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The objective of this study was to develop a method for categorizing normal

individuals (normal, n ¼ 100) as well as patients with osteoarthritis (OA,

n ¼ 100), and rheumatoid arthritis (RA, n ¼ 100) based on a panel of inflam-

matory cytokines expressed in serum samples. Two panels of inflammatory

proteins were used as training sets in the construction of two separate arti-

ficial neural networks (ANNs). The first training set consisted of all proteins

(38 in total) and the second consisted of only the significantly different pro-

teins expressed (12 in total) between at least two patient groups. Both ANNs

obtained high levels of sensitivity and specificity, with the first and second

ANN each diagnosing 100% of test set patients correctly. These results were

then verified by re-investigating the entire dataset using a decision tree

algorithm. We show that ANNs can be used for the accurate differentia-

tion between serum samples of patients with OA, a diagnosed RA patient

comparator cohort and normal/control cohort. Using neural network and

systems biology approaches to manage large datasets derived from high-

throughput proteomics should be further explored and considered for

diagnosing diseases with complex pathologies.
1. Introduction
While over a 100 variants of arthritis have been described, two clinical pheno-

types predominate: rheumatoid arthritis (RA), a chronic inflammatory disease

characterized by overt joint inflammation and swelling, joint tenderness and

destruction of synovium [1] and osteoarthritis (OA), a heterogeneous group

of conditions that develop in distinct, yet overlapping patterns of joint symp-

toms and signs associated with the loss of articular cartilage integrity [2].

While reliable diagnostics for RA exist, currently only relatively advanced OA

can be clinically diagnosed with high confidence using clinical acumen, func-

tional assessment and/or radiographic evidence of joint space narrowing [2].

However, radiography cannot detect the disease in early stages [3], whereas

MRI requires some level of cartilage surface degradation to have occurred

before a diagnosis can be made [4,5]. Furthermore, MRI is costly and not

easily/widely accessible. Because early disease diagnosis and more effective

intervention at earlier stages of OA are desired goals, there has been a great

emphasis placed on the potential clinical value of biomarker research in

OA [6–8], especially those that can be used before the cartilage surface

begins to deteriorate.

OA is not just a disease of articular cartilage, it is a disease of the entire joint

as an organ [9]. Key joint structures such as the ligaments, menisci, subchondral

bone, the joint capsule and synovial tissue of the knee are all affected by, and
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involved in, the processes that lead to OA. Because the joint

acts as an organ, there is compelling evidence that serum

biomarkers may be a useful surrogate indicator of joint

health. Previously, sera have been examined for cartilage

matrix degradation products such as collagen and carti-

lage oligomeric protein (COMP) [7,10]; however, assays

using these analytes have not been widely adopted for clini-

cal use, possibly because of heterogeneity between and

within groups (control versus patient), and the variation

between baseline levels of a given single biomarker within

a group leading to false-positives/negatives. This is particu-

larly an issue in OA biomarker research as no single

biomarker has been shown to be completely associated

with the disease or disease progression, thereby being not

completely present or absent in normal or disease states.

RA is an autoimmune disease characterized by significant

inflammation leading to an increased expression of cartilage

degradation enzymes and eventual loss of the cartilage sur-

face of the joint (if left untreated). Currently, there are a

number of effective interventions in the management of RA

[11,12]. In contrast to RA, OA has not been universally

viewed as an inflammatory condition; however, recent find-

ings continue to build a case for a central role for chronic

inflammation in OA [13]. Cytokines are proteins that are

key mediators in the inflammatory response, with numerous

cytokines and related signalling pathways implicated in the

onset and pathogenesis of OA [14–16]. Recently, our group

and others have begun to use intra-articular and systemic

inflammatory cytokine profiling to identify and stratify OA

patients [17,18]. This is accomplished through quantitative

analysis of specific cytokines in small volumes of body

fluids (serum, synovial fluid) using multiplexing technol-

ogies. These proteomic analyses result in large datasets

requiring significant statistical and computational analyses

to obtain effective and reproducible outcomes, while

maintaining the sensitivity and specificity of the assay.

