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Abstract

Background—Analysis of large datasets produced by mass spectrometry-based proteomics 

relies on database search algorithms to sequence peptides and identify proteins. Several such 

scoring methods are available, each based on different statistical foundations and thereby not 

producing identical results. Here, the aim is to compare peptide and protein identifications using 

multiple search engines and examine the additional proteins gained by increasing the number of 

technical replicate analyses.

Methods—A HeLa whole cell lysate was analyzed on an Orbitrap mass spectrometer for 10 

technical replicates. The data were combined and searched using Mascot, SEQUEST, and 

Andromeda. Comparisons were made of peptide and protein identifications among the search 

engines. In addition, searches using each engine were performed with incrementing number of 

technical replicates.

Results—The number and identity of peptides and proteins differed across search engines. For 

all three search engines, the differences in proteins identifications were greater than the differences 

in peptide identifications indicating that the major source of the disparity may be at the protein 

inference grouping level. The data also revealed that analysis of 2 technical replicates can increase 

protein identifications by up to 10-15%, while a third replicate results in an additional 4-5%.

Conclusions—The data emphasize two practical methods of increasing the robustness of mass 

spectrometry data analysis. The data show that 1) using multiple search engines can expand the 

number of identified proteins (union) and validate protein identifications (intersection), and 2) 

analysis of 2 or 3 technical replicates can substantially expand protein identifications. Moreover, 

information can be extracted from a dataset by performing database searching with different 

engines and performing technical repeats, which requires no additional sample preparation and 

effectively utilizes research time and effort.
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Introduction

High throughput proteomics methods can generate large volumes of data that precludes 

manual validation. One of the most commonly used mass spectrometry-based techniques, 

termed shotgun proteomics, involves the digestion of sample proteins typically by trypsin or 

another specific protease and subsequent peptide sequencing using tandem mass 

spectrometry aiming to catalogue all proteins in a particular sample. The mass spectrometer 

provides the mass-to-charge ratios of the precursor peptides (the MS1 measurement), as well 

as mass-to-charge ratios of fragments produced from these peptides (the MS2 measurement) 

allowing for the subsequent determination of the protein(s) from which these peptides 

originated. Search engines attempt to match peptides from in silico digested proteins to 

those measured by the mass spectrometer. With the availability of various search engines 

powered by different algorithms, each producing unique sets of protein identifications, data 

analysis can be a daunting task.

Database-searching algorithms assign mass spectra to peptide sequences in protein databases 

and provide scores for each assignment. A number of software applications (e.g., Mascot 

[1], SEQUEST [2], and MaxQuant/Andromeda [3]) are available for identifying peptides 

from mass spectra. These applications rely on algorithm-dependent measures to determine 

the quality of peptide and protein identifications. Peptide identification is largely 

statistically-based and as such, an inherent risk exists of obtaining false positives. Currently, 

no independent measure is universally available, yet several applications can reliably access 

similarities and differences among a variety of search engines [4-7].

The threshold of protein detection is commonly determined by a false positive rate (FDR) 

[4]. The FDR is generally calculated by searching a decoy database with the same protein 

entries as the search database, but consisting of reversed or scrambled sequences and 

dividing the false positives by the total proteins identified. The FDR is typically fixed at 1% 

to 5% at the protein level, meaning that 10 to 50 proteins are false positives per 1000 

proteins that may have been identified. It follows that if a peptide or protein is identified by 

a series of search engines (each with a 1% protein FDR), fewer false positives will be 

observed in the region of intersection. Inversely, taking the union of these search engines 

will increase the protein FDR over 1%. Recently, linear discriminatory analysis methods are 

gaining popularity as a result of the robust, multi-dimensional analysis of peptide and 

protein identification [5]. The goal of these methods, however, remains to identify a 

comprehensive set of proteins while minimizing false positives.

