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Shear-induced migration of red blood cells (RBCs) is a well-known

phenomenon characterizing blood flow in the small vessels (micrometre to

millimetre size) of the cardiovascular system. In large vessels, like the

abdominal aorta and the carotid artery (millimetre to centimetre size), the

extent of this migration and its interaction with secondary flows has not

been fully elucidated. RBC migration exerts its influence primarily on plate-

let concentration, oxygen transport and oxygen availability at the luminal

surface, which could influence vessel wall disease processes in and adjacent

to the intima. Phillips’ shear-induced particle migration model, coupled to

the Quemada viscosity model, was employed to simulate the macroscopic

behaviour of RBCs in four patient-specific geometries: a normal abdominal

aorta, an abdominal aortic aneurysm (AAA), a normal carotid bifurcation

and a stenotic carotid bifurcation. Simulations show a migration of RBCs

from the near-wall region with a lowering of wall haematocrit (volume frac-

tion of RBCs) on the posterior side of the normal aorta and on the lateral-

external side of the iliac arteries. A marked migration is observed on the

outer wall of the carotid sinus, along the common carotid artery and in

the carotid stenosis. No significant migration is observed in the AAA. The

spatial and temporal patterns of wall haematocrit are correlated with the

near-wall shear layer and with the secondary flows induced by the vessel

curvature. In particular, secondary flows accentuate the initial lowering in

RBC near-wall concentration by convecting RBCs from the inner curvature

side to the outer curvature side. The results reinforce data in literature show-

ing a decrease in oxygen partial pressure on the inner curvature wall of the

carotid sinus induced by the presence of secondary flows. The lowering of

wall haematocrit is postulated to induce a decrease in oxygen availability

at the luminal surface through a diminished concentration of oxyhaemoglo-

bin, hence contributing, with the reported lowered oxygen partial pressure,

to local hypoxia.
1. Introduction
Blood is a biphasic fluid composed of a fluid phase (plasma) and a solid phase

composed of blood cells such as red blood cells (RBCs, 6–8 mm in diameter),

white blood cells (WBCs, 7–80 mm in diameter) and platelets (PLTs, 2–3 mm

in diameter). Blood shows remarkable non-Newtonian effects primarily

caused by RBC–RBC interactions and RBC–protein interactions: the aggrega-

tion and disaggregation of RBCs and their deformation dictate the value of

viscosity [1,2]. A wide body of experimental evidence shows that flowing sus-

pensions of rigid and deformable particles exhibit particle migration [3–10]

with a general trend showing migration from regions of higher shear rate to

regions of lower shear rate. RBCs also show this behaviour and their migration
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Table 1. Pixel spacing and slice thickness used in CT-A scans.

pixel spacing
(mm)

slice thickness
(mm)

normal aorta 0.717 � 0.717 0.5

AAA 0.74 � 0.74 0.5

normal carotid 0.504 � 0.504 0.7

stenotic carotid 0.504 � 0.504 0.7
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to the centre of micro and small vessels (micrometre to

millimetre size) and the consequent segregation of PLTs near

the wall has been the subject of intense study in the past

years, both numerically [11–14] and experimentally [15–17].

Different approaches have been proposed to model RBC

migration. For example, in [11] a mesoscopic approach

employing the immersed boundary method was used to simu-

late the motion of RBCs, modelled as deformable capsules,

flowing through two-dimensional channels 20–300 mm in

height. The results showed migration of RBCs perpendicular

to the wall and formation of a cell-free layer. An extension

to the three-dimensional case of the same mesoscopic

approach is presented in [18]. In [19], the immersed boundary

method was also employed to model RBC migration in two-

dimensional channels of 6–12 mm in height; cell migration

from the vessel wall was also observed. In [20], the dissipa-

tive particle dynamics method was applied to blood flow in

microtubes ranging from 10 to 40 mm in diameter, and cell

migration away from the wall to the tube centre was reported.