Artificial neural networks (ANNs) are machine-learning

algorithms that are modelled to mimic the way a human

brain may process decisions in a simplified manner. Briefly,

based on a number of inputs, an ANN is able to create

unbiased associations between the inputs and outputs

using a number of layers of interconnected nodes (neurons).

Each node is designed to receive multiple inputs, which are

then multiplied by optimally assigned weights, summed

and then passed to a single output through an activation

function and on to the next level of operation, either another

‘neuron interface’ or output. In recent years, ANNs have

gained acceptance for use in medical research and have

been applied to a wide variety of applications in medicine

for their predictive capabilities [19]. These examples include

predicting the risk of cardiac arrest based on chest pain, opti-

mum renal stone fragmentation by extracorporeal lithotripsy,

predicting the efficacy of certain breast cancer treatments as

well as determining the likelihood of methicillin-resistant

Staphylococcus colonization in patients admitted to intensive

care units [20]. ANNs have also been successfully applied

in OA research that has investigated the identification of

joint locations within proximal hand and wrist radiographs

that exhibit arthritic-like changes [21], diagnosis of knee OA

using dynamic electrical impedance signals [22] and the diag-

nosis of knee OA using proteomic analysis of synovial fluid

using mass spectrometry [23]. Based on these studies and

others, it appears that ANNs are a promising approach to
distilling complex datasets down to simple binary outputs

(e.g. go/no-go, disease or no-disease). The aim of this

study was to develop, train and use an ANN to test the effi-

cacy of a panel of inflammatory cytokines as a potential

biomarker that could be used to accurately classify patients

as having OA. The output produced by the ANN was then

verified by reinvestigating the dataset using a decision tree

algorithm.
2. Methods
2.1. Patients
2.1.1. Normal (n ¼ 100; mean age 40.0+ 9.5 years)
All control normal participants showed no physical signs of

OA or RA, and were questioned about both personal and

family histories of arthritis or any autoimmune diseases. Patients

were excluded from the study if they had a personal or family

history of RA, systemic lupus erythematosus, systemic sclerosis,

inflammatory myopathy, vasculitis, spondyloarthropathies,

inflammatory bowel disease, diabetes mellitus type I and/or

thyroid disease.

2.1.2. Osteoarthritis (n ¼ 100; mean age 60.4+ 10 years)
Inclusion criteria were based on a diagnosis of mild/moderate

OA performed by a sports medicine physician at the University

of Calgary based on clinical symptoms of three months or greater

with radiographic evidence of changes associated with OA.

Radiographic evidence of OA of any compartment of the knee

with collapsed or near-collapsed joint space of any compartment

of the knee.

2.1.3. Rheumatoid arthritis (n ¼ 100, mean age 46.5+ 14.5)
Inclusion criteria were an age of 40 years or older, and a

diagnosis based on the American College of Rheumatology cri-

teria with evidence of X-ray changes consistent with cartilage

changes within the knee joint [1]. All RA patients were being

managed with various immune suppressive drugs at the time

of sample collection.

2.1.4. Sample collection
Serum samples were collected by standard venipuncture with

vacuum tubes from normal and RA patients at the University

of Manitoba and from OA patients at the University of Calgary.

All samples were stored at 2808C until required for analysis.

2.1.5. Multiplexed arrays
Multiplexed array technologies allow for multiple concentra-

tions of specific proteins (cytokines in our study) to be

quantified within a single biological fluid sample. This is accom-

plished in a manner that enables direct comparisons of protein

concentration values between samples. In this study, each

sample (record) represents each person’s (normal, OA and RA)

expression panel of 38 select inflammatory cytokines present in

their serum samples.

