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Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination.

To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that

can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients

(eight females/two males; age 73.9 � 5.7 years) underwent metabolic brain imaging with 18F-fluorodeoxyglucose positron emis-

sion tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration.

This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched

healthy subjects (five females/five males; age 71.7 � 6.7 years) served as controls for the imaging studies. Spatial covariance

analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic

pattern that discriminated (P5 0.001) the patients from the healthy control group. This pattern was characterized by bilateral,

asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related

changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of

this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control

scans, with elevated pattern expression (P5 0.001) in both disease groups relative to corresponding normal values. We next

determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration

from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a

single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from multiple system

atrophy (P50.001) but not progressive supranuclear palsy, presumably because of the overlap (�24%) that existed between

the corticobasal degeneration- and the progressive supranuclear palsy-related metabolic topographies. Nonetheless, excellent

discrimination between these disease entities was achieved by computing hemispheric asymmetry scores for the corticobasal

degeneration-related pattern on a prospective single scan basis. Indeed, a logistic algorithm based on the asymmetry scores

combined with separately computed expression values for a previously validated progressive supranuclear palsy-related pattern

provided excellent specificity (corticobasal degeneration: 92.7%; progressive supranuclear palsy: 94.1%) in classifying 58 testing

subjects. In conclusion, corticobasal degeneration is associated with a reproducible disease-related metabolic covariance pattern

that may help to distinguish this disorder from other atypical parkinsonian syndromes.
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Introduction
Parkinsonism is characterized by a combination of clinical features

that include tremor, bradykinesia, rigidity, and postural instability.

Idiopathic Parkinson’s disease is the most common cause of neu-

rodegenerative parkinsonism, whereas atypical parkinsonian syn-

dromes, also referred to as ‘Parkinson plus syndromes,’ encompass

several specific diseases with distinct pathology and prognosis,

including progressive supranuclear palsy (PSP), multiple system

atrophy (MSA), and corticobasal degeneration (CBD). Atypical

parkinsonian syndromes can represent as much as 15-20% of

parkinsonism seen in specialty practice (Fahn et al., 2004).

Diagnosis of Parkinson’s disease and atypical parkinsonism is

made based on clinical examination, relying on established con-

sensus criteria. Parkinson’s disease and the different atypical

parkinsonian syndromes can be differentiated by pathological

examination, but post-mortem studies demonstrate only a 76%

accuracy in the clinical diagnosis of Parkinson’s disease (Hughes

et al., 2002). Although this accuracy does increase with longer

follow-up evaluations by movement disorder specialists, it remains

significantly lower for atypical syndromes (Hughes et al., 2002).

Pathologically, CBD and PSP are classified as tauopathies with

significant overlap in motor and cognitive deficits (Sha et al.,

2006), distinct from the alpha-synuclein aggregates that charac-

terize Parkinson’s disease and MSA (Poston, 2010). Clinically, CBD

is characterized by asymmetric, levodopa non-responsive parkin-

sonism. The presentation typically includes progressive rigidity and

limb apraxia, in conjunction with limb dystonia, stimulus-sensitive

myoclonus, and/or cortical sensory loss (Boeve et al., 2003).

However, predominantly cognitive presentations are also seen

(Litvan et al., 1997; Mahapatra et al., 2004; Hu et al., 2009),

potentially confounding the diagnosis.

With this in mind, one important aim of neuroimaging is to

provide increased diagnostic accuracy, allowing for the selection

of appropriate treatment strategies and more accurate long-term

prognosis. Conventional neuroimaging such as MRI is of limited

value in the diagnosis of the different atypical parkinsonian syn-

dromes. Asymmetric atrophy of the premotor and parietal cortices

is suggestive but neither sensitive nor specific for CBD, particularly

at early disease stages (Mahapatra et al., 2004). As Parkinson’s

disease and atypical parkinsonian syndromes are both associated

with presynaptic nigrostriatal dopaminergic deficits, dopaminergic

imaging has been of limited use in the differential diagnosis of

these disorders (Vlaar et al., 2007).

In contrast, functional imaging techniques aimed at measuring

cerebral blood flow or metabolism have been used extensively to

identify disease-specific changes in local neural activity (Eidelberg,

2009). In the past several years, voxel-based spatial covariance

analysis has been successfully applied to 18F-fluorodeoxyglucose

(FDG) PET images to identify metabolic patterns relating to spe-

cific neurodegenerative diseases (Eidelberg, 2009). Using this ap-

proach, we have previously identified and validated patterns that

can discriminate Parkinson’s disease, MSA, and PSP not only from

healthy subjects but also from each other (Spetsieris et al., 2009;

Tang et al., 2010b; Niethammer and Eidelberg, 2012).

To date, we have not applied this network-based method to the

study of CBD, although metabolic asymmetries can readily be seen

in patients with this disorder (Eidelberg et al., 1991). In the pre-

sent study, we identified and validated a disease-specific metabolic

pattern that can separate patients with CBD from healthy controls,

and patients with other atypical parkinsonian syndromes.

Materials and methods

Subjects
Demographic data for the patient cohorts and the healthy control

groups are presented in Table 1. Patients were referred to the respect-

ive institution to aid in clinical diagnosis between January 1995 and

December 2006 (North Shore University Hospital, NY, USA), March

2009 and October 2010 (Stanford University, CA, USA), July 2008

and January 2011 (University of Freiburg, Freiburg, Germany), and

between January 1998 and December 2008 (University Medical

Centre Groningen, Groningen, The Netherlands). All patients had par-

kinsonian signs and were followed by movement disorder specialists at

each institution for at least 6 months after PET imaging. Inclusion

required a final clinical diagnosis of probable CBD, PSP, or MSA that

was supported by the clinical impression of the trained movement

disorder specialists, who evaluated the patients, chart review (M.N.,

K.L.P., E.H., L.H., K.L.L., S.H., F.A.) using published clinical criteria

(Litvan, 2003; Poston, 2010; Armstrong et al., 2013), and the absence

of dementia as well as structural brain abnormalities on MRI (i.e. mass

lesions, white matter changes, or ischaemia) that could have explained

the clinical findings. Diagnosis was confirmed pathologically (J.P.V.) in

10 patients (three CBD, three PSP, and four MSA). Scan data from

some of the patients have appeared previously as part of different

analyses (Tang et al., 2010b; Teune et al., 2010; Hellwig et al., 2012).

