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Abstract

We have examined the pattern of striatal messenger RNA expression of over 8000 genes in a rat
model of levodopa (L-DOPA)-induced dyskinesia and Parkinson disease (PD). 6-
Hydroxydopamine (6-OHDA)-lesioned rats were treated with L-DOPA or physiological saline for
22 days and repeatedly tested for antiakinetic response to L-DOPA and the development of
abnormal involuntary movements (AIMSs). In a comparison of rats that developed a dyskinetic
motor response to rats that did not, we found striking differences in gene expression patterns. In
rats that developed dyskinesia, GABA neurons had an increased transcriptional activity, and genes
involved in Ca2* homeostasis, in Ca?*-dependent signaling, and in structural and synaptic
plasticity were upregulated. The gene expression patterns implied that the dyskinetic striatum had
increased transcriptional, as well as synaptic activity, and decreased capacity for energy
production. Some basic maintenance chores such as ribosome protein biosynthesis were
downregulated, possibly a response to expended of ATP levels.
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Introduction

Methods

Subjects

Parkinson disease (PD) is a progressive neurological disorder characterized by a
degeneration of dopamine (DA) neurons in the substantia nigra (Dauer and Przedborski,
2003). DA deficiency in areas innervated by nigral efferent neurons causes the motor
symptoms of PD, that is, bradykinesia, rigidity, tremor, and postural instability (Gelb et al.,
1999). The etiology of the disease is largely unknown. L-Dihydroxyphenylalanine
(levodopa, L-DOPA) is used to treat the symptoms of PD, but it leads to the development of
abnormal involuntary movements (AlMs; dyskinesia) complicating long-term treatment
(Bezard et al., 2001; Nutt, 2001; Rascol et al., 2003).

We have developed a model of L-DOPA-induced dyskinesia in the rat (Cenci et al., 1998;
Lee et al., 2000; Lundblad et al., 2002; Winkler et al., 2002). Rats are lesioned unilaterally
with 6-hydroxydopamine (6-OHDA) and subsequently treated with relatively low doses of
L- DOPA for a few weeks, during which a majority of the animals develop abnormal
involuntary movements (AIMs), while some rats are resistant. This model allows us to study
the biochemical and molecular factors involved in dyskinesia in a pharmacologically and
genetically controlled environment.

One of the main target areas of nigral DA neurons is the striatum, a structure critically
involved in the pathophysiology of parkinsonian motor symptoms (Sian et al., 1999). The
striatum is also a prominent site of maladaptive molecular and synaptic plasticity in L-
DOPA-induced dyskinesia (Andersson et al., 1999, 2001; Cenci et al., 1998; Johansson et
al., 2001; Picconi et al., 2003; Westin et al., 2001). Most of the neurons in the striatum are
projection neurons that use GABA as their neurotransmitter. These neurons can be further
classified based on their expression of dopamine receptor subtypes and the neuropeptides
enkephalin, dynorphin, and substance P (Gerfen, 1992a,b; Le Moine et al., 1991). The
striatum has, in addition, interneurons expressing either acetylcholine, parvalbumin, or
somatostatin (Kubota and Kawaguchi, 2000; Parent and Hazrati, 1995).

The aim of this study was to define changes in striatal gene expression that are associated
with L-DOPA-induced dyskinesia in the rat model. Gene array technology was used to study
the expression of over 8000 genes and expressed sequence tags (ESTS) in the striatum.
Approximately 3000 of the genes examined were of known or inferred function and were
expressed above back-ground levels in at least 20% of our samples. These genes were the
focus of our investigation. We present the major differences in striatal gene expression
patterns between rats that develop L-DOPA-induced dyskinesia and rats that do not develop
dyskinetic side effects in response to L-DOPA, although they show motor improvement.
Some of the most interesting genes were further subjected to in situ hybridization
histochemistry (ISHH) in the dyskinesia model.

The study was performed in Sprague—Dawley rats (BK Labs, Sweden) weighing 225 g at the
beginning of the experiments. Rats were housed three per cage under a 12-h light—dark
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cycle, with ad libitum access to food and water. Rats from different experimental groups
were randomly distributed in the cages. To conform to the procedures used in our previous
studies, the experimental subjects were female. Estrus cycle phase was checked once a week
in each rat by vaginal mucus analysis, and the different experimental groups had a
comparable distribution of the different phases of the cycle. Animal care and experimental
procedures conformed to internationally accepted guidelines and had been approved by the
Malmo-Lund ethical committee for animal research.

6-OHDA lesions

Rats received unilateral injections of 6-OHDA (Sigma—Aldrich, Sweden AB) into the right
nigrostriatal fiber bundle, as described previously (Andersson et al., 1999, 2001; Cenci et al.,
1998; Lee et al., 2000). Turning behavior was recorded 2 weeks postlesion in an automated
rotometer over a 90-min period after the injection of 2.5 mg/kg dexamphetamine sulfate
(Apoteksbolaget, Sweden AB), and rats showing more than five full, ipsilateral turns per
minute were selected for the study. This rotational score has been shown to correspond to
>95% depletion of striatal DA fiber density (Winkler et al., 2002).