Sample analysis was performed by Eve Technologies (Cal-

gary, AB Canada) using the Milliplex MAP human cytokine/

chemokine panel (Millipore) on a Luminex 100 platform (Lumi-

nex Corp., Austin, TX, USA), according to the manufacturer’s

instructions and as a previously published [24]. Serum aliquots

were thawed on ice, and 20 ml of fluid was diluted with the Milli-

plex running buffer (Millipore, Billercia, MD, USA). All samples

were assayed at least in duplicate, and prepared standards were

included in all runs. Briefly, cytokine-/chemokine-specific anti-

bodies are pre-coated onto colour-coded microparticles and
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dispensed into microtitre plates by the manufacturer. The stan-

dards and test samples were added to the microtitre wells, and

after standard incubation, any unbound substances were

washed away by vacuum filtration in an apparatus provided

by the manufacturer. This was followed by the addition of bioti-

nylated antibodies specific to the protein of interest to each

well and after standard incubation protocol any unbound bioti-

nylated antibody was removed by vacuum washes as before.

Streptavidin–PE antibodies were then added to each well, fol-

lowed by a final wash to remove unbound streptavidin–PE.

The microparticles were resuspended in Milliplex buffer and

read using the Luminex 100 analyser.

2.2. Statistics
ANOVA with Bonferroni post hoc adjustments, Graphpad Prism

version 5.0d for Mac OS X (GraphPad software, San Diego, CA,

USA), was used to determine the significant differences between

patient groups for each cytokine (potential biomarker). Significance

was accepted at p � 0.05.

2.3. Artificial neural network
Using Matlab R2011a for PC (Natick, MA, USA) a feedforward

ANN was developed. Scaled conjugate gradient back-propagation

(trainscg in Matlab) was used as the training function as it has

been shown to be robust in classification problems. Two feedforward

ANNs were trained using separate datasets as inputs. The first set

was composed of all cytokines (38 in total) as inputs and used 10

neurons in a single hidden layer. The second set included only

cytokines that were shown to significantly differentiate at least one

of the three patient groups from the others (12 in total) and used

five neurons in the hidden layer. In both ANNs, there were three

output variables, each record was allocated to either the normal,

OA or RA patient group. The architectures for the two networks

are 38� 10 � 3 (input � hidden � output) for the full dataset and

12 � 5 � 3 for the reduced dataset. The number of neurons in the

hidden layer was chosen to be as small as possible while still main-

taining accuracy. Datasets were divided randomly into the training

set (70% of data) which was used to train the ANN, the validation

set (15%) which was used to test the trained ANN to determine

when training has completed and the test set (15%) which is left

independent of the training process.

We quantified the performance of our ANNs by calculating

the sensitivity and specificity of the output of each training, vali-

dation and test dataset used. For this study, sensitivity was

defined as the ability of the algorithm to correctly detect the

patients of the group in question (normal, OA or RA). This

was calculated by the percentage of patients correctly allocated

to their physician diagnosed group for each of the three

groups. The specificity was defined as the algorithm’s accuracy

in being selective for only the patients that belong in each of

the three physician diagnosed groups. This value was calculated

by subtracting the percentage of false-positives (from 100%) for

each of the three groups.

2.4. Decision tree verification of artificial neural network
To verify the results produced by ANN, a collection of bagged

decision trees were programmed in Matlab R2011a for PC

using the TreeBagger algorithm. To train this algorithm, a ran-

domly selected dataset consisting of 85% of each of the three

patient groups (normal, OA and RA) was used. The test set con-

sisted of the remaining 15% from each patient group that was not

used in the training of the decision tree. The entire dataset was

used for this analysis as it provided better results than just the

significantly expressed cytokine values used as a secondary

training set in the ANN. Sensitivity/specificity was defined as

described for the ANN.
3. Results
3.1. Statistics
Of the 38 cytokines investigated in the blood serum samples,

12 were shown to have significantly different expression

levels within at least one of three possible patient group

comparisons (table 1). Interestingly, in some instances, OA

and RA serum samples contained significantly lower levels

of some inflammatory cytokines when compared with

normal samples. For example, OA samples had significantly

lower EGF, growth-regulated oncogene (GRO) and MIP-1beta

levels compared with normal samples, whereas RA sam-

ples showed significantly lower EGF, fractalkine, GRO,

macrophage-derived chemokine (MDC) and CD40 ligand

(CD40L) expression levels compared with normal samples.
3.2. Artificial neural network
Based on the findings produced using classical statistics, two

ANNs were trained using two separate training sets. The first

ANN was trained using all available cytokines (38 in total),

and the second trained using only significantly expressed

cytokines (12 in total). The training, validation and test set

summaries for each ANN are reported in table 2. Numbers

within table 2 represent actual patent numbers, not percen-

tages. For example, in table 2—top (for all cytokines), the

training set consisted of 75 normal individuals, 67 OA

patients and 68 RA patients. All of the normal individuals

were correctly categorized, whereas one OA patient and

one RA patient were categorized as normal with the remain-

der correctly diagnosed. These numbers are used to calculate

the sensitivity/specificity reported.