To identify a CBD-related metabolic covariance pattern (CBDRP),

we studied 10 patients (CBDNS: eight females/two males; age

73.9 � 5.7 years (mean � standard deviation [SD]); disease duration

3.5 � 1.5 years; Table 2) who met diagnostic criteria for probable

CBD, with limb asymmetry and apraxia on clinical examination and

without evidence of eye movement abnormalities. Three of 10 subjects

with CBD were pathologically confirmed cases. Eight of the patients

with CBD in this group and 10 age-matched normal control subjects

(NLNS: five females/five males; age 71.7 � 6.7 years) were scanned at

North Shore University Hospital; two patients with CBD were scanned

at Stanford University. Six of 10 patients with CBD had symptoms

predominately on the right, and four on the left.
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To validate the pattern, we studied independent testing cohorts of

atypical parkinsonian syndromes subjects who had uncertain diagnoses

at the time of FDG PET and were then followed clinically by move-

ment disorder specialists for at least 6 months until a final clinical

diagnosis was made. We studied 10 patients with CBD (CBDGR:

seven females/three males; age 68.9 � 9.3 years; disease duration

2.0 � 0.82 years) and 10 normal control subjects (NLGR: five

females/five males; age 65.0 � 10.1 years) who were scanned with

FDG PET at the University Medical Centre Groningen, The

Netherlands. We also measured CBDRP expression in an additional

testing cohort comprised of seven patients with CBD (CBDFR: age

65.8 � 6.0 years; disease duration 2.3 � 1.6 years) who were scanned

with FDG PET at the University of Freiburg, Germany. CBD patients in

both cohorts were scanned with an unverified diagnosis of atypical

parkinsonian syndromes, and only confirmed as CBD on clinical

follow-up (3.0 � 1.0 years for CBDGR and 1.0 � 0.6 years for

CBDFR) (Teune et al., 2010; Hellwig et al., 2012).

To examine pattern expression in other atypical parkinsonian dis-

orders, we studied a cohort comprised of patients clinically diagnosed

with PSP (PSPNS: n = 30; age 69.4 � 5.6 years; disease duration

2.7 � 1.2 years) or MSA (MSANS: n = 40; age 61.4 � 8.7 years; dis-

ease duration 3.9 � 2.2 years) who were scanned with FDG PET at

North Shore University Hospital. Among these patients, three cases

with PSP and four MSA cases were pathologically confirmed. We

also studied an additional atypical parkinsonian syndromes cohort

comprised of patients diagnosed with PSP (PSPFR: n = 21; age

70.5 � 7.6 years; disease duration 2.9 � 2.0 years) or MSA (MSAFR:

n = 12; age 65.1 � 7.2 years; disease duration 3.6 � 2.0 years) who

were scanned at the University of Freiburg. All of these patients had

uncertain diagnoses of atypical parkinsonian syndromes at the time of

imaging, and their final clinical diagnoses were made after clinical

follow-up (PSPNS: 1.9 � 1.1 years; PSPFR: 1.0 � 0.4 years; MSANS:

3.2 � 2.6 years; MSAFR: 0.8 � 0.3 years) (Tang et al., 2010b;

Hellwig et al., 2012).

Ethical permission for the procedures was obtained from the

Institutional Review Board at North Shore University Hospital and

Stanford University, and the local ethics committee at University of

Freiburg and the University Medical Centre Groningen. Written con-

sent was obtained at each institution from each subject following

detailed explanation of the scanning procedures.

PET
All subjects were scanned with FDG PET under resting conditions.

All anti-parkinsonian medications were withheld at least 12 h before

imaging. PET imaging was performed using a GE Advance tomograph

[4.0 mm, full-width at half-maximum (FWHM), North Shore University

Hospital], a GE PET/CT Discovery LS (5 mm FWHM, Stanford

University), a Siemens ECAT HR + PET scanner (4.1 mm FWHM,

University Medical Centre Groningen), or a Siemens ECAT EXACT

922/47 scanner (5.5 mm FWHM; University of Freiburg) as described

previously (Huang et al., 2007; Teune et al., 2010; Meyer et al.,

2011). Scans from each subject were realigned and spatially normal-

ized to a standard Talairach-based FDG PET template, and smoothed

with an isotropic Gaussian kernel (10 mm) in all directions to improve

the signal-to-noise ratio (Feigin et al., 2007; Huang et al., 2007). All

image processing was performed using Statistical Parametric Mapping

(SPM5) software (Wellcome Department of Cognitive Neurology,

London, UK) running in MATLAB (MathWorks).

Network analysis

CBDRP identification

To identify a specific metabolic pattern associated with CBD, we

applied a spatial covariance mapping algorithm (Eidelberg, 2009;

Niethammer and Eidelberg, 2012; Spetsieris et al., 2013) to the FDG

PET data from the 10 CBDNS patients and 10 NLNS subjects that

comprised the derivation set. This method is based on a principal com-

ponent analysis that can be used to identify specific disease-related

spatial covariance patterns with significantly greater expression

(denoted by higher subject scores) in patients than in control subjects.