In this study, peptide and protein identifications were compared using multiple search 

engines - Mascot, SEQUEST, and MaxQuant – to investigate the overlap among the 

identifications as determined by each algorithm. In addition, the percentage of additional 

proteins gained by increasing the number of technical replicate analyses are examined. For 

these investigations, a whole cell lysate of HeLa cells, which has been analyzed via a 2 hr 

liquid chromatography gradient on an Orbitrap-based mass spectrometer [6] for 10 technical 

replicates is used. These results may not be generalizable to all samples, but the aim is to 

present a framework, which other researchers can use and expand for their particular sample 

sets or applications.
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Materials and Methods

Materials

Dulbecco's modified Eagle's-F12 medium (DMEM/F12; 11330) was purchased from Gibco 

(Carlsbad, CA). Fetal bovine serum (FBS; F0392) was purchased from Sigma (St. Louis, 

MO). CellStripper (25-056-CL) was purchased from Mediatech (Manassas, VA). 

Sequencing-grade modified trypsin (V5111) was obtained from Promega (Madison, WI). 

Other reagents and solvents were from Sigma-Aldrich and Burdick & Jackson, respectively.

Cell growth and harvesting of HeLa cells

In brief, HeLa cells were propagated in Dulbecco's modified Eagle's-F12 medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS). Upon achieving >90% confluency, the 

growth media was aspirated from the 15 cm dish and the cells were washed 3 times with ice-

cold phosphate-buffered saline (PBS). The cells were dislodged with non-enzymatic 

CellStripper, harvested by scraping following the addition of 10 mL PBS and pelleted by 

centrifugation at 3,000 × g for 5 min at 4°C, after which the supernatant was removed.

Cell lysis and protein extraction

One milliliter of TBSp (50 mM Tris, 150 mM NaCl, pH 7.4 supplemented with 1X Roche 

Complete protease inhibitors), 1% Triton X-100, and 0.5% SDS was added to each cell 

pellet. Cells were homogenized with 12 passages through a 27 gauge (1.25 inches long) 

needle and incubated on ice with gentle agitation for 1 hour. The homogenate was 

sedimented by ultracentrifugation at 100,000 × g for 60 minutes at 4°C. Protein 

concentration of the supernatant was determined using the bicinchoninic acid (BCA) assay 

(23225, ThermoFisher Scientific). Protein concentration was adjusted to 2 mg/mL using 

TBSp. Protein was reduced in 20 mM TCEP and alkylated with 1% acrylamide for 30 

minutes at room temperature.

Acetone precipitation

Ice-cold 100% acetone (four sample volumes; 500 μL total) was added to 125 μL of sample 

(∼250 μg of protein), vortexed briefly, and incubated at -20°C for 3 hours. The samples 

were then centrifuged at 20,000×g at 4°C for 30 minutes. The supernatants were carefully 

aspirated and the pellets allowed to air dry at room temperature.

Tryptic digestion

For tryptic digestion, the sample was resuspended in 50 mM ammonium bicarbonate, pH 

8.1. The sample was incubated with 2.5 μg of trypsin for 16 hrs. Following the incubation, 

the reaction was acidified with formic acid to a final concentration of 0.1% and evaporated 

via vacuum centrifugation. To remove interfering substances prior to mass spectrometry 

analysis, peptides were isolated with C18 spin columns following manufacturer's 

instructions. Samples were again vacuum centrifuged to dryness and stored at -80°C until 

analysis. Prior to mass spectrometric analysis, the peptides were resuspended in sample 

loading buffer (5% formic acid, 5% acetonitrile, 90% water).
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Mass spectrometry

The peptides were subjected to fractionation using reversed-phase high performance liquid 

chromatography (HPLC; Thermo Scientific, Waltham, MA) and the gradient-eluted peptides 

were analyzed by a hyphenated Orbitrap hybrid mass spectrometer (Thermo Scientific, 

Waltham, MA). The liquid chromatography columns (15 cm × 100 μm ID) were packed in-

house. Samples were analyzed with a 90 minute linear gradient (5-35% acetonitrile with 

0.2% formic acid) and data were acquired in a data dependent manner, in which MS/MS 

fragmentation was performed using the 10 most intense peaks of every full MS scan.

Database searching—RAW files were downloaded from the Proteome Commons 

tranche using: asb+K4xwG/XVIc4hR8kuZ46pdR3LClQa/RgOI+4/FJ9TsXHge/

m97AHzBhh1c1Vbn9kDsNg+/gmowO p0AF2EHc3jUMkAAAAAAABu4Q = = [11]. Data 

were searched against the UniProt human database (downloaded May 1, 2012) using 

Mascot, SEQUEST, and MaxQuant. For Mascot (v2.4) and SEQUEST searches, data were 

processed through ProteomeDiscoverer (v 1.3; ThermoFisher Scientific). For MaxQuant (v. 