High levels of sensitivity and specificity were obtained

within the test set of the first ANN using all 38 cytokines

(sensitivity/specificity—norm: 100/100, OA: 100/100, RA:

100/100; table 2—top). The second training set consisted of

only significant levels of cytokines and produced the same

result (sensitivity/specificity—norm: 100/100, OA: 100/100,

RA: 100/100; table 2—bottom). The decision to test a

second, smaller dataset (analysis of fewer molecular markers

of inflammation) was made to potentially minimize the

inclusion of superfluous data to better understand the ‘key’

factors in cohort identification.
3.3. Decision tree
The training set, test set and all data summaries for each

decision tree are reported in table 3. As with the representation

of the results from the ANNs, numbers within table 3 represent

actual patient numbers, not percentages. These numbers are

used to calculate the sensitivity and specificity.

The decision tree algorithm, TreeBagger (Matlab R2011a),

executed using all proteins (38 cytokines) as inputs, also

returned a high level of sensitivity/specificity (norm: 100/

96, OA: 100/97, RA: 95/100; table 3—top). The TreeBagger

algorithm yielded results in a manner similar to ANN, mean-

ing that its internal complexity does not allow the user to

observe what variables (in this case, cytokines) lead the pro-

gram to the returned output, thus creating a ‘black box’

scenario. For future research, it would be extremely useful

to know which biomarkers (or concentration of biomarkers)

are associated with each of the three possible groups (OA,

RA and normal). For this reason, a single-decision tree,



Table 1. Summary of cytokine expression and patient group statistics. Mean+ s.d.; x ¼ p � 0.05; dashes ¼ no significance.