A detailed description of this approach has appeared elsewhere

(Habeck and Stern, 2010; Spetsieris and Eidelberg, 2011). In brief,

principal component analysis was performed on scans from the

Table 1 Patient cohorts

Site Category n Age (years) Disease
duration (years)

North Shore University Hospital/Stanford University (NS) NL (NLNS) 10 71.7 � 6.7 n/a
CBD (CBDNS) 10 73.9 � 5.7 3.5 � 1.5

PSP (PSPNS) 30 69.4 � 5.6 2.7 � 1.2

MSA (MSANS) 40 61.4 � 8.7 3.9 � 2.2

University Medical Centre Groningen (GR) NL (NLGR) 10 65.0 � 10.1 n/a
CBD (CBDGR) 10 68.9 � 9.3 2.0 � 0.8

University of Freiburg (FR) CBD (CBDFR) 7 65.8 � 6.0 2.3 � 1.6
PSP (PSPFR) 21 70.5 � 7.6 2.9 � 2.0

MSA (MSAFR) 12 65.1 � 7.2 3.6 � 2.0

Table 2 Patient characteristics: derivation cohort (CBDNS)

Subject
No.

Gender Age
(years)

Disease
duration
(years)

Clinically
worse
side

Pathologically
confirmed

CBDRP
score
(z-scored)

1 F 74.5 3 Left Yes 5.02

2 F 61.9 1 Right Yes 5.59

3 M 81.0 3 Right Yes 12.01

4 F 78.2 2 Right No 5.26

5 F 73.2 5 Right No 6.41

6 F 77.6 6 Right No 8.04

7 F 76.0 3 Right No 4.07

8 F 72.5 6 Left No 5.50

9 F 68.2 1 Left No 8.14

10 M 79.2 5 Left No 6.75
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combined group of patients and normal controls (n = 20) using an

automated voxel-based routine (software freely available at http://

feinsteinneuroscience.org/imaging-software) in a common stereotaxic

space. The combination of principal component patterns that best

discriminated patients from controls in the derivation set was identified

using pre-specified subject score criteria (Spetsieris and Eidelberg,

2011). To delineate a specific CBD-related topography, we limited

the analysis to the set of principal components that in aggregate ac-

counted for the top 50% of subject � voxel variability, and for which

each individual principal component contributed at least 10% to the

total variance in the scan data. Region weights for the resulting dis-

ease-related topography (denoted by voxel loadings on the pattern)

were tested for reliability using bootstrap resampling (Habeck and

Stern, 2010). Coordinates were reported in the standard anatomical

space developed at the Montreal Neurological Institute. The cytoarchi-

tectonic localization of each reported network-related region was con-

firmed using the Talairach space utility available at http://www.ihb.

spb.ru/�pet_lab/TSU/TSUMain.html. For pattern derivation, the scans

from the CBD patients with predominantly left-sided symptoms were

flipped so that all subjects had the left hemispheres of the brain as

their most affected side.

CBDRP validation

Following derivation, the CBDRP candidate network was validated by

computing its expression in patient and control testing data from the

CBDGR, CBDFR, and NLGR cohorts. The Freiburg data set did not in-

clude scans from healthy control subjects. As in the derivation set,

scans of patients with CBD with predominantly left-sided symptoms

in the testing cohorts were flipped so that the most affected hemi-

sphere was on the left side. Subject scores for the candidate CBDRP

identified in the derivation set were computed in the testing scans

using an automated voxel-based algorithm to quantify the expression

of known patterns on a prospective single scan basis (Spetsieris et al.,

2006, 2013; Eidelberg, 2009) and were compared across groups. In

addition, CBDRP expression values were computed in scans from the

testing cohorts with PSP (PSPNS and PSPFR) or MSA (MSANS and

MSAFR). The resulting subject scores were compared with values

from the corresponding CBD cohorts (CBDNS and CBDFR).

CBDRP asymmetry index

To obtain a quantitative measure of the pattern asymmetry in individ-

ual subjects, we generated a hemi-CBDRP from the left side (most

affected hemisphere) of the whole-brain pattern. For each subject,

hemi-CBDRP expression values were computed separately for the

two hemispheres (hemi-CBDRP was flipped to calculate the value for

the right hemisphere). The difference in hemispheric values was calcu-

lated and used as an asymmetry index of CBDRP expression. Values

from the diagnostically relevant patient groups (CBD and PSP) were

compared with each other and with measures from the healthy vol-

unteer group.

Differential diagnosis
In addition to assessing group differences in the expression of covari-

ance patterns relating to CBD and PSP in the testing populations, we

developed an automated logistic algorithm to discriminate between

these disorders at the individual patient level. To this end, we

extended the pattern-based classification strategy that we previously

developed to distinguish patients with Parkinson’s disease from MSA

and PSP (Tang et al., 2010b). A training sample was constructed using

scans from the 10 CBDNS subjects used for CBDRP derivation (age

73.9 � 5.7 years) and scans from 10 PSPNS patients (age 69.9 � 8.2

years) closely matched in age to their CBDNS counterpart subjects.

Logistic regression analysis was performed on the scan data from

this combined training sample to determine which of the three net-

work measures [i.e. CBDRP expression, CBDRP asymmetry index, and

PSP-related metabolic covariance pattern (PSPRP) expression] could,

singly or in combination, best differentiate between the two diseases.

The model with the best between-group discrimination was selected

based on the lowest Akaike information criterion value (Burnham and

Anderson, 2002).