A different approach is represented by continuum models,

which are able to simulate larger domains for longer time

scales. An example of this approach can be found in [12],

where blood flow in vessels with diameter ranging from

40 to 100 mm was investigated using the shear-induced

migration model proposed in [21]. Particle migration away

from the wall was also observed in this case. RBC distribu-

tion influences blood viscosity, and therefore the velocity

profile, and also a series of biological activities such as

oxygen distribution in the lumen and the scavenging of

nitric oxide (NO) by haemoglobin in the RBCs [22]. Arterial

wall hypoxia has been proposed to be a contributing factor

to atherosclerosis and intimal hyperplasia [23–25], and alte-

red NO transport in arteries has been postulated to induce

atherogenesis [22]. Evaluation of the adimensional wall

oxygen consumption rate, the Damköhler (Da) number, and

comparison with the adimensional mass transport coefficient,

the Sherwood (Sh) number, led to postulate that oxygen

supply to the arterial wall is fluid-limited [25], therefore

underlining the importance of mass transport from and

to the wall. It has been shown [26] that the effect of disregard-

ing the presence of haemoglobin, and therefore its possible

lowering in concentration due to RBC migration, is a drastic

decrease in oxygen transport to the wall. Therefore, given

the importance of RBC concentration in the aforementioned

series of biological activities, this study aims at evaluating

RBC distribution as a result of the synergy between shear-

induced migration and secondary flows in four patient-

specific geometries, a normal abdominal aorta, a fusiform

abdominal aortic aneurysm (AAA), a normal carotid bifur-

cation and a stenotic carotid bifurcation, and to discuss

possible effects on oxygen transport.
2. Material and methods
2.1. Geometry representation and discretization
Four different patient-specific geometries were investigated: Case

(A) a normal abdominal aorta, Case (B) a fusiform AAA, Case

(C) a normal carotid bifurcation, Case (D) a stenotic carotid bifur-

cation. The patient-specific geometries were reconstructed from

computer tomography angiography (CT-A) scans acquired at

Karolinska University Hospital, Stockholm. Standard CT-A

scans, details in table 1, of the abdominal aorta and of the carotid
bifurcation were obtained with a 64-slice CT machine (Light-

speed VCT, General Electric). The luminal geometries were

reconstructed using active contour (deformable) models with

the diagnostic software A4CLINICS-RESEARCH EDITION (VASCOPS

GmbH, Graz, Austria). For more details, please refer to [27].

The investigated geometries are shown in figure 1, the basic

determinants are reported in tables 2 and 3 and the bounding

box sizes are reported in table 4.
2.2. Mathematical models and solution procedure
2.2.1. Fluid-dynamical model
Particle migration in inhomogeneous shear flows can be cap-

tured by modelling the effects of spatially varying interparticle

interaction frequency and spatially varying viscosity. This work

is based on Phillips’ model [21] for shear-induced migration of

rigid particles in concentrated suspensions. Blood is considered

to be a concentrated monomodal suspension of solid particles,

RBCs, in a Newtonian incompressible fluid, plasma. RBCs are

modelled in a Eulerian sense through their volume/mass frac-

tion. RBC density is different from the density of plasma but

since in the present cases the gravitational field is neglected,

buoyancy is absent.

The equations reported below are equivalent to the exten-

sion of Phillips’ model [21] to the case of solid and fluid

phases with different densities developed in [28]. The commer-

cial software COMSOL Multiphysics, used to solve the set of

equations, employs a formulation based on the slip velocity

u slip between the fluid and the solid phase [29], while the

shear-induced migration model proposed in [21,28] is formulated

in terms of particle fluxes. This difference in formulations

required some manipulation of the original equations with

the slip velocity u slip being formulated as a function of the

particle fluxes. Indicating with f and cs, the volume and

mass fractions of the solid phase, with rf and rs the con-

stant densities of the fluid and solid phase, respectively, with

u slip ¼ u s2u f the slip velocity between the fluid and the

solid phase and with u migr ¼ (12cs)u slip the RBC migration

velocity, the continuity equation (the full derivation is given in

appendix A) reads [28,29]

(rf � rs)(r � (f(1� cs)uslip))þ rf(r � u) ¼ 0, (2:1)

where the mixture velocity (mass-averaged velocity) is given by

u ¼ (1� f)rfuf þ frsus

r
, (2:2)

with the mixture density (kg m23) defined as

r ¼ (1� f)rf þ frs: (2:3)

The momentum equations take the form [28,29]

r
@u

@t
þ r(u � r)u ¼ r � (� pIþ m(ruþ (ru)T))

�r � ((rcs(1� cs))uslipuslip), (2:4)



(a) (b) (c) (d)

Figure 1. Investigated patient-specific luminal geometries: (a) normal abdominal aorta, (b) fusiform AAA, (c) normal carotid bifurcation and (d ) stenotic carotid
bifurcation. Images not to scale.

Table 2. Basic determinants of the investigated normal abdominal aorta
and AAA. AInlet and AIliacs denote the cross-sectional areas at the inlet and
the outlets, i.e. at the iliac arteries.

age gender
AInlet

(cm2) AIliacs (cm2)

normal

aorta

49 male 1.606 0.306/0.307

AAA 85 male 5.134 2.041/1.646
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where uslip is expressed as a function of the particle flux Js
(kg m22s21) as

uslip ¼
Js

frs(1� cs)
, (2:5)

with the particle flux defined according to Phillips’ model [21]

Js ¼ �rs fKca2r( _gf)þ f2 _gKma2 1
m
r(m)

� �
, (2:6)

where _g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D : D
p

denotes the scalar shear rate with D ¼

gradSl being the symmetric part of the velocity gradient tensor

l [30], and Kc and Km phenomenological constants of order

unity. In this work, Kc was set equal to 0.41 and Km to 0.62 as

used in, for example, [12,21].