Protocol to induce dyskinesia and behavioral testing

Starting 5-6 weeks after lesioning, rats received single daily injections of methyl L-DOPA/
benserazide (6/12 mg/kg i.p.; Sigma—Aldrich) for 22 days. 6-OHDA-lesioned control rats
received single daily i.p. injections of saline. The injections were performed around 2:00
PM. Ratings of abnormal involuntary movements (AlMs) were carried out every 2—-3 days
(eight times total) for 3 h following the daily injection of L-DOPA. The rat dyskinesia scale
and rating criteria used in this study are extensively described (Lundblad et al., 2002;
Winkler et al., 2002). L-DOPA-induced rat AlMs affect orofacial, trunk, and limb muscles
on the side of the body contralateral to the lesion and can be unequivocally distinguished
from normal rodent behaviors (e.g., grooming, gnawing, and sniffing). Rat AIMs have the
same pharmacological features as L-DOPA-induced dyskinesia in non-human primate
models of PD; that is, drugs that reduce dyskinesia in the latter models have the same effect
in the rat, and antiparkinsonian agents that have low dyskinesiogenic potential in primates
induce little or no AIMs in the rat (Lundblad et al., 2002, 2003). L-DOPA-induced
improvement of akinetic motor features was evaluated using a test of spontaneous forelimb
use (cylinder test, Lundblad et al., 2002; Schallert et al., 2000). Based on the battery of
behavioral tests used in this study, we defined three groups of experimental subjects: (i)
saline-injected 6-OHDA-lesioned controls, which showed significant forelimb akinesia in
the cylinder test and had no AIMs; these rats provided a model of untreated parkinsonism;
(ii) dyskinetic rats, which were treated with L-DOPA and developed severe and disabling
AlMs, and (iii) nondyskinetic rats, which were treated with L-DOPA and showed motor
improvement in the cylinder test but did not rate on the AlMs scale. This latter group
provided a model of treated parkinsonism without motor complications. The groups
consisted of six animals each and will be referred to as saline, dyskinetic, and nonadyskinetic,
respectively.

Rats were sacrificed 18 h after the last injection of L-DOPA or saline, which is a sufficiently
long time to avoid potential acute effects of the injection, including stress, while also
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avoiding effects due to L-DOPA withdrawal. The brains were rapidly extracted, frozen in
liquid nitrogen for 20 s, and allowed to freeze thoroughly in powdered dry ice for 2-3 min.
The brains were stored at —80°C until dissection. Dorsal striata, ipsilateral to the lesion,
were dissected in a cryostat chamber at -18°C.

Sample and array processing

RNA was extracted from approximately 25-mg tissue using the RNAgent kit (Promega,
Madison, WI). RNA quality was assessed, and 6 g total RNA was used for cDNA synthesis
with the SuperScript double-stranded cDNA synthesis kit (Invitrogen Corp., Carlsbad, CA).
In vitro transcription was performed with the Enzo-I1VT kit (Enzo Biochem, Farmingdale,
NY). Biotinylated RNA was hybridized to the RG-U34A array (Affymetrix, Santa Clara,
CA), and washing and staining were carried out according to company protocol
(www.Affymetrix.com). Samples from individual rats were hybridized to individual arrays.
The Affymetrix RG-U34A array contains over 8000 genes; each gene is represented by 16
to 20 perfectly matched 25-mer oligonucleotides and the same number of one-mismatch
oligonucleotides to provide values for nonspecific binding.

Quality control criteria

Tissue preparation and RNA extractions were performed in a single batch by the same
investigator to limit experimental variability. The order of samples was randomized. All
striata yielded equal amounts of RNA and biotinylated RNA. An average of 92 + 14 ug of
biotinylated RNA was obtained from the in vitro transcription. All quality control criteria
defined by Affymetrix were met by the samples, and no differences between the groups
(saline, dyskinesia, or nondyskinesia) were observed. The average percent ‘present’ call
across all arrays was 46.6% + 2.0% and the 3’ /5"GAPDH and f3-actin ratios were 1.9 + 0.3
and 1.6 + 0.3 respectively. Background (50.0 £ 3.7) and noise (1.6 £ 0.2) were comparable
between all groups.

Data analysis

Three different programs were used for data analysis: DNA-Chip Analyzer (dChip version
1.3, http://lwww.biostat.harvard.edu/complab/dchip/, see also Li and Wong, 2001a,b),
Microarray Suite 5.0 (Affymetrix), and Gene Microarray Pathway Profiler (http://
www.genmapp.org/, Dahlquist et al., 2002; Doniger et al., 2003). To identify samples with
similar profiles, hierarchical clustering was performed with the dChip program, which bases
hierarchical clustering on previously published algorithms (Eisen et al., 1998; Golub et al.,
1999). All genes with a standard deviation above 3% of the mean of their expression value
and above detection limit in at least 20% of all samples were used for clustering (see http://
www.hiostat.harvard.edu/complab/dchip/filter_gene.htm). Redundant probe sets were
excluded from the clustering analysis (Fig. 2).

GenMAPP was used to examine the biological context of the findings. GenMAPP is
designed to visualize gene expression data on maps representing either biological pathways
or any other grouping of genes defined by the investigator. MAPPFinder calculates the
percentage of genes changed in each map and uses this percentage for a zscore based on the
mean and the standard deviation of the hypergeometric distribution (see http://
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www.genmapp.org). MAPP-Finder calculates P values based on nonparametric statistics.
We list all gene categories with at least two members, a zscore above 2, and a permuted P
value below 0.05 in Table 2.

In situ hybridization histochemistry

Results

Hierarchical

We performed ISHH in an independent batch of animals (7= 6 in each group), treated, and
selected exactly like the rats for the gene array study. Cryostat sections through the striatum
were cut at 16-um thickness, mounted on Superfrost Plus Adhesion Slides (Electron
Microscopy Science, Fort Washington, PA), and stored at —20°C. The oligonucleotide
probes used for in situ hybridization in this study are shown in Table 1. ISHH was
performed according to a previously published method (Andersson et al., 1999).
Oligonucleotides were radioactively labeled at the 3’ end with a3°S-dATP and terminal
deoxynucleotidyl transferase (Amersham Pharmacia, UK). Hybridization was carried out in
a humid chamber at 42°C for 16-18 h, and the slide-mounted sections were washed five
times in 1x SSC at 55°C. Sections were exposed to FUJI Imaging plates (Fujifilm Sweden
AB) between 9 and 22 h. Plates were scanned in a BAS-5000 phosphorimager (Fujifilm),
and the amount of photostimulated luminescence emitted from the hybridized sections was
calibrated against 14C standards (Amersham Pharmacia). Densitometric analysis was
performed with the TINA software (Fujifilm). For each animal and probe, we analyzed five
sections through the main body of the striatum, corresponding to the levels 0.2 to 0.7 mm
rostral to bregma (Paxinos and Watson, 1986). Measurements from either side of the
striatum were averaged across sections. Statistical analysis was performed with one-way
analysis of variance (ANOVA) followed by Fisher post hoc test and significance levels at £
<0.05. No significant group differences were found on contralateral side to the lesion, and
only results from the DA-denervated side will be reported (see Fig. 3).