For validation, this algorithm was used prospectively to classify each

of 58 independent subjects. This testing set was comprised of 17 CBD

(10 CBDGR and seven CBDFR) and 41 PSP patients (20 remaining

PSPNS and 21 PSPFR). For each subject, probability values for CBD

(PCBD) or PSP (PPSP) were computed using the original logistic equation

from the training sample and then compared to the optimal cut-off

probabilities for classifying a given subject as CBD or PSP (i.e. cut-

offCBD or cut-offPSP). The cut-off probability for each condition

was determined by identifying an inflection point on each receiver-

operating characteristic (ROC) curve corresponding to high specificity

and sensitivity (Tang et al., 2010b). Because in a clinical setting FDG

PET is used primarily as a confirmatory test rather than for screening,

high specificity (i.e. 490%) rather than high sensitivity was preferred

in determining a suitable inflection point for each curve and, corres-

pondingly, the cut-off probability for each disease. By comparing the

individual case probabilities (PCBD and PPSP) to the cut-off probabilities,

each subject was classified as CBD if PCBD4 cut-offCBD, PSP if

PPSP4 cut-offPSP, or as an indeterminate case if PCBD4 cut-offCBD

and PPSP4 cut-offPSP. We then calculated discriminative measures

(sensitivity, specificity, positive predictive value and negative predictive

value) for the CBD and PSP groups.

Statistical analysis
Because of the relatively small sample size of some groups (e.g. n = 7

in CBDFR), the non-normal distribution of the data in some groups,

and unequal sample sizes, non-parametric tests were used to compare

network measures between (Mann-Whitney U-tests) and among

(Kruskal-Wallis tests) the different groups. For all patients and control

subjects, individual pattern scores were standardized (z-scored) with

respect to the original NLNS group used in pattern derivation. Thus, for

each of these normal reference samples, mean pattern expression was

zero with an SD of one. Logistic regression analysis was performed in

SAS 9.2 (SAS Institute Inc.) and other statistical tests were performed

in SPSS 14.0 (SPSS Inc.). All tests were considered significant for

P5 0.05.

Results

Corticobasal degeneration-related
metabolic pattern
Spatial covariance analysis of the metabolic imaging data from the

derivation set revealed a significant CBDRP (principal component

1, accounting for 18.4% of the total subject � voxel variance of

the data). This pattern (Fig. 1A and Table 3) was characterized by

metabolic reductions in the primary motor (BA4), lateral premotor

(BA6), prefrontal (BA9) and parietal (BA40) cortical regions, cin-

gulate gyrus (BA24, BA31) and in the thalamus (mediodorsal,

ventrolateral and lateroposterior nuclei). The changes in these
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network regions were more pronounced in the left hemisphere

(i.e. opposite the more affected body side), although abnormal

changes were also present in the other hemisphere, albeit at

lower significant levels (not shown in Fig. 1A). Voxel weights on

CBDRP were stable in these regions (inverse coefficient of varia-

tion range = �2.22 to 2.26, P = 0.01; bootstrap estimation, 1000

iterations). In the derivation set, pattern expression values (Fig. 1B

and D) significantly separated the patients with CBD from the

healthy control subjects (P50.001; permutation test). The clin-

ical diagnosis of CBD was confirmed post-mortem in three of

10 subjects (Fig. 1B and Table 2) used to identify the

pattern. In each of the autopsied cases, subject scores were

Figure 1 Corticobasal degeneration-related pattern. (A) Corticobasal degeneration-related pattern (CBDRP) identified by spatial co-

variance analysis of FDG PET scans from a derivation cohort of 10 patients with CBD and 10 normal control (NL) subjects scanned at the

North Shore University Hospital (eight CBD and 10 control subjects) and Stanford University (two CBD subjects). This pattern was

characterized by metabolic reductions in the left frontal and parietal lobes, precentral gyrus, thalamus, and caudate head, associated with

increased metabolism in the left occipital lobe, left lingual gyrus, right occipital lobe and right inferior occipital gyrus. [The display

represents regions that contributed significantly to the network at Z = 2.33 (P5 0.01) and were demonstrated to be reliable (P = 0.01;

1000 iterations) by bootstrap resampling. Voxels with positive region weights (metabolic increases) are colour-coded red and those with

negative region weights (metabolic decreases) are colour-coded blue. Left hemisphere is labelled as ‘L’]. (B) In this derivation sample,

individual CBDRP expression significantly (P50.001, permutation test) separated the 10 patients with CBD (CBDNS; filled circles) from the

10 normal controls (NLNS; open circles). The three pathologically confirmed cases are indicated by black filled circles. One subject with CBD

also had undergone FDG PET 3 years before the scan included in the derivation sample. For this subject, CBDRP expression was 1.64 at the

initial scan, and was then increased to 5.50 3 years later when the same subject carried a diagnosis of CBD (open and filled triangles,

respectively). (C) Top: Cortico-subcortical micrograph of the precentral gyrus (BA4) from a section stained with AT8 antibodies directed

against phosphorylated tau. On general survey, the labelling was diffuse, blurring the cortico-subcortical demarcation. Inset: Strong

labelling was seen of neuropil threads, astrocytes, and scattered neurons. Bottom: Cortico-subcortical micrograph from the same specimen

showing AT8 staining in the inferior frontal gyrus (BA9). Inset: In contrast to BA4, the cortico-subcortical demarcation is discrete and the

tauopathic burden consists only of occasional astrocytic plaques and rare neuropil threads. Scale bars = 1.0 cm; inset = 15mm.

