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Abstract

Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many 

spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such 

tumor growth can be straightforward but computing performance often counterbalances simplicity. 

Computationally convenient simulation times can be achieved by choosing appropriate data 

structures, memory and cell handling as well as domain setup. We propose a cellular automaton 

model of tumor growth with a domain that expands dynamically as the tumor population 

increases. We discuss memory access, data structures and implementation techniques that yield 

high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor 

properties that favor the proposed high-performance design and present simulation results of the 

tumor growth model. We estimate to which parameters the model is the most sensitive, and show 

that tumor volume depends on a number of parameters in a non-monotonic manner.
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Introduction

Simulating complex multi-scale cellular automata is still a great challenge despite advances 

in computational power of modern computers in recent years. Cellular automata are 

increasingly used to simulate tumor growth dynamics [1-15]. Whilst many efficient ways 

exist to simulate deterministic and synchronous cellular automata, such as Conway's ‘Game 

of Life’ [16], high-performance simulation of stochastic cancer cell kinetics and emerging 

multi-scale tumor population dynamics is still in is infancy. In stochastic Monte Carlo 

cancer models, cells are not governed by simple deterministic rules but by probability 

distributions of coupled internal states and non-trivial interactions with the continuously 

changing local environment. Additionally, tumor population dynamics emerge from the 

interaction of millions of cells, and often the development of such populations from few 

initial cells needs to be simulated. This poses problems of bridging many temporal and 

spatial scales. Due to the stochastic nature of single cell kinetics many simulations for the 

same scenario need to be performed in order to obtain averaged and statistically significant 
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results. To further complicate matters, in typical tumor growth models many parameters 

need to be estimated in high-dimensional parameter sweeps and sensitivity analysis needs to 

be performed to study parameter influence on overall dynamics.

The main advantage of utilizing cellular automata in cancer modeling is the ability to 

formalize experimentally observable single-cell kinetics [17, 18] and observe emerging 

population level dynamics without a-priori knowledge of tumor behavior. Because of their 

apparent resemblance of in vitro cell culture models, cellular automata may be referred to as 

in silico experiments [19]. Automata simulations enable visualization, measurement and 

perturbation of cell kinetics as well as their interaction with the environment. Herein we 

describe a simple cellular automaton tumor growth model, and discuss computer memory 

access, data structures, domain setup and implementation techniques that enable high 

performance multi-scale simulations.

Tumor Growth Model

A cancer cell is an individual entity that occupies a single grid point of (10μm)2 on a two-

dimensional square lattice. Each cancer cell is characterized by its specific trait vector [cct, 

ρ, μ, α] denoting cell cycle time, proliferation potential, migration potential and rate of 

spontaneous death, respectively [20]. We assume a heterogeneous tumor population 

consisting of so-called cancer stem cells and non-stem cancer cells. Cancer stem cells are 

assumed to be immortal and have unlimited proliferation potential (i.e., α=0, ρ=∞), whereas 

non-stem cancer cells can only divide a limited number of times ρmax before cell death. Each 

cell type can divide symmetrically to produce two daughter cells with parental phenotype. 

Both populations are coupled through asymmetric division of cancer stem cells, which with 

probability 1-ps (where ps is the probability of symmetric cancer stem cell division) 

produces a cancer stem cell and a non-stem cancer cell, which inherits an initial proliferation 

potential ρ=ρmax that decreases with each subsequent non-stem cell division (Figure 1A). 

Cells need adjacent space for migration and proliferation, and cells that are completely 

surrounded by other cells (eight on a two-dimensional lattice; Moore neighborhood) become 

quiescent (Figure 1B). In unsaturated environments, cells proliferate and migrate into vacant 

adjacent space at random. At each simulation step, cells can undergo spontaneous death with 

rate α and will be instantaneously removed from the system.