Approximately 4500 mRNAs (3000 known sequences plus ESTS) were above detection
limit in at least 20% of the samples and were used for further analysis. At a probability level
below 0.05 (P<0.05), 12% of these MRNAs were expressed at altered levels in the
dyskinetic striata compared to saline controls, whereas only 5% of all mRNAs of
nondyskinetic striata had altered levels (Fig. 1). Samples from dyskinetic rats differed from
the non-dyskinetic cases in over 6% of all MRNA species. Of all regulated MRNA species,
twice as many were upregulated than down-regulated in dyskinetic as well as hondyskinetic
striata, compared to saline-injected controls. The false discovery rate, which calculates the
expected proportion of false-positive results in multiple-comparisons analyses (Tusher et al.,
2001), was <20% at < 0.05 and <5% at P< 0.01.

clustering shows similar expression patterns in the dyskinetic rats

Unsupervised clustering was used to test if variations in gene expression levels could be
explained by the state of dyskinesia. Forty-six genes had sufficient expression levels and
variability across groups to be included in the analysis. With these genes, a significant
clustering of four dyskinesia samples was observed (Fig. 2; £=0.022). Samples from
nondyskinetic rat striata were spread among lesioned controls and dyskinetic samples, with
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no significant difference from either group. These data demonstrate that the dyskinetic rats
have a unique gene expression profile.

To retrieve information in a biologic context, which is the strength of gene array
experiments, we determined if a dyskinetic motor response was accompanied by higher-
than-expected regulations in gene categories defined by us a priori. The regulations within
gene families coding for individual neuronal-specific structures, processes, or functions
were examined with the help of the MAPP (Microarray Pathway Arofile)-finder program,
which was provided by the GenMAPP group. In this program, we built over 300 MAPPs
consisting of genes with expected expression in striatal neurons, grouped according to
neurotransmitter systems (e.g., dopamine receptors, and transporters), ion channels (e.g.,
Ca?*, Na*, or K* channel proteins), membrane pumps (e.g., ion pumps, ATP pumps),
presynaptic proteins (e.g., clathrin-associated proteins), postsynaptic proteins (e.g., receptors
and anchoring proteins), structural proteins (e.g., cytoskeletal proteins, ribosomal proteins),
proteins involved in energy metabolism (e.g., mitochondrial respiratory chain), immediate
early genes, transcription factors, etc. The main results from the comparison between
dyskinetic and nondyskinetic cases are shown in Table 2. Categories of genes that showed a
significant upregulation in dyskinetic versus nondyskinetic rats included Ca?* transporting
ATPases and Ca2* kinases, structural and synaptic plasticity genes, GABA receptor
subunits, and other GABA-related genes. Significant downregulations were observed in
gene categories related to creatine biosynthesis, ribosomal proteins, and tyrosine
phosphatases (Table 2).

Calcium transporting ATPases and ion homeostasis

The regulation of Ca?* transporting ATPases received the highest zscore in the
MAPPFinder analysis (Table 2). L-DOPA-induced-dyskinesia was associated with an
upregulation of genes coding for plasma membrane Ca2* ATPases (PMCAs) and sarco/
endoplasmic reticulum Ca2* pumps (SERCASs). PMCA1, PMCA2, and SERCA2 mRNAs
were significantly upregulated in the dyskinetic cases compared to both saline-injected
animals and L-DOPA-treated nondyskinetic rats. Nondyskinetic rats did not differ from
controls. Upregulation of PMCAL in the dyskinetic striatum was verified with ISHH, which
confirmed enhanced levels of this transcript in the lateral caudate-putamen (Fig. 3A). In
addition, expression of many other genes involved in ion homeostasis was enhanced in rats
treated with L-DOPA, with generally more prominent upregulation in the dyskinetic group
(Table 3). With ISHH, we verified the significant upregulation of the alphal subunit of
Na*tK*-ATPase in L-DOPA-treated rats that had developed AIMs. In contrast to the gene
array study, the upregulation was restricted to rats that did develop AlMs. Similarly to
PMCAL, the change in alphal Na*K*-ATPase mRNA was more prominent in the lateral
part of the caudate-putamen (Fig 3B). We have previously shown that this region is critical
in driving the development of L-DOPA-induced AIMs in the rat, and it exhibits large
upregulations of transcription factors and neurotransmitter-encoding mRNAs (Andersson et
al., 1999; Cenci et al., 1998).
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Synaptic function

A large number of genes encoding pre- and postsynaptic structures, such as synaptic
scaffold proteins and proteins involved in the docking and fusion of synaptic vesicles, were
prominently upregulated in L-DOPA-treated rats that had developed AlMs. Significant
changes were found in dyskinetic rats compared to both saline-injected rats and
nondyskinetic cases (Table 4). Among the upregulated genes were densin 180, SAP-97, and
Homer 1, which constitute part of the molecular scaffold at postsynaptic densities (PSD) of
excitatory synapses (for review, see Sheng, 2001). The long isoforms of Homer (Homer
1b/c) physically link type | metabotropic glutamate receptors to the PSD and to calcium
release channels in the endoplasmic reticulum (Thomas, 2002). In ISHH, we found
significant upregulation of the Homer 1 transcript in L-DOPA-treated rats that had
developed AIMs compared to both nondyskinetic rats and saline-injected lesioned controls,
thus confirming the gene array data (Fig. 3C).