(D) Validation of CBDRP in two independent testing cohorts: CBDGR (10 patients with CBD and 10 age-matched normal controls scanned

at University Medical Centre Groningen) and CBDFR (seven patients with CBD scanned at the University of Freiburg). As in the derivation

CBDNS cohort (left; P50.001, Mann-Whitney test), pattern expression was significantly elevated in the CBDGR patients compared to the

NLGR controls (middle; P50.001). Likewise, pattern expression in CBDFR (right) was significantly elevated relative to both the NLNS

(P = 0.001) and NLGR (P50.001) groups. Indeed, average elevation of CBDRP expression was not different (P = 0.55, Kruskal-Wallis test)

between the derivation and the two validation CBD groups. Error bars represent SE. **P4 0.001, Mann-Whitney tests, compared to

normal control subjects (NL).
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45.0 SD (range 5.0–12.0) above the normal mean value. The

pathological representation of an autopsied case who had the

highest CBDRP score (12.01) is shown in Fig. 1C. Of note, one

of the CBD patients (Fig. 1B) had undergone FDG PET 3 years

before the scan used in pattern identification. At that time, the

clinical diagnosis was one of focal dystonia, without accompanying

parkinsonism or cortical sensory findings. In this subject, CBDRP

expression was 1.64 at the initial scan, but increased to 5.5

(Fig. 1B) after 3 years, by which time a clinical diagnosis of CBD

had been made.

Pattern validation
To validate the CBDRP, we prospectively computed the expression

of this pattern in an independent testing cohort comprised of

10 patients with CBD (CBDGR) and 10 age-matched normal con-

trol subjects (NLGR) scanned at University Medical Centre

Groningen. Subject scores for this pattern were computed on a

prospective single scan basis in each of testing scans using an

automated voxel-based algorithm that was blind to diagnostic cat-

egory (i.e. CBDGR or NLGR). In this testing sample (Fig. 1D) CBDRP

expression was also elevated (P50.001; Mann-Whitney test) in

the patients (CBDGR) relative to the healthy (NLGR) control sub-

jects. Of note, subject scores in both cohorts were standardized

with respect to CBDRP expression values from the healthy NLNS

subjects in the derivation sample. Nevertheless, the mean for the

prospectively computed NLGR values (�0.24) was near the zero

mean (P = 0.36, Mann-Whitney test) that was set for the NLNS

(see ‘Materials and methods’ section).

Lastly, we computed CBDRP expression in an additional testing

cohort comprised of seven patients with CBD (CBDFR) scanned at

the University of Freiburg. Although no scans from healthy control

subjects were available at this site, subject scores for CBDFR

patients (Fig. 1D) were significantly elevated (P40.001,

Mann-Whitney test) relative to healthy NLNS and NLGR control

values. Indeed, the expression of this pattern in CBDFR patients

(CBDFR: 5.39 � 0.89) did not differ (P = 0.55; Kruskal-Wallis test)

from corresponding measurements in CBDNS and CBDGR patients

[CBDNS: 6.68 � 0.72 (derivation); CBDGR: 5.35 � 1.27].

CBDRP expression in other forms
of atypical parkinsonism
To determine the specificity of the pattern for CBD, we measured

its expression in other forms of atypical parkinsonian syndromes.

Specifically, we quantified CBDRP scores in 30 PSP patients

(PSPNS) and 40 MSA patients (MSANS) scanned at North Shore

University Hospital. The patients in the CBDNS group (Fig. 2) had

greater CBDRP expression than either the PSPNS (P50.05) or the

MSANS (P50.001; Mann-Whitney tests) groups. We also com-

puted CBDRP expression values in 21 patients with PSP and 12

with MSA scanned at the University of Freiburg, designated as

PSPFR and MSAFR, respectively. CBDRP expression (Fig. 2) was

also elevated in CBDFR compared with MSAFR. However, CBDRP

scores in the CBDFR patients did not differ (P = 0.96) from those

computed in their PSPFR counterparts. Moreover, PSPNS and PSPFR

subjects had greater CBDRP expression (P50.001; Mann-

Whitney tests) than NLNS or NLGR control values. Thus, while con-

firming the presence of abnormal increases in CBDRP expression in

Figure 2 CBDRP expression in atypical parkinsonian syn-

dromes. Left: CBDRP expression in 10 patients with CBD

(CBDNS), 30 patients with PSP (PSPNS) and 40 patients with MSA

(MSANS) scanned with FDG PET at the North Shore University

Hospital. The patients in the CBDNS group showed higher

CBDRP expression than both the PSPNS (P50.05; Mann-

Whitney test) and MSANS (P50.001) patient groups. Right:

CBDRP expression in independent groups of seven CBD

(CBDFR), 21 PSP (PSPFR) and 12 MSA (MSAFR) patients scanned

with FDG PET at the University of Freiburg. In these groups,

CBDRP expression was significantly elevated in the patients with

CBD compared with the patients with MSA (P50.001; Mann-

Whitney test), but was not different from the patients with PSP

(P = 0.96). In addition, both PSPNS and PSPFR patients showed

higher CBDRP expression (P50.001; Mann-Whitney test) than

the normal (NLNS) control subjects. Error bars represent SE.

**P40.001, Mann-Whitney tests, compared to normal control

subjects.

Table 3 Brain regions with significant contributions to the
CBD-related pattern

Brain region Coordinatesa Zmax

x y z

Network-related metabolic reductions (negative region weights)

Thalamus MD/VL/LP nuclei,

Left �2 �22 2 3.50

Right 6 �14 �2 2.53

Left inferior parietal lobule, BA40 �44 �38 56 3.22

Left precentral gyrus, BA4/6 �32 �16 68 3.19
�40 2 28 2.88

Left cingulate gyrus, BA31 �10 �24 40 2.89

Left inferior frontal gyrus, BA9 �52 14 28 2.80

Left middle frontal gyrus, BA6 �28 16 62 2.67

Left cingulate gyrus, BA24 �8 �8 40 2.66

Network-related metabolic increases (positive region weights)

Left lingual gyrus, BA18 �26 �70 4 3.20

Right inferior occipital gyrus, BA18 40 �92 �18 2.83

Right lingual gyrus, BA17 20 �102 �16 2.77

a Montreal Neurological Institute standard space.
MD = mediodorsal; VL = ventrolateral; LP = lateroposterior; BA = Brodmann area.
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multiple prospective CBD cohorts, the testing data also revealed

significant pattern elevations in PSP patients.

