities, where new types of collec-

tive behaviours (such as contact inhibition) occur. Other types

of analyses, such as quantifying the track persistence length

or modelling cell divisions as a Markov process, can also be

incorporated into ACTIVE.

Analysis of cell behaviour revealed interesting similarities

and differences in the motility of cells on different substrates.

One surprising similarity is that the MSD of cell tracks has the

same functional form as a function of time, independent of

density, substrate or topography. In other words, the slopes

of the MSD versus time on a log10–log10 plot are indistin-

guishable. This is very different from what is seen in

non-active materials (such as colloids) as a function of density

and suggests that direct cell–cell interactions (which occur

more often at higher densities) do not strongly impact the

trajectories of this cell type. This type of analysis requires stat-

istically large numbers of accurate, long cell tracks, which

was enabled by the ACTIVE track corrections.
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This analysis identifies several different metrics that can be

used to distinguish cell motility on wrinkled versus non-

wrinkled substrates. We show quantitatively that cell tracks

have significantly larger asphericity (anisotropy), longer vel-

ocity decorrelation times and more short-time-scale ballistic

motion on wrinkled substrates compared with non-wrinkled

substrates. Furthermore, we demonstrate, unsurprisingly,

that the anisotropy is in the direction of the wrinkles. This

agrees with previously published studies on small numbers

of manually tracked cells in anisotropic environments

[3,63,64], but the ACTIVE analysis included in this study

achieved tracking of more than 200 times the number of cells

segmented in the previous manual analysis [64]. It is antici-

pated that ACTIVE will facilitate this type of quantitative

analysis of large cell track datasets, standardizing comparison

of results across studies and fields and leading to new insights

about how cell environments influence cell motility.

We also observed that cell tracks atop both of the flat sub-

strates (gold-coated and TCPS) had asphericities much larger

than that expected for a two-dimensional random walk

(0.57) [59]. This is not surprising, as we know from the MSD

data that our cell tracks are much more directed or ballistic

than that for a random walk. Furthermore and as mentioned

previously, we found that cell tracks exhibited larger aspheri-

cities atop the flat gold-coated substrates than atop the flat

TCPS substrates. This subtle difference between ‘controls’

may not have been revealed if not for the accurate, complete

tracks generated from the ACTIVE approach. It also suggests

interesting avenues for further research. One potential expla-

nation, based on our manual observations, is that individual

cells tend to follow the track of a previous cell. Such ‘repeat’

tracks, which could be assumed to involve cell-derived

matrix deposition on the substrates, might be more anisotro-

pic, and also might occur more often on materials where

cells adhere less strongly to the pristine substrate. This hypoth-

esis could be tested with future work using ACTIVE to analyse

cells atop substrates with varying adhesion strength.

Additional tracking challenges will arise as in vitro
environments continue to increase in complexity. While the

experiments performed in this study do not use the topogra-

phy changing capability of the wrinkling system [28], this

functionality could be used to study motility during dynamic

changes in substrate topography. Harnessing the shape-

memory effect for dynamic cell behaviour analysis is a

technique that has only recently been enabled, as substrates

with topography-change under cytocompatible triggering

conditions have only recently been achieved. SMP substrates

transitioning from isotropic to anisotropic topographies have

been used to control cell alignment and cell morphology at

both the micro- [25] and nanoscale [28,30]. Recently, we

have extended this capability from two-dimensional sub-

strates to three-dimemnsional scaffolds and demonstrated

cell orientation to be controlled in fibre mats transitioning

from an anisotropic to an isotropic architecture [29]. As topo-

graphy change occurs, substrates may translate, rotate or shift

out of focus, which must be minimized experimentally and

accounted for during tracking. Analysis of cell motility in

these environments also requires tracking of cells over

longer periods of time to study the dynamic cell–material

interactions on these non-equilibrium substrates. Currently,

ACTIVE is equipped to handle tracking in two dimensions.

However, ACTIVE could be expanded in future work to

analyse motility behaviour in both two and three dimensions.
Application of ACTIVE to tracking of cells in complex in
vitro environments, such as shape-changing SMPs, is antici-

pated to provide new insights in diverse fields. For

example, it is known that breast cancer cells can exhibit

mesenchymal or amoeboid motility depending on several

factors, including the ECM stiffness and pore size and the

ability of the cells to generate matrix metalloproteases [65].

Cells exhibiting mesenchymal motility degrade the ECM

and leave behind a path that serves as a migration track for

other invasive cells to follow [66]. Accurate tracking of

large cell populations over long time scales may reveal

important correlations of invasive cell migration, both at the

individual and collective cell levels, as cells follow proteolyti-

cally generated paths. Tumour cell migration can also exhibit

a mesenchymal–amoeboid transition (MAT) [67], which may

be caused by changes in cell–ECM adhesion, inhibition of

RHO-signalling pathways and inhibition of proteolysis [68].

SMP fibrous scaffolds capable of undergoing architecture

and stiffness changes under cytocompatible conditions may

serve as platforms for activating the MAT. Accurate tracking

of cells through SMP scaffold change may uncover new find-

ings about the single cell and collective MAT behaviour and

whether this effect is reversible. Application of ACTIVE with

SMPs may also be used to study the effects of mechanical

loading of cells on wound healing. Application of mechanical

forces through vacuum-assisted closure of implanted scaf-

folds has been shown to promote closure of skin wounds

[69], where it is hypothesized that elongation of cells at the

wound site enhances proliferation [70]. SMPs could be used

to apply programmed strains to cells during wound-healing

assays. The effect of these programmed strains on the indi-

vidual and collective cell migration behaviour could be

analysed with ACTIVE, potentially revealing new insights

into the individual and collective cell motility responsible

for improved wound healing under programmed elongation.
5. Conclusion
Quantitative, statistical-physics-based analyses of cell moti-

lity atop anisotropic and isotropic substrates revealed more

diffusive (less ballistic) cell motility for increasing time

scales, more persistent motility along wrinkles than perpen-

dicular to wrinkles and a subtle difference in cell motility

between our two flat ‘controls’. Our new tracking tool,

termed ACTIVE, enabled this analysis of cell motility. In par-

ticular, a contour-based segmentation approach was used to

enable detection of cell divisions and merging events,

increasing the accuracy of cell tracks over long time scales.

We expect ACTIVE to be a powerful approach for tracking

adherent cell motion over long time scales in complex

environments, advancing the fundamental understanding of

the effect of cell–cell interactions, coupled with cell–material

interactions, on cell motility. Combined with quantitative

statistical metrics, this should enable new insights into

cancer biology, mechanobiology and morphogenesis.
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