Finally, the transport equation for the solid-phase volume

fraction reads

@f

@t
þr � (fus) ¼ 0, (2:7)

where the solid-phase velocity is given by

us ¼ uþ (1� cs)uslip: (2:8)

A list of all variables and parameters used in the model is

reported in table 5.

The model also assumes that the Péclet number Pe ¼ a2 _g/D,

with a being the particle radius, _g the scalar shear rate introduced

above and D the Brownian diffusion coefficient, is large due to a

very small Brownian diffusion—which is therefore neglected in

this model. Both phases share the same pressure field [29].

RBC migration leads to the formation of a plasma skimming

layer, a thin layer of around 3 mm adjacent to the wall devoid of

RBCs [31]. The continuum approach to model RBC migration can

capture the macroscopic haematocrit distribution but not the
plasma skimming layer, which is inherently a microscopic

phenomenon. For this reason, the wall haematocrit distribution

presented in this work must be considered as the haematocrit

value at the inner boundary of the plasma skimming layer.

Boundary conditions in the form of an inlet mass flow rate and

an outlet pressure waveform, taken from [32] for the normal

abdominal aorta and from [33] for the AAA, were applied. For

the carotid simulations, flow rates taken from [34] were applied at

the common carotid artery (CCA) inlet and at the external carotid

artery (ECA) outlet (figure 2). At the internal carotid artery (ICA)

outlet, a constant pressure was applied. Additionally, for all

cases, a no viscous stress condition, tn ¼ 0, was applied at the

pressure outlets. At time t, the prescribed mass flow rate m(t) is

related to the inlet/outlet velocity by

�
ð
@V

r(t)(u(t) � n) dS ¼ m(t), (2:9)

with S and n defining the inlet/outlet surface area and the out-

ward normal unit vector, respectively. The no-slip boundary

condition, u w ¼ 0, was applied at the walls. Regarding the solid

phase, at the inlet a fixed volume fraction of f ¼ 0.45, representing

a normal haematocrit value, was set for all cases. The use of a pure

convective boundary condition at the outlet induced severe oscil-

lations of the volume fraction of the solid phase, forcing to impose

a fixed volume fraction value of f ¼ 0.45; for an analysis regard-

ing this assumption refer to the §4. At the wall, a no-flux

condition, 2n . fu ¼ 0, was applied. In the case of rigid wall

and incompressible fluid, the imposition of a pressure wave at

the outlet is not strictly necessary since given the mass flow rate

the pressure differential (Dp) is calculated. This means that a

constant pressure can also be applied, as done for the carotid

artery case. However, in order to get a meaningful pressure distri-

bution (amplitude and phase), a physiological pressure wave

needs to be used. A correct pressure boundary condition is also

required in cases like fluid–structure interaction simulations.

For a detailed explanation of different boundary conditions, the

reader is referred to [35].

2.2.2. Constitutive modelling of blood
Blood has complex rheological properties involving shear-

thinning, thixotropy and viscoelasticity [36,37]. Even in large

arteries, the dependence of viscosity from the shear rate has

been shown [38] to produce substantial differences in the flow

pattern compared with a Newtonian viscosity model. In the pre-

sent context, the viscosity is considered a function of shear rate

and haematocrit and blood is modelled as a structured fluid



Table 3. Basic determinants of the investigated carotid arteries. ACCinlet, AECoutlet and AICoutlet denote the cross-sectional areas at the inlet, common carotid
artery, and at the outlets, external carotid artery and internal carotid artery. CC, common carotid; EC, external carotid; IC, internal carotid.

age gender ACCinlet (cm2) AECoutlet (cm2) AICoutlet (cm2)

normal carotid 72 male 0.432 0.063 0.12

stenotic carotid 70 female 0.388 0.071 0.195

Table 4. Bounding box sizes for the four investigated geometries; x and y
are coordinates spanning the transverse plane, whereas the z coordinate is
oriented in the streamwise direction.

x (mm) y (mm) z (mm)

normal aorta 50 25 130

AAA 70 50 150

normal carotid 40 40 70

stenotic carotid 25 25 50
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[39]. To this end, the Quemada viscosity model [40] was used to

represent this dependency. Hence, the viscosity reads

m ¼ m(f, _g) ¼ mf 1� f

2
k1 þ

k0 � k1

1þ ( _g/ _gc)q

� �� ��2

, (2:10)

where q is an empirical parameter, k0 and k1 the intrinsic viscos-

ities for _g! 0 and _g! 1, respectively, and _gc a critical shear

rate related to the critical shear stress under which the structure

is broken. The values used in the present work are taken from

[14] and summarized in table 6. The viscosity behaviour as a

function of shear rate and haematocrit is shown in figure 3.