Time is advanced at discrete time intervals Δt = 1/24 day (i.e., 1 hour), and 24 simulation 

steps represent one day. At each simulation step, cells are considered in random order to 

minimize lattice geometry effects and the behavior of each cell is updated. Cell proliferation, 

migration and death are random events with the respective probabilities scaled to the 

simulation time step. Cell proliferation and migration are temporally mutually exclusive 

events. We assume that cells proliferate at each simulation step with probability pd =(24/cct)

×Δt, migrate with probability (1-pd)pm and die with probability α. Let pm= μ×Δt where μ 

denotes cancer cell motility speed.
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Implementation

Memory architecture and data access

High-performance simulations require fast access to available memory and cached data. 

How memory is handled depends heavily on simulation design as well as used data 

structures and procedures. The memory in modern desktop PCs has three layers: the built-in 

cache memory has the fastest access time (1-20 ns) but a very limited size; random access 

memory (RAM) is slower (50-100 ns) but much larger; and hard disk drives (HDD) whilst 

having large memory have the slowest access time (5-10 ms) (Figure 2).

State-of-the-art processors may have up to 24 Megabytes (MB) of cache memory and can 

access up to 4096 Gigabytes (GB) of RAM (c.f., Intel Xeon E7-8830). Cache memory stores 

the most frequently used RAM locations to reduce access time to necessary information 

[21]. Due to limited memory size, cached content constantly changes throughout 

simulations. Simulation time decreases when the spatial locality property is unsatisfied, i.e. 

the CPU frequently requires access to information that is not stored in cache memory 

locations. If a so-called cache miss occurs data needs to be retrieved from much slower 

RAM or even HDD memory. High frequencies of cache misses dramatically reduce 

computation speed and optimized algorithms should minimize cache miss events.

Let us consider a two-dimensional rectangular lattice coded by a two-dimensional array as 

commonly used in cellular automata. As computer memory is arranged linearly, higher-

dimensional arrays are stored row after row (or column after column). Therefore, if an array 

element is accessed only parts of its immediate spatial neighborhood will be stored in the 

cache. Especially for large lattices, 2 of 4 neighbors (2-D von Neumann neighborhood) or 6 

of 8 neighbors (2-D Moore neighborhood) are cache missed. Whilst convenient at 

implementation, frequent access of cell neighbors in two- and three-dimensional arrays is 

memory inefficient and slow.

Population geometry and data type optimization

Which data structures are the best to use depends on the cellular processes that are 

considered as well as the geometry of the emerging population. Prostate tumors, for 

example, have a very dense, compact structure whereas glioblastoma brain tumors are 

highly diffusive. Such density difference may be represented by the number of cells on the 

computational lattice per area or volume. Let us define a dense tumor as a population of 

cells where each lattice point is occupied by a cell with probability p=0.99 (i.e., 99%) and a 

diffusive tumor occupies lattice points with p=0.5. For cells to migrate or proliferate 

adjacent lattice points need to be vacant. Dependent on the expected tumor density - either 

many or few neighbors for most cells - the most efficient data structure for obtaining vacant 

neighbor lattice sites might be different. To determine cell neighborhood vacancies, a simple 

array keeping Boolean information about lattice points occupied by cells will be highly 

inefficient for dense tumors. Let us consider morphological erosion, where each cell that is 

not completely surrounded by other cells is removed from the lattice. For dense population 

geometries, a coded array containing information about number of vacant spots in the cell 

neighborhood may be more efficient as unsuccessful scanning of each neighboring lattice 
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point for vacancy is be avoided (Figure 3A,B). Appropriate use of C++ data type char will 

not introduce a memory tradeoff as both char and Boolean require one byte of memory. 

Using intuitive int instead of char will require four times more memory and increases 

computation time as fewer information can be stored in cache memory. A computationally 

expensive drawback of a coded lattice is the requirement to update all neighboring lattice 

codes when occupancy of a single grid point changes, which makes this approach less 

efficient for diffusive tumors (Figure 3C).