1.2.2.5), the Andromeda search engine was used. Search parameters are listed in Table 1. 

Two miscleavages were allowed per peptide and mass tolerances of ± 10 ppm for precursor 

and of ± 0.8 Da for fragment ions were used. Amino acid modifications: fixed: 

propionamide (Cys); variable: deamidation (Asn/Gln), oxidation (Met), and Acetylation (N-

term). The false discovery rate (FDR) of 1% at the protein level was determined by 

searching the same dataset against the target database and a decoy database; the latter 

featured the reversed amino acid sequences of all the entries in the database above [7, 8].

Venn diagrams—The VENNY on-line Venn diagram plotter was used to obtain lists of 

proteins exclusive to or in common among the sample types investigated [9].

Results

Peptide overlap among the search engines was greater than that of proteins

The data from a total of 10 technical replicates of HeLa whole cell lysates were searched 

with three different engines: Mascot, SEQUEST, and MaxQuant. Each of the three search 

engines identified several thousand peptides corresponding to several hundred proteins in 

the queried database (Table 2). A total of 2152, 2283, and 2019 proteins were identified for 

Mascot, SEQUEST and MaxQuant searches, respectively. These proteins were determined 

from 13235, 14543, and 14892 peptides for Mascot, SEQUEST and MaxQuant, 

respectively. The peptide corresponded to 100749, 116262, and 121653 peptide-spectra 

matches (PSM) for Mascot, SEQUEST and MaxQuant, respectively.

At the peptide level, 69% overlapped in all 3 search engines, while an additional 12% 

overlapped in 2 of the 3 search engines, leaving 19% of the peptides identified in only one 

search engine (Figure 1A). According to these data, MaxQuant differed the most among the 

three search engines, as approximately 11% of the total peptides identified were exclusive to 

MaxQuant. At the protein level, less overlap was apparent among the search engines (Figure 

1B). Several hundred protein groups were identified by each search engine. Of these 

proteins, 47% overlapped in all 3 search engines, while an additional 28% overlapped in 2 of 
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3 search engines, and 25% of the peptides were identified in only one search engine. The 

proportions of redundancies of protein identifications differed somewhat from those of 

peptide identifications (Figure 1C). Proportionately fewer proteins (47%) than peptides 

(69%) were identified by all 3 search engines, and accordingly more proteins (25%) than 

peptides (19%) were identified by only a single search engine. It follows that binary 

comparisons may indicate more clearly the degree by which the peptides and protein 

identifications of the three search engines differ.

Binary comparison of search engines revealed differences in peptide and protein 
identifications between search engines

Binary comparisons were performed to compare the similarities between pairs of search 

engine results. At the peptide level, comparing the Mascot versus SEQUEST search engines, 

revealed an overlap of 82% (Figure 2A), Mascot versus MaxQuant, gave an overlap of 76% 

(Figure 2B), while SEQUEST and MaxQuant showed an overlap of 76% (Figure 2C). 

Overall, all binary comparisons showed overlap of greater than 75% between the two search 

engines compared.

Similarly, the search engines were compared at the level of protein identifications. 

Comparing the Mascot and SEQUEST search engines, revealed an overlap of 87% (Figure 

2D), Mascot versus MaxQuant, gave an overlap of 50% (Figure 2E), while SEQUEST and 

MaxQuant showed an overlap of 51% (Figure 2F). Unlike the peptide comparison in which 

the range of overlap was between 76% and 82%, the overlap between proteins was relatively 

wider at 50% to 87%. Mascot and SEQUEST showed the highest overlap of peptides; 

similarly, these search engines had the greatest overlap in regard to protein identifications.