CBDRP asymmetry index and PSPRP
expression
We used the inherent asymmetries that characterize the CBDRP

topography to define a hemispheric pattern. The hemi-CBDRP

topography was defined by the left hemisphere of the original

whole-brain pattern. As the side opposite the more affected

limbs in patients with CBD, the left hemisphere contained the

bulk of the local metabolic reductions that constitute this disease

topography. The expression of the left hemi-CBDRP was separ-

ately computed in the two hemispheres of each subject (see

‘Materials and methods’ section). The left-right difference in

these values was used to compute a CBDRP asymmetry index

for each subject. Relative to the normal control group (NLNS),

the asymmetry index was greater in the CBD (CBDNS:

P5 0.001; CBDFR: P5 0.001; Mann-Whitney tests) and the PSP

(PSPNS: P50.005; PSPFR: P = 0.005; Mann-Whitney tests) sam-

ples. However, unlike the original whole-brain pattern, the CBDRP

asymmetry index (Fig. 3A) was significantly greater in CBD relative

to PSP in both differential diagnosis sets (P40.003 for CBDNS

versus PSPNS and CBDFR versus PSPFR).

We also computed PSPRP expression in each of these subjects.

PSPRP scores were indeed elevated in both PSP groups

(P5 0.001; Mann-Whitney tests for PSPNS versus NLNS and

PSPFR versus NLNS), and also in the two CBD samples

(P5 0.005 for CBDNS versus NLNS; P = 0.07 for CBDFR versus

NLNS). Moreover, PSPRP expression was significantly higher in

PSPNS compared to CBDNS (Fig. 3B, left; P50.01), but was not

different for the PSPFR and CBDFR groups (Fig. 3B, right; P = 0.27).

Indeed, voxel-wise correlation of CBDRP and PSPRP revealed

moderate overlap between the two patterns (R2 = 0.24,

P50.001). There was also a significant correlation between ex-

pression of CBDRP and PSPRP in individual subjects with CBD

(Spearman’s r = 0.58, P = 0.001, n = 27; combined group of

CBDNS, CBDGR and CBDFR) or PSP (Spearman’s r = 0.57,

P50.001, n = 51; combined group of PSPNS and PSPFR). These

findings suggest that, singly, the two whole-brain network meas-

ures are insufficient for prospective discrimination between the

two diseases. That said, adequate differentiation between these

conditions may be possible using multiple network measures in

combination.

Automated algorithm for differential
diagnosis of corticobasal degeneration
versus progressive supranuclear palsy
For accurate differential diagnosis of CBD and PSP, we next em-

ployed a logistic classification algorithm to determine whether the

three network measures (the whole-brain CBDRP expression, the

CBDRP asymmetry index, and the whole-brain PSPRP expression),

individually or in combination, provided accurate discrimination

between clinically diagnosed CBD and PSP patients at the single

case level. In the training sample comprised of the 10 CBDNS and

the 10 age-matched PSPNS cases (Fig. 4A), a logistic regression

model based on the CBDRP asymmetry index and whole-brain

PSPRP expression values produced better group separation

(�2 = 15.6, P = 0.0004; likelihood ratio test) than any individual

univariate model as well as the other multivariate models.

Receiver-operating characteristic (ROC) analysis of this selected

bivariate model revealed that the area under-the-curve (AUC)

was 0.94 (P50.0001), indicating excellent differentiation be-

tween the CBD and PSP patients. Odds ratio estimates for this

model were 1.84 [95% confidence interval (CI) = 1.06–3.20,

P = 0.03] for CBDRP asymmetry and 0.42 (95% CI = 0.15–1.19,

P = 0.10) for PSPRP expression. Thus, greater asymmetry occur-

ring in concert with lower PSPRP expression suggests a higher

likelihood of CBD relative to PSP in a given subject.

To validate this algorithm, we applied the discriminant function

of the model prospectively to individual subjects in an independ-

ent testing set of 17 CBD (CBDGR + CBDFR) and 41 PSP

(PSPNS + PSPFR) subjects (Fig. 4B). The classification probabilities

of CBD and PSP in each case were computed using the algorithm

with the individual CBDRP asymmetry index and the whole-brain

PSPRP expression value for that individual. The probabilities of

all subjects were illustrated in a frequency distribution diagram

Figure 3 CBDRP asymmetry index and PSPRP expression.

(A) The CBDRP asymmetry index was found to be greater in

both CBD patient cohorts (CBDNS versus PSPNS: P50.002;

CBDFR versus PSPFR: P50.003; Mann-Whitney tests) than for

the respective PSP patient cohorts. (B) Expression of a previously

identified PSP-related pattern (PSPRP) (Eckert et al., 2008) was

significantly higher in the PSPNS group relative to the CBDNS

group (P50.01; Mann-Whitney test), but was not different

between the PSPFR and CBDFR groups (P = 0.27). Error bars

represent SE.
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(Fig. 5A). The subjects with higher CBD probabilities clustered on

the right and those with higher PSP probabilities clustered on the

left. ROC curve analysis (Fig. 5B) further revealed an AUC of 0.92

(P50.0001) indicating a high accuracy for the correct classifica-

tion of CBD and PSP subjects. Based on these curves, the optimum

cut-off probability for classifying CBD was 0.78 and for PSP was

0.63. Thus, patients whose probability values for CBD were 40.78

were classified as CBD and those whose probability values for PSP

were 40.63 as PSP; patients whose probability values for CBD

and PSP were both lower than their corresponding cut-off values

were classified as indeterminate.