Actin-binding proteins and cytoskeletal constituents

Genes encoding actin-related proteins received a high zscore in the MAPPFinder analysis.
Most of these genes showed a prominent upregulation in the dyskinetic group compared to
both saline-injected controls and nondyskinetic cases. The numerous expression changes of
actin-related genes suggest that a process of cellular remodeling is taking place in the
dyskinetic striatum. In support of this hypothesis, we found that several genes encoding
neuron-specific intermediate filament proteins and microtubule-associated proteins were
upregulated in L-DOPA-treated animals that developed dyskinesia (Table 4). We verified
the expression of high molecular weight neurofilament (NF-H) mRNA by ISHH (Fig. 3D).
NF-H mRNA was upregulated in all L-DOPA-treated rats but significantly more so in the
animals that had developed AIMs. Again, the upregulation was particularly prominent in the
ventrolateral part of the caudate-putamen.

Neurotransmitter synthesis, receptors, and transporters

Chronic L-DOPA treatment caused altered expression of many genes related to dopamine
and GABA transmission (Tables 2, 5). In rats that developed dyskinesia, mRNA levels for
the D1 receptor were significantly increased, an effect confirmed by ISHH (Fig. 3E).
Downregulations in mRNA levels were observed for the dopamine transporter and for the
dopamine D3 and Ds receptors; however, these data were not conclusive because the
changes were very small and some transcripts had low expression levels (see, for example,
the percent positive calls for the D3 receptor in Table 5). Levels of D, receptor mMRNA were
unchanged. The GABA system showed upregulation of various GABA-A receptor subunit
mRNAs (alpha-1, -2, -4, beta-3), glutamate decarboxylase 67 (GADg7), and the vesicular
GABA transporter. The finding of striatal GADg; mMRNA upregulation in dyskinetic rats is
in agreement with previous in situ hybridization studies (Cenci et al., 1998). The increased
expression of MRNAs encoding the GABA-A alpha4 subunit and the vesicular GABA
transporter in dyskinetic rats was confirmed by ISHH (Figs. 3F and G).

Changes in the expression of neuropeptide genes received a high zscore (Table. 2). In
particular, tachykinin 2 and cholecystokinin were upregulated in dyskinetic rats and
unchanged in rats that did not develop AlMs. Both neuropeptides have been previously
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shown to be upregulated in the 6-OHDA-lesioned striatum after treatment with D1 receptor
agonists or L-DOPA (Gerfen, 1992b; Taylor et al., 1992).

In addition to the categories listed in Table 2, other neuro-transmitter systems showed
significant gene expression changes in the L-DOPA-treated animals (Table 5). Glutamate
receptors are believed to play a central role in the genesis of motor complications during L-
DOPA pharmacotherapy (Chase and Oh, 2000; Dunah et al., 2000). In our data set, only a
few genes related to the glutamate system showed significant changes with L-DOPA
treatment and dyskinesia development. Upregulation of the genes encoding for metabotropic
receptor subunits 3 and 5 was seen specifically in the dyskinetic animals. Few changes were
observed in genes coding for ionotropic glutamate receptor subunits and sometimes only in
the nondyskinetic group of animals (see NMDA 2C and kainate receptor subunit 2 in Table
5). A significant upregulation of the main NMDA receptor subunit, NR1, occurred in both
groups of L-DOPA-treated rats compared to saline-injected controls. These results are in
line with findings of increased striatal expression of NR1 protein after chronic L-DOPA
treatment (Dunah et al., 2000). Indications that striatal glutamate transmission may be
altered in dyskinesia came from the analysis of glutamate transporter genes. Both the glial
and the neuronal isoforms of the glutamate transporter (i.e., glutamate/aspartate transporter 1
and glutamate/aspartate transporter 3, respectively) showed a prominent upregulation in the
dyskinetic rats compared to nondyskinetic cases and/or saline controls.

Among the changes affecting other neurotransmitter systems was a prominent upregulation
of cannabinoid receptor CB1 mRNA in the striatum of dyskinetic rats, a finding that was
confirmed by ISHH (Fig. 3H). Interestingly, the CB1 receptor has recently emerged as a
promising target for antidyskinetic drug therapy (Brotchie, 2003; Ferrer et al., 2003). Genes
involved with cannabinoid biosynthesis and degradation such as fatty acid amide hydrolase,
oleamide hydrolase and monoacylglycerol (MAG) lipase (Cravatt et al., 1996; Dinh et al.,
2002), and phospholipase D (Cadas et al., 1997; Di Marzo et al., 1994) were not altered in
the dyskinetic rats (data not shown). This is in agreement with the finding of unchanged
endocannabinoid levels in the striatum of 6-OHDA-lesioned rats treated with L-DOPA
(Ferrer et al., 2003).