A greater overlap between Mascot and MaxQuant may have been expected, particularly as 

Andromeda – the search engine behind MaxQuant – has shown strong correlation with 

Mascot [3], however, this occurrence may have been the result of protein grouping to reduce 

redundancy, as performed post-search by each application as the Mascot data were 

processed via ProteomeDiscoverer. If peptides are shared among proteins, protein grouping 

methods basically reduce the number of identified proteins by assigning each peptide to the 

protein with the highest total probability. Algorithms investigating this “protein inference” 

problem have been intensively studied [10, 11]. Moreover, although the identical database 

was used for all three search engines, the protein grouping for both Mascot and SEQUEST 

was performed via ProteomeDiscoverer, while Andromeda had its own unique method of 

protein grouping. Without the availability of a MaxQuant/Andromeda node in 

ProteomeDiscoverer, a proper comparison of the protein overlaps between Mascot or 

SEQUEST with MaxQuant is not currently possible.

Technical replicate analyses had a greater impact on the number of unique peptides than 
on the number proteins identified, although the trend tapers off after 3 replicates

A total of 10 replicates of HeLa whole cell lysates were analyzed on an Orbitrap mass 

spectrometer, after which database searches were performed, adding one replicate to each 

subsequent search (i.e., the first search consisted of only a single run, the second search was 

of two replicates, the third three, and so forth). The sequence of replicate addition mirrors 
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that of mass spectrometric acquisition (i.e., the “2 replicates” consisted of the first and 

second mass spectrometry analyses, while the “3 replicates” consisted on the first, second, 

and third mass spectrometry analyses, and so forth). The ten searches were performed using 

the three search engines. For each of the 10 searches, the files were searched together so that 

a list of protein groups with a 1% FDR was obtained (i.e., files were not simply searched 

individually at a 1% FDR threshold and the results combined), as doing so will inflate the 

FDR. The number of additional peptides and proteins identified with each additional 

replicate added to the search were then determined.

At both the peptide (Figure 3A) and protein (Figure 3B) level, results show an expected 

overall decrease in the number of additional proteins identified with the subsequent addition 

of another data file. After the third replicate, the gains in the numbers of both peptides and 

proteins began to stabilize. When comparing among search engines, this trend was 

consistent for both peptides and proteins. Analysis of the peptide results demonstrated that 

the addition of a single replicate increased the number of peptides identified by 25-30%, 

which resulted in an 11-15% increase in protein identification when using either search 

engine. In general, relatively fewer additional proteins were identified with subsequent 

replicates. Three replicates resulted in less of an increase in peptides (∼10%) and proteins 

(∼5%), while the gains were minimal for 4 or more replicates (approaching the FDR of 1%).

Discussion

The data show shown that using multiple search engines can 1) expand the number of 

identified proteins and 2) provide evidence supporting the validity of such identifications 

from single search engines which can effectively limit targets for downstream analysis. The 

data also show that although disparities exist among search engines, the majority of these 

differences can be attributed to the protein grouping level. The increase in additional peptide 

and protein identifications upon searching with more technical replicates was also 

investigated. From the analysis, it was determined that substantial increases in additional 

peptide and protein identifications were evident when searches consist of 2 or more 

replicates compared to just a single run. However, the increases in the identification of 

previously-unidentified peptides and proteins tapered off with 4 or more technical replicates. 

In essence, more robust data sets can be obtained if the increase of proteins identified in 

additional replicates justifies the increase in instrument time needed to collect these replicate 

data.

Analyzing technical and biological replicates leads to a greater number of protein 

identifications, albeit at the expense of reagents, sample processing, and increased mass 

spectrometer usage. From the data, the analysis of two replicates resulted in approximately 

25-30% increase in peptides for each search engine. At the protein level, these increases 

resulted in 11-15% more protein identifications. However, these additional proteins were 

obtained with the doubling of instrument acquisition time. Adding a third technical replicate, 

triples the time of acquisition, but adds only a fraction of additional peptides and proteins. 

With the third technical replicate, approximately 10% additional peptides are identified, 

which corresponds to a concurrent protein identification increase of 5%. With the 

quadrupling of acquisition time for 4 replicates (and subsequent replicates), the gain of 
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additional peptides and proteins is much less. Approximately 5% additional peptides are 

identified when searching four or more replicates regardless of the search engine used, 

which correspond to fewer than 5% additional proteins. These data indicate that the analysis 

of at least 2, but no more than 3, replicates should be performed to maximize proteome 

coverage, while efficiently using mass spectrometer acquisition time.