cytokine

mean and standard deviation ANOVA with Bonferroni post hoc

normal OA RA norm versus OA norm versus RA RA versus OA

EGF 167+ 390 33+ 45 42+ 51 x x —

Fractalkine 297+ 653 190+ 580 101+ 169 — x —

GRO 1611+ 1555 583+ 300 533+ 209 x x —

IFNgamma 26+ 70 68+ 153 11+ 24 x — x

IL-7 6+ 11 6+ 8 10+ 9 — x x

IL-8 13+ 35 24+ 33 15+ 21 x — —

IL-17 13+ 47 34+ 70 6+ 12 x — x

MCP-1 221+ 91 475+ 249 408+ 158 x x x

MDC 1935+ 1634 1909+ 1366 729+ 399 — x x

MIP-1beta 141+ 193 65+ 107 109+ 154 x — —

CD40L 2280+ 948 5656+ 4801 771+ 1022 x x x

VEGF 40+ 69 102+ 138 37+ 41 x — x

eotaxin 64+ 83 112+ 73 132+ 420

FGF-2(basic) 56+ 58 65+ 51 61+ 76

Flt-3 ligand 28+ 43 32+ 47 34+ 36

G-CSF 20+ 42 12+ 19 17+ 64

GM-CSF 61+ 251 31+ 94 39+ 128

IFNalpha2 63+ 244 50+ 136 28+ 48

IL-1alpha 27+ 93 13+ 34 10+ 15

IL-1beta 24+ 114 10+ 30 25+ 99

IL-1ra 63+ 292 53+ 204 45+ 258

IL-2 20+ 103 15+ 52 30+ 82

IL-3 11+ 77 0+ 1 0+ 0

IL-4 22+ 88 7+ 20 16+ 59

IL-5 1+ 9 1+ 5 1+ 1

IL-6 5+ 15 12+ 22 29+ 225

IL-9 3+ 24 2+ 10 2+ 9

IL-10 7+ 36 7+ 10 11+ 60

IL-12( p40) 112+ 589 61+ 206 98+ 356

IL-12( p70) 32+ 215 32+ 89 13+ 44

IL-13 8+ 38 10+ 26 4+ 13

IL-15 33+ 165 17+ 51 39+ 134

IP-10 109+ 102 149+ 112 204+ 206

MCP-3 33+ 44 22+ 31 31+ 44

MIP-1alpha 47+ 89 58+ 97 38+ 34

TGFalpha 10+ 45 13+ 25 16+ 20

TNFalpha 5+ 20 8+ 14 9+ 14

TNFbeta 17+ 93 15+ 41 14+ 56
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summarized in table 3 bottom, was programmed. The sensi-

tivity/specificity of the single-decision tree was not as high as

that returned by the multi-tree approach (norm: 93/93, OA:

93/93, RA: 93/93); however, information on the specific cyto-

kines involved in the decision process was obtained. As

depicted in figure 1, TGFalpha, EGF, CD40L, IFNgamma,

MIP-1beta, eotaxin, TNFalpha, IL-1-alpha, GRO, G-CSF and
fractalkine were all used to allocate patients into one of the

three possible patient groups. Interestingly, there were

seven subtypes of normal individuals, six subtypes of OA

patients and three subtypes of RA patients based on these

inflammatory biomarkers.

Decision trees work by finding the optimal cut-off values

and combinations of input variables to best allocate samples



Table 2. Summary of artificial neural network results.

diagnosis

normal OA RA

ANN: all cytokines (n ¼ 38)

training set

patient type normal 75 0 0

OA 1 66 0

RA 1 0 67

validation set

patient type normal 11 0 0

OA 0 21 0

RA 0 0 13

test set

patient type normal 12 0 0

OA 0 13 0

RA 0 0 20

ANN: significant cytokines (n ¼ 12)

training set

patient type normal 66 2 1

OA 0 68 2

RA 2 0 69

validation set

patient type normal 17 0 1

OA 0 15 0

RA 0 0 12

test set

patient type normal 15 0 0

OA 0 15 0

RA 0 0 15

Table 3. Summary of decision tree results.

diagnosis

normal OA RA

TreeBagger: all cytokines (n ¼ 38)

training set

patient type normal 76 0 0

OA 0 71 0

RA 0 0 63

test set

patient type normal 24 0 0

OA 0 29 0

RA 1 1 35

all data

patient type normal 100 0 0

OA 0 100 0

RA 1 1 98

single tree: all cytokines (n ¼ 38)

training set

patient type normal 84 1 0

OA 0 85 0

RA 2 4 79

test set

patient type normal 14 0 1

OA 1 14 0

RA 0 1 14

all data

patient type normal 98 1 1

OA 1 99 0

RA 2 5 93
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(or patients) into one of the bins (three treatment groups in

this study) requested by the programmer. In this study,

analyte levels will be referred to as ‘high’ or ‘low’ relative

to cut-off expression level that has been determined by this

decision tree algorithm. As described in figure 1, individuals

within this study can be described by belonging to one of two

broad groups, those with high expression of TGFalpha or

those with low expression of TGFalpha. Of the group with

low expression of TGFalpha, there were two ways to receive

the diagnosis of normal, OA and RA. Normal patients were

diagnosed by expressing low EFG, high CD40L and low eotaxin

or by expressing high EGF, low CD40L and low eotaxin.

OA patients were diagnosed by expressing low EGF, high

CD40L and high eotaxin or by expressing high EGF and

high CD40L. RA patients were diagnosed by expressing low

EGF and low CD40L or expressing high EGF, low CD40L and

high eotaxin.

Individuals with high levels of TGFalpha (figure 1, node 1)

are further divided into two subgroups: those with high or

low CD40L (figure 1, node 3) levels. Of the group with high

TGFalpha and low CD40L, there are three ways to be categor-

ized as normal diagnosis, two ways to be categorized as OA
and one way to be categorized as RA. Normals were categor-

ized based on low levels of IFNgamma and low TNFalpha,

expressing low IFNgamma, high TNFalpha and high G-CSF

or expressing high IFNgamma and high IL-1alpha. OA

patients were categorized on the basis of low levels of IFN-

gamma, high TNFalpha, low G-CSF and low fractalkine or

by high levels of IFNgamma and low IL-1alpha. RA patients

were categorized on the basis of low levels of IFNgamma,

high TNFalpha, low G-CSF and high fractalkine.