Energy metabolism and mitochondrial enzymes

Genes involved in energy production through glycolysis, oxidative phosphorylation, or
creatine biosynthesis were part of the MAPPFinder analysis. Among these categories,
“creatine biosynthesis” genes received a high zscore (Table 2). Dyskinetic animals showed
significant downregulation of genes encoding two key enzymes of the phosphocreatine
pathway, guanidinoacetate methyltransferase (GAMT), and ubiquitous mitochondrial
creatine kinase (Mi-CK). Dyskinetic rats also had reduced expression of other genes of
energy-producing pathways, such as glyceralde-hyde-3-phosphate dehydrogenase and
lactate dehydrogenase, both involved in glycolysis (see downregulated genes in Table 6). Of
the mitochondrial respiratory chain, some enzymes were upregulated, whereas others were
downregulated (Table 6). Considering that twice as many genes were upregulated than
downregulated in the dyskinetic striatum, it is noteworthy that genes involved in energy
metabolism were more frequently downregulated than upregulated. Dyskinetic rats also
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showed an upregulated expression of cytochrome oxidase subunit I (CO-I), a mitochondrial
gene that is a marker of increased metabolic demands in neurons (for review, see Hirsch et
al., 2000). Upregulation of CO-1 mRNA in dyskinesia was verified with ISHH (Fig. 3J).
These data suggest that L-DOPA-induced dyskinesia is associated with a combination of
increased metabolic demands in striatal neurons and reduced capacity for energy production.

Kinases and phosphatases

Upregulation of calcium kinases received a high zscore in the MAPPFinder analysis.
Messenger RNA levels for protein kinase C delta (PKC-38) were prominently upregulated in
the dyskinetic striatum compared to nondyskinetic cases (Table 7), and this finding was
validated with ISHH (Fig. 3I). The similarity between the distribution of PKC-5 mRNA and
NF-H mRNA in the striatum of L-DOPA-treated rats (Fig. 3D) is particularly striking since
PKCS is required for neurite outgrowth (Corbit et al., 1999). The beta and delta isoforms of
calcium/calmodulin-dependent protein kinase Il (CamKII) and calcium/calmodulin-
dependent protein kinase IV (CamKIV) were upregulated in the animals that developed
dyskinesia more than in the nondyskinetic cases (Table 7 and Fig. 3K). Interestingly, the
CaM-kinase Il inhibitor alpha was specifically upregulated in the nondyskinetic subgroup of
L-DOPA-treated rats, indicating that the inhibition of Ca2* kinases could help to prevent
dyskinesia.

In the dyskinetic striatum, some regulatory subunits of protein phosphatases were
upregulated. Messenger RNAs for various subunits of the calcium-dependent phosphatase,
calcineurin, showed enhanced expression in both dyskinetic and nondyskinetic rats.
Downregulation was observed with multiple protein tyrosine phosphatases genes in the
dyskinetic rat striatum, and this category of genes also received a high zscore in the
MAPPFinder analysis (Table 2).

Ribosomal proteins

Several genes encoding ribosomal proteins were consistently downregulated in dyskinetic
rats compared to nondyskinetic cases, and this functional category of genes received a high 2z
score in the MAPPFinder analysis (Table 2).

G proteins, membrane transducers, and intracellular adaptor proteins

Hundreds of genes coding for membrane transducers and intracellular adaptor proteins were
represented on the chips. Because of the large number, this functional category was not
included in the MAPPFinder analysis as a whole, but MAPPs were generated for more
defined gene families. Some of these families, such as RabGTPases, RasGTPases, and
guanine nucleotide-binding proteins (G proteins) were highly affected by L-DOPA
treatment, with many significant changes in both dyskinetic and nondyskinetic rats (Table
8).

14-3-3 Proteins, a group of highly conserved proteins with high abundance in the brain,
were mostly upregulated in dyskinesia and received a significant zsore in the MAPPFinder
analysis of dyskinetic versus saline-treated rats (zscore 3.6) and nondyskinetic versus
saline-treated rats (zscore 3.52). Although the function of these proteins is not fully
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elucidated, they seem to act as adaptor molecules involved in protein—protein interactions,
and they play a role in signal transduction, apoptosis, and stress response (Berg et al., 2003;
Morrison, 1994; Tzivion and Avruch, 2002; van Hemert et al., 2001).
Discussion

Microarray analysis enables an examination of large numbers of mMRNASs expressed in
different biological systems, and it provides a valuable tool in a discovery process intended
to lead to novel hypotheses. Although transcript changes might not be translated into protein
levels in every instance, there is generally a good correlation between increases in mMRNA
and increased protein levels, albeit with some variation in magnitude (Pongrac et al., 2002).

In the present study, microarray analysis was used to define the patterns of striatal gene
expression in rats that had developed AIMs, as opposed to rats that, despite motor
improvement in response to L-DOPA, remained free of dyskinetic side effects. Both groups
of L-DOPA-treated animals were also compared to drug-naive 6-OHDA-lesioned controls.
It was demonstrated previously that the rat model of abnormal involuntary movements used
in this study shows molecular and biochemical changes similar to those described in
nonhuman primate models of L-DOPA-induced dyskinesia and/or PD patients, including an
upregulation of AFosB-like proteins and opioid precursor mRNAS in the striatum, and
changes in opioid receptor binding within the cortico-basal ganglia loop (for review, see
Cenci et al., 2002). Our previous studies have indicated that the striatum plays a crucial role
in driving the development of abnormal involuntary movements in this model, which can be
either exacerbated or reduced by gene knockdown strategies applied to the striatum
(Andersson et al., 1999, 2001).

Evidence for increased activity of GABA neurons in dyskinesia

Dyskinesia was accompanied by an upregulation of mRNAs for pre- and postsynaptic
proteins, indicating increased synaptic activity, neurotransmitter release, and synaptic
remodeling. An increased gene expression of NatK*-ATPase, as observed in the dyskinesia
samples, has been linked to frequent and/or large depolarization events (Mata et al., 1992),
suggesting increased neuronal activity within the striatum. Na*K*-ATPase is critical for
maintaining the resting membrane potential and for regulating the response to excitatory
amino acids (Calabresi et al., 1995). Interestingly, the glial and neuronal glutamate/aspartate
transporters were upregulated. Glutamate regulates the expression of glutamate transporters
(O’Shea, 2002), and excessive glutamate release in a rat model of temporal lobe epilepsy
increased the expression of the neuronal glutamate transporter 3 (Crino et al., 2002). The
increased activity of striatal neurons, and the increased expression of glutamate transporters,
could therefore be caused by increased glutamate release into the striatum (Calabresi et al.,
2000). Alternatively, increased glutamate transporter levels might reflect the need to limit
excitation in an otherwise hyperactivated striatum.