Random neighbor selection

Monte Carlo tumor growth simulations frequently require obtaining a free neighboring 

lattice site at random, for example for migration or proliferation. A naïve approach may 

consider all neighboring lattice sites, store those that are vacant in a temporary vector and 

then select a vector element at random. Alternatively, neighboring lattice sites may be 

addressed in random order and the first encountered vacant position is selected (Figure 4A). 

This simple alternative random access method significantly decreases simulation time in 

dense (Figure 4B) and diffusive tumors (Figure 4C) with increasing lattice size (free spot is 

selected iteratively for each cell on the lattice). While the naïve procedure is much slower 

for diffusive tumors as more vacant lattice sites have to be stored in temporary vectors, the 

alternative random access approach performs equally well irrespective of tumor type.

Dependent on the modeled cellular processes, additional alterations or improvements may 

be required. For example, one may choose to store hashed information about the cell 

neighborhood in the lattice. In particular, a limited number of possible cell neighborhood 

configurations may be encoded in identifying keys.

Random ordering

Many programming languages provide efficient procedures and data structures that can be 

utilized for cellular automata design in combination with simulation specific code. In 

asynchronous stochastic cellular automata of tumor growth random cell ordering and 

random access of cells is fundamental. A naïve implementation of selecting cells in a 

random order may consist of

1. From a vector containing all cells, pick a cell at random by drawing a random 

positive integer not larger than the vector length.

2. Erase the selected cell from the vector to avoid its reselecting.

3. Repeat steps 1 and 2 until there are no cells left in the vector.

The C++ Standard Template Library (STL) provides numerous algorithms to perform 

search, sort and shuffle operations. Random shuffle rearranges all elements in a specified 

range randomly in a single invocation. The STL random shuffle procedure reduces 

computation time compared to the naïve approach by multiple orders of magnitude even for 

small vector sizes (Figure 5), clearly demonstrating the power and importance of using 

standard language-specific data structures and algorithms for high-performance simulations.
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Dynamically growing domains

To simulate a growing tumor population from a single cancer cell computational lattice-

induced boundary constraints need to be avoided. An appropriate lattice size must be 

selected dependent on the achievable tumor size, which requires a priori knowledge about 

emerging population dynamics, tumor density and cell diffusibility. A dense, radially 

symmetrically growing two-dimensional tumor population of 100,000 cells could well fit 

into a 400×400 lattice. Cells in a highly diffusive irregular tumor, however, will likely hit 

the boundary of such lattice early during tumor growth. Whilst a sufficiently large lattice 

could ensure avoidance of boundary contact, memory requirements and computing 

performance limit such approach. Large amounts of computational resources would be 

wasted especially early in population expansion when only a few cells are present.

One possibility is to use dynamic data structures such as a C++ standard template library 

(STL) map, which can be understood as an associative container that stores elements formed 

by the combination of a key value and a mapped value. Unfortunately, accessing elements in 

a map is logarithmic in size, which for large tumor sizes dramatically decreases 

computational performance (Figure 6). We propose a dynamically allocated array with 

associated procedures that expand the lattice points. While a static large array of 1000×1000 

lattice points is the most efficient for large tumors it is inefficient for small tumors up to 

10,000 cells due to unoccupied lattice sites occupying large amounts of memory. The 

dynamically expanding array is most efficient for small tumors and comparable to large 

static arrays for large tumor populations.

Tumor growth simulations

We will use a combination of the presented high-performance techniques to simulate solid 

tumor growth and compare it to a naïve implementation. Let us initialize tumor growth 

simulations with one cancer stem cell located in the center of a square lattice with trait 

vector [cct=24hours, ρ=∞, μ=100μm/day, α=0%] and ps=0.1. Non-stem daughter cells are 

initialized with trait vector [cct=24hours, ρ=10, μ=100μm/day, α=1%].

These parameter values have previously been shown to enable fast dense tumor growth [20]. 