The image-based classification for each testing subject was com-

pared to the ultimate clinical diagnosis of that individual. For the

subjects diagnosed clinically with CBD, the image-based classifica-

tions had sensitivity of 76.5% (13/17, number of subjects), spe-

cificity of 92.7% (38/41), positive predictive value of 81.3% (13/

16), and negative predictive value of 90.5% (38/42). For the PSP

patients, the imaging classifications had 78.0% (32/41) sensitivity,

94.1% (16/17) specificity, 97.0% (32/33) positive predictive

value, and 64.0% (16/25) negative predictive value. Nine of 58

testing subjects (15.5%) were classified as indeterminate by com-

parison of their probability values with the corresponding cut-offs.

Of these, six were ultimately diagnosed as having PSP and three

as CBD.

Discussion
In this study, we describe and validate a specific metabolic covari-

ance pattern associated with CBD, termed CBDRP. Expression of

this pattern reliably differentiated patients with clinical CBD from

healthy control subjects in two independent samples. The CBDRP

metabolic topography characterized by asymmetrical reductions

(worse in the left hemisphere, i.e. contralateral to the more af-

fected body side) in the cerebrum, lateral parietal and frontal re-

gions and thalamus, with relative bilateral increases in occipital

regions. This abnormal spatial covariance topography is consistent

with previously reported metabolic (Eidelberg et al., 1991; Eckert

et al., 2005; Teune et al., 2010; Hellwig et al., 2012; Zhao et al.,

2012) and structural (Soliveri et al., 1999; Boxer et al., 2006;

Erbetta et al., 2009) imaging changes in CBD identified using

simple region-level analytical methods. Indeed, the pattern reflects

the often marked asymmetry that is characteristic of the clinical

presentation of CBD (Poston, 2010).

We acknowledge that derivation of a disease-specific pattern

has to rely on the accuracy of the clinical diagnosis. This may be

particularly problematic in CBD, where patients with the clinical

diagnosis of CBD may be found to have another underlying path-

ology on post-mortem examination, mainly PSP, but including

Alzheimer’s disease, vascular parkinsonism, and Pick’s disease

(Litvan et al., 1997; Josephs et al., 2006; Hu et al., 2009). This

has prompted some investigators to propose the term corticobasal

syndrome to describe the clinical findings in living patients, while

reserving CBD for the definitive diagnosis made at post-mortem.

That said, to derive and validate a metabolic pattern that is highly

specific to CBD, we only included probable CBD patients who had

parkinsonism with limb asymmetry and apraxia on clinical exam-

ination, without extraocular movement abnormalities (Litvan

et al., 1997). Thus, it is likely that the majority of the patients

in our cohorts did indeed have CBD, as was confirmed by post-

mortem examination of the brains of three of the patients whose

scans were used to derive the CBDRP metabolic topography.

Figure 4 CBDRP asymmetry index and PSPRP expression in individual CBD and PSP patients. (A) Using logistic regression analysis, we

found that a discriminant function using CBDRP asymmetry index and PSPRP expression resulted in the best differentiation between

CBDNS and PSPNS (�2 = 15.6, P = 0.0004; likelihood ratio test) (see text). Scatter plot displays the CBDRP asymmetry index and PSPRP

expression in the training sample of 10 patients with CBD and 10 age-matched patients with PSP. (B) The automated algorithm for

differential diagnosis was prospectively validated on a case-by-case basis in a testing sample of 58 patients, including 17 patients with CBD

and 41 patients with PSP (see text). Scatter plot displays the CBDRP asymmetry index and PSPRP expression for these patients. In both

plots, CBD and PSP patients are indicated by blue and orange circles, respectively.
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The clinical presentation of CBD may be quite heterogeneous.

Indeed, the specific CBDRP topography described in this study

may not be a consistent feature of variant phenotypes of the

disorder, such as those with early dementia, which can be con-

fused with Alzheimer’s disease (Alexander et al., 2014). Validation

of this pattern as a specific diagnostic tool for CBD will ultimately

be dependent on the accrual of additional cases with pathological

confirmation. A separate possible problem is the low sensitivity in

the diagnosis, a situation where neuroimaging could potentially be

of benefit. It is well recognized that patients with the pathological

diagnosis of CBD frequently may have different clinical syndromes

and the true diagnosis is missed, as can occur in individuals diag-

nosed clinically as having PSP, Alzheimer’s disease, progressive

aphasia, symmetrical parkinsonism, or frontotemporal dementia

(Litvan et al., 1997; Hu et al., 2009; Boeve, 2011; Hassan

et al., 2011). To assess the use of CBDRP expression in this con-

text, it will be necessary to identify patients with pathologically

confirmed CBD but with a different clinical diagnosis – and who

had also undergone metabolic imaging in life.

In our cohorts, CBDRP expression was abnormally elevated in

established CBD patients compared with healthy control subjects.

Interestingly, one patient did undergo imaging twice. At the first

time point, the clinical diagnosis was one of focal dystonia, with-

out other features of CBD. CBDRP expression at the time was

mildly elevated, only to become significantly elevated 3 years

later, when the clinical diagnosis was established. We have previ-

ously shown that in Parkinson’s disease, expression of motor- and

cognition-related patterns (PDRP and PDCP, respectively) increase

in individual patients over time (Huang et al., 2007; Tang et al.,

2010a). Indeed, expression of PDCP is within the normal range

Figure 5 Results of the automated algorithm for differential diagnosis between CBD and PSP. (A) Frequency distribution diagram

illustrating the disease probabilities of CBD and PSP calculated for the 58 subjects (17 CBD and 41 PSP) in the testing sample. Individual

patients were classified as having CBD if the probability value for CBD (PCBD) was 40.78 (i.e. cut-offCBD; 16 subjects located to the right of

the right dotted line), and as PSP if the probability value for PSP (PPSP) was 40.63 (i.e. cut-offPSP; 33 subjects located to left of the left

dotted line). Patients whose probability values for CBD and PSP were both lower than their corresponding cut-off probabilities were

classified as indeterminate cases, i.e. nine subjects located between the left and right dotted lines. The final clinical diagnoses of CBD and