2.2.3. Finite-element discretization and numerical algorithms
Lagrange P2P1 elements were employed to discretize, with

quadratic interpolation, the velocity field and, with linear inter-

polation, the pressure field. Lagrange linear elements were

used for the volume fraction of the solid phase. The Galerkin

method was used to discretize the equations with anisotropic

diffusion with dani ¼ 0.25 for the momentum transport and

dani ¼ 0.5 for the dispersed phase transport [29].

2.2.3.1. Time-advancing algorithm
The generalized-a method [41] with the numerical parameter

r1 ¼ 0.75 was used the as time-advancing algorithm. An adap-

tive time stepping approach was employed [29] to ensure a

proper resolution of the transient flow field. The equations

were solved using an affine invariant form of the damped

Newton method [42] with the use of a segregated approach

where the first segregated step solved for the velocity and

pressure fields while the second segregated step solved for the

solid-phase volume fraction. The PARDISO direct solver was

used to solve the arising linear system of equations.

All computations were performed on a 64-bit Dell machine

equipped with 4 four cores (16 cores in total) Intel(R) Xeon(R)

CPU E7-8837 2.66 GHz with 512 GB of RAM, with Windows

Server 2008 R2 Enterprise.
3. Results
3.1. Model validation
To validate the code used in this work, a series of compari-

sons with previous published results were conducted; a

representative one is reported below.
The used benchmark corresponds to the pipe flow

studied in [43]: it consists of a pressure-driven axial flow of

a monomodal suspension through a 122 cm long pipe with

radius 2.54 cm. A uniformly mixed suspension of spherical

particles of 3178 mm in diameter with initial volume fraction

of 0.50 was set in motion under an inlet mass flow rate

of 0.3 kg s21 with a constant inlet volume fraction of 0.5.

Viscosity followed the relation proposed by Krieger [44]

m ¼ mf 1� f

fmax

� ��1:82

, (3:1)

where fmax is the maximum packing volume fraction. Table 7

summarizes the parameters and data of the simulation.

Only one quarter of the tube was simulated with a quadrilat-

eral mapped mesh with a boundary layer mesh consisting

of 10 layers of increasing thickness. The mesh consisted of

21 200 elements, resulting in a total of 582 322 d.f. It is impor-

tant to underline that for this case the steady-state solution is

only a function of the inlet volume fraction, the maximum

packing concentration and the ratio Kc/Km. Figure 4 shows

the volume fraction and the streamwise velocity in the

radial direction at the pipe outlet. Good agreement with the

results of [43] is achieved, even though the present solution

shows a more pronounced migration with lower values of

volume fraction at the pipe outer wall and a smaller slope

at the centre of the tube. The normalized velocity field also

showed slight discrepancies in line with the volume frac-

tion distribution. Several factors might be the cause of this

discrepancy; a possible cause can be the difference in the stabil-

ization method employed. This set of equations is known to be

prone to instability [45] and it has been found that the consistent

stabilization method Galerkin least squares [46] was not able to

stabilize the equations, i.e. resulting in pronounced oscillations

in the solution. For this reason, anisotropic diffusion was used

instead. Anisotropic diffusion is an inconsistent stabilization

method, which might lead to a slightly different solution than

the one of the original governing equations. For a discussion

regarding the presence of the cusp in the solid-phase volume

fraction curve at the pipe centre refer to [43].

3.2. Role of secondary flows
Secondary flows play a major role in RBC migration. In order

to elucidate their role, before tackling the more complex

patient-specific cases, a comparison between the steady and

laminar flow in a straight pipe, where no secondary flows

are present, and the steady and laminar flow in a curved

pipe where well-defined secondary flows, in the form of

Dean vortices, are present was conducted. The data relative

to the two pipes, representative of a CCA, are reported in

table 8. While the Reynolds number used here ensures that

the flow is laminar, the value of the Dean number ensures

the presence of two stable Dean vortices in the cross-section

of the curved pipe.



Table 5. Variables and parameters used to simulate RBC migration.

symbol description unit value

u mass-averaged mixture velocity m s21 —

u f fluid phase ( plasma) velocity m s21 —

u s solid-phase (RBC) velocity m s21 —

r mixture density kg m23 —

rf fluid phase ( plasma) density kg m23 1025.0

rs solid-phase (RBC) density kg m23 1096.5

mf pure fluid ( plasma) viscosity Pa.s 0.0012

p pressure Pa —

cs mass fraction of the solid (RBC) phase — —

f volume fraction of the solid (RBC) phase — —

u slip relative (slip) velocity between the two phases m s21 —

u migr solid-phase shear-induced migration velocity m s21 —

J s solid-phase (RBC) particle flux kg m22s21 —

Kc interparticle collision component constant — 0.41

Km viscosity component constant — 0.62
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Figure 2. Inlet and outlet boundary conditions over the cardiac cycle. Row (a) normal aorta; row (b) AAA; row (c) normal and stenotic carotid bifurcations.