For all search engines investigated, the search space is limited by parameters, such as mass 

tolerance of the peptide and fragments, enzyme specificity, number of missed cleavages, and 

amino acid modifications. Consistent parameters were maintained for all search engines 

investigated. However, the generalizability of the results described herein to other datasets 

may be limited by various factors specific to the dataset under investigation. Therefore, 

many factors that are not taken into account here may influence the results of consensus 

database searching and subsequent amalgamation of search results from different datasets. 

Such factors include, but are not limited to, sample and data quality, sample complexity, the 

type of instrument used for the analysis, the number of replicates and/or fractions combined 

for the analysis, the enzyme(s) used for digestion, number of missed cleavages, choice of 

fixed and variable modifications, and the mass tolerances of peptide and fragment ions.

Differences in peptide and protein identifications may be expected when using a particular 

search engine. Even with matching search parameters, algorithms for peak picking, peptide 

sequencing, and assignments of peptides to proteins differ among the various search 

engines. Moreover, typically, less than 30% of the spectra collected are successfully mapped 

to a peptide [11]. As such, the lack of identification of the complete set of spectra 

contributes to the disparity among search engines insofar as some spectra may be assigned 

to a peptide by a particular search engine, while these spectra may not pass the thresholds of 

other search engines. The different search engines consider unique spectrum models based 

on the selected database and each have unique methods to score against MS/MS spectra. 

SEQUEST ranks its results according to a cross-correlation of the measured and theoretical 

spectra obtained from an in silico digest [1]. Mascot calculates the likelihood of matching 

peaks in common with a model and the original spectrum using statistical and geometric-

based methods for scoring and ranking peptides [2]. Andromeda, similar to Mascot, uses a 

probability based approach, which is built on the binominal distribution probability to rank 

the peptides [3]. Following peptide identification, the database searching application assigns 

peptides to proteins, typically parsimoniously in the form of protein groups to reduce 

redundancies and prevent inflated lists of proteins. Many such algorithms are application 

specific, such as those implemented in ProteomeDiscoverer interface or ProteinPilot [12] 

and require proprietary input. As described above, some of the disparity in the protein 

identifications between Mascot or SEQUEST and MaxQuant, may be due partially to this 

post-identification protein grouping, which is the present case is unavoidable due to the 

current lack of a MaxQuant node in ProteomeDiscoverer.

Presently, applications are available that attempt to integrate results of the various search 

engines. Packages such as Scaffold [13], ProteoIQ (https://www.bioinquire.com/index.php), 

FDRAnalysis [14], ROVER [15], and MSblender [16] are freely or commercially available 

to compare and combine search engine results. Scaffold uses an alternative to the FDR as a 

metric to combine search engine results, as it uses PeptideProphet algorithm [17] to 
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determine the probability of a peptide being correct. Similarly, ProteoIQ incorporates the 

false discovery rate and protein probability approaches in efforts to maximize the number of 

proteins identified and minimize the number of false positives [17-19]. Not all these 

applications at the moment are compatible with all search engine outputs, but typically the 

more commons search engines, such as Mascot and SEQUEST, are supported by many of 

these applications.

Although to the author's knowledge, this is the first directly comparison of replicate analyses 

of HeLa whole cell lysates among the Mascot, SEQUEST, and MaxQuant search engine 

results, many prior studies have investigated the consensus of search engines in regard to 

protein and peptide identifications. Previously, several studies have investigated the benefits 

and caveats associated with searching the same data with multiple search engines. It has 

been shown previously that the union of search engine results provided higher sensitivity, 

but that the intersection produced better specificity [20]. In fact, one study showed that the 

correct combination of search algorithms (Mascot, OMSSA, and X!Tandem), not the 

number of search engines used, maximized the accuracy of peptide identification while 

minimizing false positives [21]. Approximately 35% more peptide identifications have been 

obtained when combining results from Mascot, OMSSA, and X!Tandem using the combined 

FDR score [22]. In addition, improved sensitivity of protein identifications was obtained by 

combining the results of several search engines -Mascot, OMSSA, and X!Tandem – in one 

study [14]. In an earlier study, combining protein identifications from SEQUEST, X!