PSP patients are indicated by blue and orange bars, respectively. (B) Based on the receiver-operating characteristic (ROC) analysis for all

patients in the testing sample, the area-under-the-curve (AUC) for PSP (left) and CBD (right) was 0.92 (P50.0001), consistent with that

(0.94, P5 0.0001; not shown) of the training sample. The cut-off probability of each disease was determined based on the inflection point

(asterisk) on each curve corresponding to the high specificity and sensitivity for classifying individual patients with each disease.
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early in the disease course (Tang et al., 2010a). Our finding in this

one patient, coupled with a similar report in two patients with

MSA (Poston et al., 2012), suggests that disease-specific patterns

may be useful markers of disease progression in individual patients

in all forms of neurodegenerative parkinsonism. Nevertheless, lon-

gitudinal studies will be required to confirm this finding. Given the

clinical uncertainty early in the disease process, it will be of special

interest to define the earliest point at which abnormal pattern

expression can reliably aid in the diagnosis of these disorders.

Expression values for CBDRP were not abnormally elevated in

two MSA cohorts. However, while abnormal in the three CBD

cohorts that we studied, these values were also elevated in PSP.

Expression values for the previously characterized PSPRP (Eckert

et al., 2008; Tang et al., 2010b) likewise are elevated in inde-

pendent populations of both CBD and PSP. Moreover, CBDRP and

PSPRP expression correlated in individual patients. While CBD and

PSP are clinically and pathologically thought to be distinct, both

are classified as tauopathies and share deposition of four repeat

tau. This contrasts with the mixture of three repeat and four

repeat isoforms seen in Alzheimer’s disease, suggesting perhaps

a shared pathogenesis for the two disorders (Dickson, 1999;

Boeve et al., 2003). It is intriguing to speculate that abnormally

elevated expression of both patterns in PSP and CBD is also a

consequence of regional overlap in their respective neuropatho-

logical landscapes. A significant portion of patients with clinical

PSP are found to have CBD pathology and vice versa (Josephs

et al., 2006; Murray et al., 2007; Ling et al., 2010). Indeed, the

correlation between the two patterns, in terms of both spatial

topography and subject expression, suggests that the current find-

ing is not simply one of missed diagnoses. Rather, there is true

regional overlap between their metabolic profiles.

In addition, despite different pathologies, recent studies have

suggested that Alzheimer’s disease is a common clinical mimic of

CBD (Alexander et al., 2014). Patients with Alzheimer’s disease

have similar cognitive deficits to CBD, with less rigidity and dys-

tonia (Hu et al., 2009; Hassan et al., 2011). Thus, we performed a

preliminary analysis of CBDRP expression in Alzheimer’s disease

patients, showing that this pattern is not abnormally expressed

in these patients relative to healthy controls (personal communi-

cation). Indeed, a prior study has demonstrated that the metabolic

deficits in Alzheimer’s disease tend to involve cortical regions

(Habeck et al., 2008) that are rather distinct from those that

define the CBDRP topography. Nonetheless, because non-demen-

ted subjects exclusively were used to identify and validate the

CBDRP topography, it is not clear whether this pattern can effect-

ively differentiate patients with CBD from clinical ‘look alike’ syn-

dromes with underlying Alzheimer pathology. Further investigation

is needed to determine the accuracy of network-based classifica-

tion in CBD and in clinical mimics of this disorder.

Taking advantage of the clinical asymmetry of CBD, which is a

distinctive feature of the disease and its metabolic topography, we

measured the degree of hemispheric asymmetry that was present

at the network level in the individual subjects. We reasoned that

this measure would be more specific in differentiating CBD from

the more symmetrical metabolic profile of PSP. Indeed, hemi-

spheric asymmetry for CBDRP expression separated the CBD and

PSP groups with greater accuracy than whole-brain CBDRP

expression. Ultimately, the classification algorithm based on

CBDRP asymmetry index and whole-brain PSPRP expression ac-

curately discriminated between CBD and PSP subjects in whom

the precise clinical diagnosis was uncertain at the time they

were referred for the imaging study. Classifications of these indi-

viduals based upon these imaging measures accorded well with

final clinical diagnoses reached independently by movement dis-

order specialists at clinical follow-up (Tang et al., 2010b; Teune

et al., 2010; Hellwig et al., 2012). As a result, high specificity and

positive predictive value were achieved for image-based classifica-

tion of CBD on an individual case basis, with all three pathologic-

ally confirmed PSP cases classified as non-CBD. These findings

provide strong support for the specificity of the CBDRP network

and the validity of the classification algorithm that we have iden-

tified in this study.

The accuracy of prediction using this automated approach is in

line with previously reported values using trained readers (Eckert

et al., 2005; Hellwig et al., 2012), but does not require visual

judgement whether trained or not. We have previously described

an automated algorithm that can differentiate Parkinson’s disease

from atypical parkinsonian syndromes (excluding CBD), and fur-

ther subdivide atypical parkinsonian syndromes into MSA and PSP

(Tang et al., 2010b; Niethammer and Eidelberg, 2012; Tripathi

et al., 2012). With the data presented in the present study, we

aim to refine this algorithm to include CBD, thereby improving the

accuracy of diagnosis in clinically ambiguous cases. We recognize,

however, given the protean clinical presentation of CBD, blinded,

prospective imaging studies involving larger validation samples and

longitudinal network measurements, ideally with post-mortem

confirmation, will be necessary to establish the use of CBDRP to

assist in diagnosis and for screening potential participants in clinical

trials.
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