Table 6. Quemada model parameters to model blood behaviour.
Parameters taken from [14].

parameter value/expression

q 0.5

k0 55f0.7e26fþ 1.9

k1 1.65(f þ 0.05)20.3

_gc 1
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In figure 5, a comparison between the wall haematocrit in

the straight pipe and in the curved pipe, inner and outer cur-

vature walls (see figure 6 for nomenclature), is reported. The

straight pipe’s wall haematocrit values lie in between

the ones of the curved pipe, which shows higher values

for the outer curvature side and lower values for the inner

curvature side. This result shows the effect of secondary

flows, which consists of moving the solid phase from the

inner curvature side and accumulate it on the outer curvature

side. The following mechanism is postulated to take place: at
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Figure 3. Viscosity as a function of the scalar shear rate and solid-phase volume fraction (haematocrit) as predicted by the Quemada viscosity model with
parameters taken from [14] and summarized in table 6. For the scalar shear rate and the mixture viscosity, a logarithmic scale has been used.

Table 7. Summary of the parameters and data used for the comparison
with the pipe flow simulation of [43].

parameter value

pipe length 122 cm

radius 2.54 cm

initial volume fraction 0.5

inlet volume fraction 0.5

rs 1.182 kg m23

rf 1.182 kg m23

mf 4.95 Pa.s

fmax 0.68

particle diameter 3179 mm

Kc 0.43

Km 0.65
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Subia et al. [43]

0.010 0.015
radius (m)

0.020 0.025 0 0.005 0.010 0.015
radius (m)

0.020 0.025
0.40

0.45

so
lid

-p
ha

se
 v

ol
um

e 
fr

ac
tio

n 
(1

)

st
re

am
w

is
e 

ve
lo

ci
ty

 (
m

s–1
)

0.50

0.55

0.60

0.65

(a) (b)

1.0

0.8

0.6

0.4

0.3

Figure 4. Pipe flow test case; (a) solid-phase volume fraction in the radial direction at the pipe outlet and (b) normalized streamwise velocity distribution in the
radial direction at the pipe outlet. x ¼ 0 indicates the centre of the pipe.
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first, the strong shear layer in the near-wall region induces

particle migration thus slightly lowering the haematocrit on

both sides, then secondary flows kick in and convect particles

away from the inner curvature side region further lowering

the haematocrit value. This mechanism is responsible for

the haematocrit pattern observed in the patient-specific

cases (§3.3).

In figure 6, the solid-phase velocity vectors are plotted on

top of the solid-phase volume fraction showing the Dean

vortices in the cross-section of the curved pipe. The wall

haematocrit is lower on the inner curvature side owing to

the convective motion of the solid phase induced by the

Dean vortices.
3.3. Patient-specific arteries
3.3.1. Normal aorta
The normal aorta studied in this work presents a prominent

anterior–posterior curvature which leads the posterior wall,
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Figure 5. Wall haematocrit comparison between flow in a straight pipe and in a curved pipe. The dimensionless arc-length is defined as x/X, i.e. the normalized
(local) axial position along the vessel wall. Straight line, straight tube; dashed line, curved tube inner curvature wall; dotted line, curved tube outer curvature wall.
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(a) (b)

Figure 6. (a) Dean vortices in a section perpendicular to the centreline of the curved tube. Solid-phase velocity vectors superimposed to the haematocrit (solid-
phase volume fraction) contours. (b) Curved tube section with inner and outer curvature sides indicated.

Table 8. Geometrical and fluid-dynamical data of the two investigated pipe flows; RoC, radius of curvature; MFR, mass flow rate; Re, Reynolds number; D, Dean
number. Re and D numbers are calculated based on inlet quantities.

diameter
(mm) RoC (m) inlet MFR (kg s21) Re D

straight pipe 5 — 0.0125 �738 —

curved pipe 5 0.5 0.0125 �738 �52
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the inner curvature wall, to experience a slightly larger

migration compared with the anterior wall. The minimum

wall haematocrit, of around 0.42–0.43, was observed

around t ¼ 0.2 s (peak systole). A slightly larger migration

is observed in the iliac arteries, particularly in the right

iliac, where a minimum haematocrit of approximately 0.41

is observed at t ¼ 0.30 s (figure 7a). The lateral-external

wall, the inner curvature wall, of both iliac arteries consist-

ently shows a lower haematocrit than the lateral-internal

wall, the outer curvature wall (figure 7a). Notably, the low

haematocrit spots on the inner curvature wall of the iliac

arteries are one of the locations where atherosclerotic lesions

are usually observed [47]. RBC migration is caused by two

phenomena: the shear layer formed in the near-wall region

inducing initial RBCs migration from the wall to the core

flow and the secondary flows directed away from the inner
curvature wall enhancing RBC transport from the inner cur-