Tumor growth dynamics with other parameters have been discussed elsewhere [22-24]. Cell 

cycle time and migration rate can be measured experimentally [17], while other parameters 

are yet to determined. It is conceivable, however, that model parameters are organ or even 

patient specific. We therefore use the initial trait vector as control and study the sensitivity 

of tumor volume to changes in each parameter. We simulate tumor growth for t=180 days 

using an intuitive implementation (naïve code) and compare to an implementation with a 

combination of above-discussed improvements (improved code). The naïve simulation is 

executed on a fixed 750×750 square lattice, whereas the improved simulation is initiated on 

a 50×50 square lattice with dynamically expanding domains. Due to the stochastic nature of 

the model we simulate N=100 (improved) and N=77 (naïve) independent tumors and report 

average results. Both implementations yield similar population sizes with comparable cancer 

stem cell and non-stem cancer cell numbers (Figure 7). While the naïve code executes in an 

average of 4212 seconds (>70 minutes) the improved code executes in 51 seconds (<1 

minute) – an 82-fold reduction in computing time. The high-performance of the improved 
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code is due to the dynamically expanding domain as well as efficient access to information 

on vacant neighboring lattice sites. More than 70% of all cells at the final time point of the 

simulation have no adjacent space, and less than 5% of cells have two or more vacant lattice 

sites to migrate or proliferate into (Figure 7D). Graphical visualization of tumor 

morphologies at different time points show that tumors simulated with either 

implementation technique are non-differentiable beyond intrinsic stochastic effects (Figure 

8).

To study the effects of model parameters on emerging tumor volume we separately change 

the initial parameter values (control) by 50% in either direction and compare resulting total 

cell count to the control tumor. Sensitivity analysis reveals that spontaneous rate of cell 

death has little impact on total cell number, compared to cell migration and symmetric stem 

cell division rate that strongly correlate with tumor volume. Whilst an increase in symmetric 

stem cell division probability ps and cell migration rate μ yields larger tumor volumes, cell 

death rate α and proliferation potential ρ modulate tumor volume non-monotonically (Figure 

9). A 50% parameter value increase as well as decrease yields tumor volumes that are 

smaller than the control tumor, suggesting the existence of optimum parameter values that 

maximize tumor volume. Their specific values, however, will be dependent on the other 

model parameters [23]. Interestingly, increasing proliferation potential ρ yields significantly 

smaller tumors than lower ρ values, indicating a strong competition between non stem 

cancer cells and cancer stem cells that drives the total population into prolonged phases of 

dormancy [24].

Discussion

Cellular automata are frequently used to simulate solid tumor growth and cancer stem cell 

dynamics [1,25,26]. Intuitive design of stochastic cellular automata for tumor modeling is 

often counterbalanced by its performance. Although cellular automata are lattice-based, 

naïve implementation as two-dimensional Boolean arrays has little computational efficiency. 

We set out to compare C++ data structures, memory-efficient procedures and dynamic 

domains to decrease computing time. As extension to three spatial dimensions is trivial, we 

presented implementation details in two dimensions for clarity. We found that simple 

substitutions in intuitive cellular automaton implementations significantly decrease 

computing time. First, appropriate use of data type char over int provides a 4-fold reduction 

in memory allocation. Second, consideration of a coded lattice that holds information about 

a cell's neighborhood vacancies rather then Boolean information whether or not a cell is 

occupying that lattice point significantly decreases computation time if queries about 

adjacent space are frequently required for cell decisions. Third, utilization of the C++ STL 

shuffle method to provide a random order of elements proves superior to repeatedly 

selecting single elements at random positions within a vector. Finally, we presented a 

dynamically growing domain that evolves according to the population size, which keeps 

computation time exceptionally low when the population is small. Computing time is 

comparable to a large array when the population approaches array carrying capacity, but 

with the unique option to further expand the domain when needed. When all of these 

adjustments are combined into a simulation of cancer stem cell driven solid tumor growth, 

the improved implementation yields a high-performance over the naïve approach. In 
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simulations of tumor growth for 180 days from a single cell to a population of about 140,000 

cells, the presented high-performance cellular automaton yields an 82-fold reduction in 

computing time while reproducing the results of the naïve implementation. We believe the 