The increase in synaptic and neuronal activity seemed to affect predominantly the GABA
subpopulation of neurons, since the GABA transporter was upregulated together with the
GABA-synthesizing enzyme GADg7. Most of the upregulated mMRNA species are expressed
in GABA projection neurons, such as the cannabinoid 1 and somatostatin 2 receptors (Allen
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et al., 2003; Julian et al., 2003), and the GABA-A receptor subtypes alpha-2, alpha-4, and
beta-3 (Schwarzer et al., 2001). The upregulated tachykinin 2 mRNA codes for a
neuropeptide expressed in a subpopulation of GABA neurons projecting to the substantia
innominata (Furuta et al., 2000; Gerfen, 1992b). Furthermore, the GABA subpopulation of
D1 receptor-expressing neurons of the “direct pathway” (Gerfen, 1992a,b) seemed to be
particularly affected, since D1 (but not D,) receptors were upregulated. This finding is in
agreement with previous studies showing significant striatal induction of AFosB in
prodynorphin-containing cells (i.e., the direct pathway neurons) in the same animal model of
L-DOPA-induced dyskinesia (Andersson et al., 1999).

An upregulation of genes involved in Ca?* homeostasis and Ca2*-dependent signaling
indicates increased Ca?* levels in dyskinesia

Many of the genes that were upregulated in the dyskinetic striatum are either involved in
Ca?* homeostasis or activated by Ca2*. Among the most dramatically upregulated mRNAs
were the ones coding for Ca2* ATPases. Ca2* ATPases pump Ca2* out of the cytosol either
across plasma membranes (PMCAS) or into the endoplasmic reticulum (SERCAS). They
maintain basal levels of intracellular CaZ*, participate in dynamic CaZ* regulation, and are
crucial players of Ca2* export during normal and pathological conditions (Blaustein et al.,
2002; Garcia and Strehler, 1999). Plasma membrane Ca?* ATPases (PMCAs) are clustered
at the active zones and may “reprime” the vesicular release mechanism following activity
(Blaustein et al., 2002). The increase in Ca2* ATPases could therefore be indicative of
increased intracellular Ca2* levels as well as increased neuronal activity.

Messenger RNAs of proteins that are activated by Ca?* were upregulated as well, such as
subunits of Ca2*-activated kinases and the Ca2*-inducible marker of cell stress, mortalin
(Massa et al., 1995). Interestingly, whereas Ca%*-activated kinases were upregulated in
dyskinetic rats, the CaM-kinase Il inhibitor alpha was specifically upregulated in the
nondyskinetic subgroup of L-DOPA-treated rats. These data raise the possibility that an
upregulation of certain Ca2*-activated kinases might contribute to L-DOPA-induced
dyskinesia, whereas inhibition of these Ca2* kinases might protect against the development
of this complication. This hypothesis is supported by the finding that intrastriatal inhibition
of CaM kinase Il reverses the motor response alterations produced by chronic L-DOPA
treatment in 6-OHDA-lesioned rats (Oh et al., 1999).

Overall, the upregulation of this group of MRNAs demonstrates a strong association of
dyskinesia with perturbed Ca2* homeostasis.

An increased consumption of ATP by ion pumps and a downregulation of genes involved
in ATP production could lead to energy shortfalls in the dyskinetic striatum

In addition to Ca2* ATPases, various ion transporters and voltage-gated ion channels were
upregulated in the dyskinetic striatum. Because ion pumps and transporters are ATP-
dependent (Green and MacLennan, 1989), increased expression of ion pumps might lead to
higher ATP consumption (Muller and Gruber, 2003). Despite the potentially increased need
for ATP, some aspects of energy production seemed to be impaired in the dyskinetic
striatum. The mRNA level for mitochondrial creatine kinase, a key enzyme in brain energy

Neurobiol Dis. Author manuscript; available in PMC 2014 October 24.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Konradi et al.

Page 12

metabolism and ATP generation (Ames, 2000), was downregulated. Phosphocreatine is a
source of high-energy phosphates in cells and tissues with high and fluctuating energy
demands, such as the brain (Wyss and Kaddurah-Daouk, 2000). Creatine kinase is coupled
with glutamate uptake, neurotransmitter release, calcium homeostasis, and the restoration of
ion gradients before and after depolarization (Wallimann and Hemmer, 1994). In addition to
creatine kinase, enzymes involved in glycolysis were downregulated as well.

Our findings oppose an increased need for ATP with decreased ATP supply. Together, they
imply that the dyskinetic striatum may be prone to excitotoxic damage by the combination
of impaired energy metabolism and increased levels of Ca2* and glutamate (Novelli et al.,
1988). In agreement with this hypothesis, the microarray data show increased striatal mMRNA
expression of mortalin and heat shock 70-kDa protein, two notable markers of cell stress
(Kregel, 2002; Massa et al., 1995). Moreover, 14-3-3 proteins, a group of proteins with a
role in stress response (Berg et al., 2003; van Hemert et al., 2001) were upregulated in
dyskinesia (Table 8). The induction of 14-3-3 proteins may have a neuro-protective effect,
since some 14-3-3 isoforms can sequester various proapoptotic proteins (e.g., Bad and Bax),
thereby preventing apoptosis and promoting survival (Berg et al., 2003; Rosenquist, 2003;
van Hemert et al., 2001). There was further indication that antioxidant defense systems were
compromised too, since levels of glutathione S-transferase, which plays a role in the
protection against reactive oxygen species (Fernandez-Checa, 2003), were significantly
reduced in the dyskinetic striatum.