vature wall to the outer one (figure 7b). The time scale of

RBC migration is longer compared with the fluid-dynamical

scales; this can be observed in figure 7a where, despite ample

variations in the flow field, the wall haematocrit distribution

is fairly constant throughout the cardiac cycle.
3.3.2. Fusiform aneurysm
In the fusiform AAA, no important RBC migration is

observed. The proximal portion of the aorta on the inner cur-

vature wall (figure 8) presents wall haematocrit values of

around 0.43. The aneurismatic bulge, instead, presents wall

haematocrit values of around 0.45, the prescribed value,

throughout the cardiac cycle indicating that the shear rate

values reached in the boundary layer are not sufficient to
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flows directed away from the inner curvature wall (i.e. from bottom to top) which helps in further reducing the haematocrit at this site.
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induce RBC migration (figure 8). It is important to underline

here that even with the presence of strong secondary flows,

the presence of shear-induced migration is indispensable to

create a lower haematocrit region near the wall which can

then be convected. In this case, despite the presence of second-

ary flows, no sufficient near-wall shear-induced migration,

except for the proximal region and a few spots in the iliac

arteries, is observed and therefore the secondary flows have

no effects on the haematocrit value. Two spots of decreased

haematocrit are observed on the lateral-external wall of both
iliac arteries throughout the cardiac cycle (figure 8), consistent

with what observed in the normal aorta case.
3.3.3. Normal carotid bifurcation
In the normal carotid bifurcation, a clear RBC migration

is seen at the outer wall, the inner curvature wall, of the

ICA sinus and on the inner curvature wall of the CCA

(figure 9). Wall haematocrit values at these locations show

approximately a 10% decrease with respect to the normal
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value of 0.45. Secondary flows convect RBCs away from the

CCA inner curvature wall and shift the low wall haematocrit

region from the centre of the CCA towards the ICA sinus.

This is illustrated in figure 10, where the RBC in-plane vel-

ocity vectors at t ¼ 0.30 s are shown together with the wall

haematocrit at t ¼ 0.40 s. A time-shift of 0.10 s was adopted

since the haematocrit distribution evolves from the RBC vel-

ocity field history. In the proximal CCA region (figure 10c),

the secondary flows induce a velocity field that moves

RBCs from the inner curvature wall towards the outer curva-

ture wall; in the middle CCA (figure 10b) and in the carotid

sinus (figure 10a) the secondary flows induce a velocity

field that moves RBCs towards the ICA sinus. The origin

of this complex flow behaviour is the presence of streamwise

vortices running through the whole carotid length (figure 10).

Similar vortical structures (VSs) are present in the other

analysed cases (not shown). It is worth noting that the

pattern of low wall haematocrit correlates with sites where

atherosclerotic plaque formation is reported [49,50].
3.3.4. Stenotic carotid bifurcation
The stenotic carotid bifurcation presents low haematocrit

values in the stenotic throat caused by the high values of _g

that lead to a pronounced RBC migration (figure 11). The

wall haematocrit in the throat region reached values of

approximately 0.35, a decrease of around 22% with respect

to the normal value. In the carotid sinus, a streak of low hae-

matocrit values on the outer wall, the inner curvature wall,

caused by the secondary flows, is observed throughout the

cardiac cycle (figure 11). The inhomogeneities in wall haema-

tocrit observed in the ICA and ECA are likely the result of the
turbulent nature of the flow in those particular regions (see the

Discussion section). The spot of low haematocrit present on the

ICA sinus inner wall (figure 11) only at t ¼ 0.1 s is caused by

the strong impinging systolic jet originating in the throat.
4. Discussion
Oxygen availability to the underlying vessel wall is linked to

wall haematocrit values [26]; considerations on the Sh and Da
numbers led to postulate that oxygen supply to the arterial