Within the group of high expression of TGFalpha (figure

1, node 1) and high expression of CD40L (figure 1, node 3),

there are two ways to be categorized as normal and two

ways to be categorized as OA, it was not possible to be cate-

gorized as RA in this group. Normal individuals were

categorized on the basis of low MIP-1beta and high GRO

or by high MIP-1beta and low eotaxin. OA patients were

categorized by low MIP-1beta and low GRO or by high

MIP-1beta and high eotaxin.

Interestingly, CD40L and eotaxin were each used in three

separate combinations to categorize cohorts. Combinations

with CD40L included individuals with high levels of TGF-beta,

and with low levels of TGF-beta in combination with high
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Figure 1. Depiction of single-decision tree with descriptive table.
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or low EGF. Combinations with eotaxin-included individuals

with low levels of TGF-beta and high EGF with low CD40L

or low EGF with high CD40L, as well as high TGF-beta

with high CD40L and high MIP-1beta. This suggests that in

a complex disease it is important to evaluate the levels of

biomarkers in the context of other biomarkers.

Single-decision trees were further investigated to see how

lowering the number of inputs would affect the sensitivity

and specificity of the algorithm (table 4). In the above

single tree analysis, 11 markers were identified as important

for decision-making, yet 12 were important for programming

the tree. The protein VEGF was important for programm-

ing the tree, but not included in any of the decision nodes

that were quantified. As we were able to obtain a high sensi-

tivity and specificity with 12 markers, we decided to use

this as the starting point and programmed the algorithm

to produce the best possible outcome with six, four and

two inputs (markers). In descending order of importance

for decision-making, CD40L, TGFalpha, EGF, INFgamma,

eotaxin, MIP-1beta, TNFalpha, IL-1alpha, G-CSF, fractalkine,

GRO and VEGF were the most important markers. As sum-

marized in table 4, overall sensitivity and specificity declined

as fewer markers were used (as the algorithm omitted the

least important markers). Of note, the use of classical statistics
did not identify all of the 12 markers that were deemed essen-

tial for the highest sensitivity and specificity that the algorithm

achieved. Eotaxin, G-CSF, IL-1alpha, TGFalpha and TNFalpha

did not show statistical significance in treatment group com-

parisons ( p . 0.05), yet were essential in achieving the high

level of accuracy. This result appears to reaffirm the idea that

what may be important in the creation of a diagnostic for a

complex disease such as OA and RA could be the interpret-

ation of combinations of markers, and not just the statistical

significance of a few.
4. Discussion
When we applied ANN processing to a dataset collected

from multiplexing of blood serum samples collected from

OA patients and compared with samples from normal and

RA cohorts, we were able to improve the potential diagnostic

efficacy of our panel of inflammatory cytokines over statisti-

cal approaches such as PCA and clustering analysis [17].

Using the entire panel of 38 cytokines relevant to inflam-

mation, we were able to train an ANN to distinguish

between our three patient groups with a high degree of sen-

sitivity and specificity. These results were verified using the
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multi-decision tree algorithm. Furthermore, a second single-

decision tree was programmed to provide insights into which

cytokines were used to allocate individuals into specific

cohort groups, and at what cut-off value each unique decision

was made.

For the diagnosis of OA, innovative joint imaging tech-

niques are emerging, but the need still exists for a reliable

(non-invasive) diagnostic tool to at least support an early and

accurate diagnosis. Using a panel of well-documented inflam-

matory cytokines, we have developed a non-invasive test

that can be used to identify patients with OA of the knee.

Although there is currently no disease modifying treatment

for early OA, the panel of cytokines that we have developed

may prove useful for the development and evaluation of

future pharmacological, behavioural and/or mechanical

(including surgical) interventions.