The toxicity of L-DOPA has been widely debated in the literature, but mainly with respect
to possible adverse effects of L-DOPA treatment on the survival of nigral DA neurons
(Agid, 1998; Melamed et al., 1998). The present data indicate that L-DOPA may be
neurotoxic in the striatum and that this phenomenon may be part of the pathogenic cascade
leading to the development of motor complications. Indeed, neurodegenerative processes in
the striatum have been reported in models of antipsychotic drug-induced, tardive dyskinesia
(Andreassen and Jorgensen, 2000; Roberts et al., 1995).

The present data do not allow us to draw any final conclusions about the exact mechanism
of the L-DOPA-induced stress response, nor can we establish whether molecular adaptations
with neuroprotective value prevail over deleterious ones. However, the data encourage
future investigations into the possible role of striatal cell damage in the pathogenesis of L-
DOPA-induced motor complications.

Decreased ribosomal proteins in the dyskinetic striatum point toward cellular stress and
an inability to keep up with basic chores

Eukaryotic ribosomal protein synthesis has been studied most methodically in yeast.
Ribosomal proteins are regulated at the level of transcription, and a tight control between
synthesis of mMRNAs for ribosomal proteins and nutrient availability has been observed
(Warner, 1999). Messenger RNA synthesis for yeast ribosomal proteins is repressed in
response to stress conditions such as heat shock, starvation, and defects in the secretory
pathway (Planta, 1997; Warner, 1999). A downregulation of mMRNAs for ribosomal proteins
was described in two different gene array analyses that showed a decrease in genes of the
oxidative metabolism/mitochondrial respiratory chain (Konradi et al., 2004; Patti et al.,
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2003). The downregulation of many ribosomal proteins in dyskinesia could thus be a
response to diminished ATP availability or increased cell stress and suggests that the
pathogenic process interferes with basic maintenance chores.

In conclusion, the present analysis of striatal gene expression patterns in rats affected by
AlIMs provides unheralded clues to the dyskinesiogenic action of L-DOPA and offers new
directions for future pathophysiological investigations.
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Fig. 1.
Percent of all mMRNASs that differ in the expression levels between the three experimental

groups. Bars for upregulation (white), downregulation (black), and total regulation (grey)
are presented. Comparisons are presented in experiments versus baseline. Dys indicates rats
that developed dyskinesia in response to L-DOPA treatment; Non-dys, rats that did not
develop dyskinesia; Sal, rats that were lesioned with 6-OHDA and treated with saline.
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Fig. 2.
Unsupervised hierarchical clustering of all genes with a standard deviation above 3% of the

mean of their expression values and expressed above detection limit in at least 20% of all
samples. Significant clustering of dyskinesia samples was observed (£ = 0.022).
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Gene changes validated by ISHH. The rows show film autoradiographs of striatal sections

from dyskinetic rats, nondyskinetic rats, and control animals. Autoradiographs were

obtained with the following probes: A, plasma membrane transporting ATPase 1 (PMCAL);
B, the alphal subunit of Na*K*-ATPase (NaK-ATPase); C, homer 1; D, neurofilament
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heavy (NF-H); E, dopamine D1 receptor (DR1); F, a4 subunit of the GABA-A receptor
(GABA-A a4); G, the vesicular GABA transporter (VGAT); H, the cannabinoid CB1
receptor (CB1); I, protein kinase C delta (PKCS); J, cytochrome oxidase | (CO-1); K,
calcium-calmodulin kinase 1V (CamKIV). The results of the quantitative analysis (percent
of control of lesioned side/unlesioned side) are shown in the column at right. £<0.05 for *,
dyskinetic versus nondyskinetic; §, dyskinetic versus saline; #, nondyskinetic versus control.
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MAPPFinder analysis of genes differentially regulated in rats that developed L-DOPA-induced AIMs

compared to rats that do not develop AlMs

Table 2

Gene categories showing a significant overall change in the comparison between dyskinetic and nondyskinetic rats

Accessionno. Fold change Pvalue Pcall %
1. lon homeostasis
Ca2* ATPases [4/7; zscore 5.96; P=0.0]
ATPase, Ca?* transporting, SERCA-2 AA957510 1.07 0.040 100
Plasma membrane calcium ATPase 1 L04739 1.16 0.009 100
Plasma membrane calcium ATPase 2 J03754 1.15 0.048 100
Plasma membrane calcium ATPase 3 M96626 -1.08 0.039 100
1. Neurotransmitter synthesis, receptors, and transporters
Neuropeptide [3/10; zscore 3.38; P=0.019]
Neuropeptide Y M15880 -1.12 0.030 100
Tachykinin 2 M16410 1.61 0.000 100
Secretogranin |1 M93669 1.37 0.003 100
Dopamine receptor [2/5; zscore 3.36; 2= 0.024]
Dopamine D, receptor (S46131mRNA_r_at) S46131 1.24 0.008 100
Dopamine D; receptor (S46131mRNA_s_at) S46131 117 0.011 100
Dopamine D; receptor M35077 1.16 0.023 100
Dopamine D,B receptor M69118 -1.05 0.026 100
GABA [4/18; zscore 3.06; A= 0.013]
GABA-A receptor alpha-2 L08491 1.22 0.033 100
GABA-A receptor beta-3 X15468 1.25 0.030 100
Glutamate decarboxylase 1 (GAD67) X57573 1.19 0.001 100
Vesicular GABA transporter AF030253 112 0.035 100
Transporter-neurotransmitter [2/5; zscore 3.38; = 0.022]
Vesicular GABA transporter AF030253 112 0.035 100
Glutamate/aspartate transporter 1 (glial) S75687 1.15 0.041 100
Glutamate/aspartate transporter 1 (glial) X63744 1.21 0.039 100
1. Structural and synaptic plasticity
Pre-and postsynaptic structures [14/82; zscore 4.60; P= 0]
Cadherin D83348 1.19 0.013 100
Integrin alpha 7 X65036 1.26 0.002 67
SAP-97; Drosophila discs—Ilarge tumor suppressor homologue  Al144926 1.26 0.011 92
SAP-97; Drosophila discs—Ilarge tumor suppressor homologue U14950 12 0.020 100
Homer 1 ABO003726 1.25 0.012 100
Homer 1 AF093267 1.18 0.015 100
Homer 1 (AB017140_at) AB017140 1.16 0.024 100
Homer 1 (AB017140_g_at) ABO017140 1.15 0.035 100
SNAP-25 AB003992 1.15 0.034 100
Syntaxin 2 M95735 1.2 0.003 100
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Gene categories showing a significant overall change in the comparison between dyskinetic and nondyskinetic rats