wall is fluid-limited [25], hence the need to evaluate RBC

migration in large vessels. Consequently, this work investi-

gated the shear-induced migration of RBCs and its relation

with secondary flows in the abdominal aorta and in the car-

otid artery using Phillips’ model [21]. The present results

show the importance of secondary flows in the RBC

migration process in the macrovasculature. In regions of

marked curvature like the CCA, the ICA sinus, the iliac

arteries and for this particular case also the abdominal

aorta, secondary flows convect RBCs from the inner curva-

ture wall to the outer curvature wall. Shear-induced

migration induces the initial lowering in wall haematocrit

values while secondary flows enhance or dampen the

migration (figure 13). In the stenosis, instead, the drastic

reduction in haematocrit is due to the strong shear layer

formed in the throat. A correlation emerged between regions

of RBC migration and regions prone to atherosclerosis,

namely the external wall of the iliac arteries, the external

wall of the ICA sinus and the carotid stenosis, being that

strong abdominal aortic curvature is not a common occur-

rence. The present results show that shear-induced

migration, and by direct consequence the overall transport,

of RBCs loses strength during the enlargement process of

the abdominal aorta that leads to the formation of AAAs

(compare the normal aorta case with the AAA case), while

during the progression of atherosclerosis, and therefore

stenosis, RBC migration increases its magnitude, possibly

inducing or strengthening hypoxic conditions in the stenotic

area, which in turn might lead to further atherosclerosis pro-

gression. The decreased wall haematocrit leads to a reduced

oxyhaemoglobin availability in the near-wall region which

can result, following [26], in a reduced Sh number thus rein-

forcing hypoxic conditions. The present results are in line

with what was observed in [51], where oxygen mass trans-

port in a carotid bifurcation was simulated considering only

free oxygen dissolved in plasma. A lowered Sh number on

the outer wall of the carotid sinus, the site where athero-

sclerotic plaques are usually observed, was reported. This

decrease in Sh number was attributed to the secondary

flows established in the carotid sinus region, which were

directed from the outer wall (inner curvature wall) to the

inner wall (outer curvature wall) of the carotid sinus, convect-

ing oxygen away from the former to the latter. Also in [52], a

decrease in Sh number along the outer wall of the carotid

sinus due to recirculating separated flow was observed. This

led the authors to postulate that mass transfer of various mol-

ecules (e.g. oxygen, NO, mitogens) can be impaired at the

outer wall of the carotid sinus, and therefore relating to regions

of intimal thickening and atherosclerosis. The same curvature

effect was also reported in [53] for a coronary artery model.

Decades of intense research on the role of wall shear stress

(WSS) in atherosclerosis were able to unravel its effects on the
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Figure 12. In-plane RBC velocity vectors on a plane normal to the centreline
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throughout the cardiac cycle (not shown). This secondary flow pattern
plays a key role in lowering the haematocrit on the outer wall of the ICA
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Figure 13. Schematic of the proposed mechanism of RBCs migration and
wall hypoxia. Shear-induced migration of RBCs takes places along the
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ondary flows, induced by the vessel curvature, enhance RBC migration
convecting them from the inner curvature side to the outer curvature one.
This migration leads to a lowered haematocrit region on the inner curvature
wall, which might results in localized hypoxia.
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endothelial cell layer (e.g. [54]). Despite the clear role played

by WSS in atherosclerosis, no conclusive evidence of a direct

link between low and oscillatory WSS and this pathology [55]

has surfaced. WSS, on the other hand, is a manifestation of a

more global phenomenon, the flow field as a whole. Focusing

on wall-metrics such as WSS, oscillatory shear index (OSI)

and relative residence time (RRT) led to the conclusion that

curvature-induced secondary flows have a beneficial flow

stabilizing effect [56]. On the other hand, this work shows

the negative aspects of these secondary flows, which cannot

be captured by wall-metrics alone. In this view, coupling

wall-metrics (WSS, OSI and RRT) with global flow field struc-

tures (secondary flows) in the analysis process might prove

beneficial. A possible way to do so is to improve the haemo-

dynamically inspired geometric variables approach [57], by
taking into consideration global flow structures in the defi-

nition of the geometric variables. Future studies should

therefore analyse the co-localization of regions of low/high

WSS and low/high mass transport of oxygen and other

important atherogenic molecules such as LDL.

Infrarenal aorta and CCA flow rates, ICA/ECA and iliac

flow partitions are patient-specific. On the other hand,

proximal CCA and bifurcation geometry are the primary

responsible for flow characteristics [58,59], meaning that the

carotid flow features investigated in this work are strongly

geometry dependent. The same assumption is likely to hold

valid also for aortic flows. For this reason, the same second-

ary flows characteristics are most likely to be observed also

under different boundary conditions. The open points and

limitations of this study that should be addressed in future

research are presented below.

4.1. Shear-induced migration model
— Phillips’ model was developed for rigid particles while

RBCs are deformable; the effect of deformability and

loss of symmetry of RBCs might affect RBC migration.

— The best values for Kc and Km could not be assessed due to

a lack of experimental data; values from literature were

used instead.

— Phillips’ model was developed for one-dimensional flows,

its extension to three-dimensional flows employs the

scalar shear rate _g. The validity of this approach cannot

be fully quantified owing to the lack of experimental data.