Tandem, and Mascot also improved sensitivity of protein identifications [23]. Using 

different datasets, an analogous comparison of SEQUEST, Mascot, and X!Tandem showed 

that the intersection performed better in accuracy, but sensitivity was greater when the union 

of the search engines was considered [20]. Similar results were obtained by integrating 

peptide identifications obtained from four search engines in two separate studies, one using 

SEQUEST, X!Tandem, MyriMatch, and InsPecT [16], and the second using Mascot, 

OMSSA, SEQUEST, and X!Tandem [24]. In a comprehensive investigation, results from 

over 50 combinations of seven different search engines – including Mascot and SEQUEST, 

but not MaxQuant – were compared and the combination of certain search methods 

improved accuracy of protein identifications [25]. A previous study which investigated five 

different search engines –including Mascot and SEQUEST, but again not MaxQuant- 

revealed that at the individual search engine level, SEQUEST performed well in terms of 

sensitivity, but specificity was greater in Mascot [26]. This result agrees with the findings 

herein as more peptides and proteins were identified in SEQUEST compared to Mascot. 

However, in a 1.5 hr data-dependent mass spectrometry analyses of whole cell lysates, 

under-sampling is inherent in this study [27], and as such sensitivity and specificity are 

difficult to gauge without comprehensive knowledge of the proteome present in the sample. 

It follows that analysis of more dilute samples merit further investigation. These data reveal 

the advantage of using multiple search engines to obtain both comprehensive and consensus 

peptide and protein identifications.

In summary, the data demonstrate two practical methods of increasing the robustness of 

mass spectrometry data analysis. The data show that 1) using multiple search engines can 

expand the number of identified proteins (the union of the data) and validate protein 

identifications (the intersection of the data), and 2) analysis of 2 or 3 technical replicates can 
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substantially expand protein identifications. Basically, more data was extracted from a 

collected data set via in silico methods without the additional, and potentially costly, sample 

preparation or mass spectrometry time. Using the proteins at the intersection of the search 

engine results will narrow targets for downstream analysis and follow-up experiments.

However, using the union of search engine results allows for the casting of a wider net, 

producing a more comprehensive dataset at the expense of a higher number of false 

positives. The data show that among search engines, protein grouping may be the source of 

greater disparity in the results among search engines than peptide sequence assignment. 

From the analysis, it was determined that increases in additional peptide and protein 

identifications compared to just a single run, stabilize after 3 replicates, after which mass 

spectrometry analysis time may be better spent performing biological replicates or analyzing 

additional samples. Performing technical and biological replicates can lead to a larger 

number of protein identifications, however at the expense of reagents, sample processing, 

and increased mass spectrometer usage. The effects of biological replicates with a similar 

comparison as performed herein merit further investigation. In conclusion, the extraction of 

information from prepared samples can be maximized with repeated analysis of mass 

spectrometry data by performing technical repeats and database searching with different 

search engines, requiring no additional sample preparation and effectively utilizing research 

time and effort.
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Figure 1. Search engine comparison
Venn diagrams comparing A) peptide identifications and B) protein identifications. C) Bar 

graph illustrating the redundancy of peptides and proteins identified by one, two, and three 

search engines
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Figure 2. Binary comparisons of peptides and proteins identified by Mascot, SEQUEST, and 
MaxQuant
Peptide overlap for A) Mascot versus SEQUEST, B) Mascot versus MaxQuant, and C) 

SEQUEST versus MaxQuant. Protein overlaps for D) Mascot versus SEQUEST, E) Mascot 

versus MaxQuant, and F) SEQUEST versus MaxQuant.
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Figure 3. Additional peptides and proteins acquired with technical replicates
A total of 10 replicate analyses were performed. A) Additional peptides identified with 

subsequent technical replicates. B) Additional proteins identified with subsequent technical 

replicates.
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Table 1
Parameters for Mascot, SEQUEST, and MaxQuant Andromeda

Parameter Setting

Database Human SwisProt (Downloaded May 1, 2012)

Missed cleavages 2

Enzyme specificity Typsin

Precursor mass tolerance 20 ppm

Fragment mass tolerance 0.8 Da

Dynamic modifications Deamidated (NQ), Oxidation (M), Acetylation (N-term)

Static modifications Propionamide (C)

Protein False Discovery Rate 1%
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Table 2
Protein Summary

No. of proteins No. of unique peptides No. of peptide-spectra matches

Mascot 2152 13235 100749

SEQUEST 2283 14543 116262

MaxQuant 2019 14892 121653

No., number.
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