Accessionno. Fold change Pvalue Pcall %

Syntaxin 4 L20821 1.26 0.005 100
Adaptor protein complex AP-2, alpha-2 subunit X53773 1.21 0.042 100
Adaptor protein complex AP-2, beta-1 subunit AA964379 1.15 0.005 100
Clathrin assembly protein AF041373 1.1 0.031 100
Dynamin 2 L25605 -1.05 0.030 100
Densin-180 u66707 1.24 0.019 100
Neuronal cell adhesion molecule (N-CAM) X59149 -1.12 0.014 100
CRK-associated substrate D29766 -1.07 0.017 100

Actin-related [7/30; zscore 4.26; P=0.001]

Actinin alpha-2 associated LIM protein AF002281 1.13 0.046 100
Coronin, actin-binding protein 1A AAB892506 -1.24 0.048 92
SH3 domain-binding protein CR16 U25281 1.14 0.006 100
Activity-regulated cytoskeletal-associated protein (Arc) U19866 1.23 0.043 100
Troponin 1, type 3 M92074 14 0.000 100
Tropomodulin 2 U59240 1.13 0.024 83
Myristoylated, alanine-rich C-kinase substrate (MARCKS) AA899253 -1.14 0.024 100

V. Kinases and phosphatases
Calcium kinases [3/10; zscore 3.38; A= 0.01]

Protein kinase C-family-related M15523 1.13 0.007 100
Protein kinase C delta (M18330_at) M18330 1.26 0.017 75
Protein kinase C delta (M18330_g_at) M18330 1.26 0.022 100
CaM-kinase Il delta L13406 1.1 0.029 25

V. Kinases and phosphatases
Phosphatase [10/66; zscore 3.39; £=0.003]

Protein tyrosine phosphatase, receptor type, O U28938 -11 0.048 100
Protein tyrosine phosphatase, receptor type, R D64050 -1.11 0.043 42
Protein tyrosine phosphatase-like N D38222 1.24 0.008 100
Protein tyrosine phosphatase, nonreceptor type 2 X58828 -1.08 0.040 100
Acid phosphatase 2 Al234950 -1.06 0.016 33
Regulatory subunit of type 1 protein phosphatase S79213 1.17 0.036 100
Regulatory subunit of protein phosphatase 2A D14421 111 0.031 100
Dual specificity phosphatase 6 (MAP kinase phosphatase 3) u42627 1.18 0.038 100
Multiple inositol polyphosphate histidine phosphatase 1 AF012714 -1.08 0.019 100
Pyruvate dehydrogenase phosphatase 1 (AF062740_at) AF062740 1.28 0.002 100
Pyruvate dehydrogenase phosphatase 1 (AF062740_g_at) AF062740 131 0.002 100

V.. Energy metabolism, toxicity, and apoptosis

Creatine biosynthesis [2/4; zscore 3.88; £P=0.01]

Guanidinoacetate methyltransferase J03588 -1.06 0.034 83
Ubiquitous mitochondrial creatine kinase (X59737mRNA_at) X59737 -1.16 0.001 100
Ubiquitous mitochondrial creatine kinase (X59737mRNA_g_at)  X59737 -1.14 0.006 100

Heat shock protein [2/8; zscore 2.4; P=0.05]
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Gene categories showing a significant overall change in the comparison between dyskinetic and nondyskinetic rats

Accessionno. Fold change Pvalue Pcall %
Heat shock 20-kDa protein D29960 -1.14 0.044 100
Heat shock 70-kDa protein (S78556_at) S78556 1.23 0.018 100
Heat shock 70-kDa protein (S78556_g_at) S78556 1.13 0.003 100

VI. Ribosomal proteins [9/57, z score 3.39, P = 0.005]

Ribosomal protein L12 X53504 -1.09 0.046 100
Ribosomal protein L13 X78327 -1.1 0.026 100
Ribosomal protein L17 X60212 -1.16 0.004 100
Ribosomal protein L18a (X14181cds_r_at) X14181 -1.12 0.006 100
Ribosomal protein L18a (X14181cds_s_at) X14181 -1.1 0.010 100
Ribosomal protein L26 X14671 -1.09 0.047 100
Ribosomal protein S15 E01534 -11 0.031 100
Phosphoribosyl pyrophosphate synthetase-associated protein 2 Al231500 -1.09 0.011 100
Phosphoribosyl pyrophosphate synthetase, subunit 11 X16555 1.07 0.049 100

Page 25

All regulated genes with a Pvalue <0.05 and 20% or more ‘present’ call across all samples were used for the analysis. Two hundred sixty-two
probes met the criteria and were included in the analysis. The table shows all gene families that had at least 2 regulated members, reached a zscore
above 2, and a permuted A value at or below 0.05. The zscore was based on an NVof 4141 and an R of 233 distinct genes. Positive values indicate

higher mRNA levels in the dyskinetic group, negative values indicate higher mRNA levels in the nondyskinetic group.
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