4.2. Uncertainty on the inlet f value
The inlet distribution of f has been considered uniform and

equal to 0.45; in reality, a non-uniform distribution is

expected, with lower values of f at the wall. Approximation

of the f distribution as a constant introduces a development

length (conceptually similar to the length needed to develop

a parabolic flow profile) that might affect the downstream

wall haematocrit distribution and possibly leading to

higher values of f than would occur in reality.

4.3. Numerical challenges
Phillips’ model showed a tendency to develop oscillations in

the values of the solid-phase volume fraction, an issue

already reported in literature (e.g. [60]). Anisotropic diffu-

sion, an inconsistent stabilization method, was able to

partially solve this issue: in the outlet region and in localized

regions of the analysed geometries, the presence of uncon-

trolled oscillations was still observed. At the outlets of the

domains, a fixed volume fraction has been imposed due to

uncontrolled oscillations in its value if a pure convective

boundary condition was employed. This assumption, while

imposing a constraint on the volume fraction field, is not con-

sidered restricting based on the fact that the bulk flow

presents a constant haematocrit value of f ¼ 0.45 while the

differences in haematocrit are confined into a small boundary

layer leading to an average value, over the outlet section, of f

close to 0.45. Moreover, as can be observed in figure 5, the

effects of this boundary condition are segregated in a very

narrow region close to the outlet, therefore not affecting the

domain of interest. Lastly, the use of an inconsistent stabiliz-

ation method is one possible cause of the discrepancy

observed in the model validation example.
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4.4. Turbulence
All simulations assumed laminar flow. While this assump-

tion is justified in the larger vessels, such as the normal

abdominal aorta and the AAA, where the Re is low [38], in

the normal carotid artery and, in particular, in the stenotic

carotid artery turbulent flow can occur [61,62], as observed

in the wall haematocrit pattern for the stenotic carotid

artery case (figure 11). Therefore, in future work, a proper

treatment of the turbulent flow should be applied for these

cases to evaluate the effect of turbulence on RBCs transport.

4.5. Oxygen transport
This work assesses low wall oxygen availability by locating

regions of low wall haematocrit. Despite being shown to

be a valid approach [26], a complete assessment of wall

oxygen flux/consumption would require to also consider

oxygen transport.
20140403
5. Summary
In conclusion, the work presented here analyses the com-

bined effect of near-wall, shear-induced migration and

secondary flows on the distribution of wall haematocrit.

Shear-induced migration was modelled using a phenomeno-

logical model taking into account gradients in scalar shear

rate, haematocrit and viscosity. The synergistic effect of

these two flow phenomena leads to lowered haematocrit

values in regions shown to be prone to atherosclerosis.

These lowered wall haematocrit values were shown [26] to

induce a lowered oxygen wall flux, which in turn might

induce wall hypoxia.
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Appendix A
The continuity equation (2.1) can be derived as follow. First,

equation (2.8) is derived starting from equation (2.2) and

recalling the definition of the slip velocity u slip ¼ u s 2 u f so

to obtain

u ¼
(1� f)rf(us � uslip)þ frsus

r
¼ us � (1� f)

rf

r
uslip: (A 1)

This equation gives

us � u ¼ (1� f)
rf

r
uslip ¼ umig: (A 2)
Recalling the definition of the mixture density, equation (2.3),

and substituting

us � u ¼ umig ¼
(r� frs)

r
uslip ¼ (1� cs)uslip, (A 3)

which gives equation (2.8)

us ¼ uþ (1� cs)uslip: (A 4)

Starting now from the general continuity equation for a

mixture [63]

@r

@t
þr � (ru) ¼ 0; (A 5)

and manipulating the first l.h.s. term, one obtains

@r

@t
¼ @f
@t

(rs � rf): (A 6)

In order to eliminate the time derivative, a particle conserva-

tion equation formulated using the mixture velocity can be

employed. This equation takes the form

@f

@t
þr � (fu) ¼ �r � Js

rs

, (A 7)

which when substituted in equation (A 6) gives

@r

@t
¼ (rf � rs) r � (fu)þr � Js

rs

� �
: (A 8)

The particle flux J s is the particle flux induced by the shear-

induced migration, hence in its formulation u migr should be

employed. The flux takes then the form

Js ¼ frsumig ¼ frs(1� cs)uslip: (A 9)

Substituting back one obtains

@r

@t
¼ (rf � rs)(r � (fu)þr � (f(1� cs)uslip)): (A 10)

The second l.h.s. term in equation (A 5) can be written as

r � (ru) ¼ r � (((1� f)rf þ frs)u)

¼ r � (rfu)þ (rs � rf)r � (fu) (A 11)

Putting the two terms together, one finally gets the continuity

equation (2.1)

(rf � rs)(r � (f(1� cs)uslip))þ rf(r � u) ¼ 0: (A 12)

The same approach can be used to recover the momentum

equations (2.4).
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