Using a similar approach, the efficacy of analysing

synovial fluid proteins as diagnostic biomarkers of arthritic

conditions has previously been reported [23]. Using an

ANN on proteins quantified within synovial fluid, Han

et al. differentiated between samples from OA and RA

patients with a high degree of sensitivity and specificity.

Additionally, another study by Swan et al., used an ANN

to identify potential biomarkers in OA articular cartilage

[25]. This same group has also discussed the benefits of

using bioinformatic lessons learned from the genomics era

for application to large proteomic datasets, and specifically

in chronic diseases such as OA [26]. Our study was accom-

plished using serum, a less invasive sampling method.

Furthermore, owing to the less invasive nature of our sampling

method, we were able to effectively compare the results with

samples from a group of normal non-OA and non-RA controls.

Historically, in contrast to the more clinically obvious signs and

symptoms of inflammation in RA, for the most part, OA has

been regarded as a non-inflammatory condition. With the

addition of samples from 100 normal individuals, we were

able to detect an inflammatory phenotype within our OA

patients that led to their discrimination from normal and

RA cohorts.

Biomarkers of OA have been previously described,

yet none has been widely clinically adopted or Food and

Drug Administration/Health Canada approved for use in

OA diagnosis. We have investigated multiplexed inflamma-

tory data with ANNs, and decision trees and it appears

that a combination of investigated cytokines within a given

sample is a more important consideration for accurate disease

classification than the levels of unique individual cytokines to

achieve validation of the clinical assessment. It is possible

that the combination of certain cytokines describes a more

global picture, a latent variable or relationship that is lost

when each cytokine is investigated separately for significance

within the patient population. Therefore, in the future, it may

be prudent to not exclude markers that are individually

found not to discriminate cohorts based on standard statisti-

cal techniques. Retrospectively, it could be quite interesting

and rewarding to apply this ANN methodology to historical

biomarkers of OA and RA. Specifically in OA, biomarkers

such as collagen II fragments, COMP, HA, matrix metallopro-

teinases and single inflammatory proteins (IL-1B, IL-6,

TNFalpha, among others) have not garnered significant

clinical adoption. This may be due to heterogeneity and

variability between individuals and more than likely the dis-

ease itself; however, applying this type of ANN methodology
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to these historical biomarkers may shed light on clouded and

contradictory results published within this field of research.

This work, specifically the interpretation of the single-

decision tree, has allowed us to begin to capture and quantify,

the phenotypic complexity of arthritic disease and the normal

state. This methodology suggests that in order to achieve an

accurate diagnosis (between normal, OA or RA states), each

biological marker (in this case, cytokines) needs to be con-

sidered in relation to all other biological markers being

examined, and not as independent measures. The outputs

from this algorithm also suggest that the variation seen

within individual biological markers of a patient population

can be extremely useful when investigated in the context of

variation present in additional markers. Thus, classical stat-

istics comparing group means and standard deviations alone

may not be appropriate in this instance. Arthritis is a complex

disease with a complex phenotype, it is not unrealistic to con-

sider that the effective diagnoses will likely require a relatively

complex interpretation of data that can account for heterogen-

eity of a patient population in addition to heterogeneity of a

disease state (e.g. onset, pathogenesis and progression).

While ANNs have gathered significant attention in the

basic sciences for analysing large and complex datasets,

there have been relatively few clinical diagnostic applications
of this methodology, and even fewer cases in which this

methodology has been applied to the diagnosis of OA. In

this study, we have demonstrated a proof of principle for

this algorithm when combined with a high-throughput pro-

teomic inflammatory assay in the serum of patients with

OA. The synergy of these methodologies may represent an

effective starting point to develop a reliable non-invasive

diagnostic for early OA.

In conclusion, through the multiplexed analysis of a

panel of inflammatory cytokines quantified in the sera of

OA and RA patients, and normal individuals, we were able

to accurately classify OA patients as discriminated against

normal individuals and RA patients. This methodology

could be further developed into a diagnostic tool to aid and

complement physician diagnosis of OA.
This study protocol was approved by the University of Calgary
Human Research Ethics Board and the Research Ethics Board of
the University of Manitoba. All participants provided written consent
to participate.
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