developed high-performance cellular automaton will serve as a template for future 

simulations of solid tumor growth as well as other population dynamics models. We share 

the source code for the presented naïve and improved code on our personal websites and the 

sourceforge.net repository.
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Figure 1. 
(a) Cancer cell lineage; yellow: cancer stem cell, red-black: non-stem cancer cells with 

decreasing proliferation potential ρ; (b) Tumor cells populate the computational lattice by 

cell migration and cell proliferation. A cell can randomly migrate to or place a daughter cell 

into one of the eight adjacent lattice points subject to availability. A cell becomes quiescent 

if all adjacent lattice points are occupied.
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Figure 2. 
Typical architecture of modern desktop PCs. Central processing unit (CPU) reads memory 

directly from the fastest cache, which, if the data is unavailable reads from the slower 

random access memory (RAM) and if needed from the biggest but slowest hard disk drive 

(HDD).
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Figure 3. 
Morphological erosion on a simple Boolean array and a coded lattice. (a) Illustration of 

transformation from simple Boolean lattice into coded lattice. In a coded lattice each 

occupied grid point contains the information about the number of free spots in its 

neighborhood, and 9 represents an empty grid point; (b) and (c) Comparison of the 

evaluation times for dense tumors (b) and diffuse tumors (c). Three considered data 

structures are simple Boolean array (blue diamonds) and coded lattices using char (red 

squares) or integer values (green triangles).

Poleszczuk and Enderling Page 11

Appl Math (Irvine). Author manuscript; available in PMC 2014 October 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 
Comparison of two different procedures to select a random free spot from cell 

neighborhood. Free spot is selected iteratively for each cell on the lattice. (a) Naïve 

procedure visits all neighboring spots, temporarily stores those that are vacant and chooses a 

random element from the temporary vector. Random access procedure uses a predefined 

vector of neighboring lattice sites that is randomly shuffled. The cell neighborhood is 

searched in that random order and then returns the first vacant site; (b) and (c) Average 

evaluation times of different lattice sizes for dense tumors (b) and diffusive tumors (c).
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Figure 5. 
Comparison of the efficiency of the built-in STL shuffling procedure and the procedure 

coded in the naïve way. (a) Naive procedure iterates the steps consisted of picking random 

element from the vector and then erasing it until the initial vector is empty. Single 

invocation to the STL procedure gives us the shuffled vector; (b) Evaluation times for those 

two procedures for different sizes of the shuffled vector.
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Figure 6. 
Dynamically growing domain. (a) Computational lattice expands by 50 grid points in the 

direction(s) where a cells reaches the boundary; (b) Simulations of simple tumor growth 

from a single cell when each cell (cells are considered in linear order) proliferates into a 

random free adjacent spot until the tumor population reaches the predefined final size (no 

other action is considered). Evaluation of computing time to reach different cell counts for 

three types of domains: STL map (solid blue curve), large array (red dashed) and 

dynamically expending array (black dash-dotted).
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Figure 7. 
Model results for simulating 180 days of tumor growth initiated by one cancer stem cell. 

Naïve (blue curve) and improved (red) code simulate comparable tumor growth dynamics 

with similar non-stem cancer cell (a) and cancer stem cell (b) numbers; (c) Average 

simulation times and standard deviations; (d) Distribution of vacant lattice sites in cell 

neighborhood at final simulation time point; (e) Evolution of average lattice size in the 

improved code. Initial lattice size 50 × 50, final lattice size 550 × 550. Shown are averages 

(standard deviations omitted in most panels for clarity) for N = 100 (improved code) and N 

= 77 (naïve) independent simulations.
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Figure 8. 
Representative tumor morphologies simulated with naïve (left) and improved (right) code. 

Colors as defined in Figure 1(a).
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Figure 9. 
Cancer stem cell driven tumor growth model parameter sensitivity analysis. All initial model 

parameters (control, ctrl) were changed −50% or +50% and average tumor volumes after t = 

180 days (N = 50) compared to the control volume (log scale). Error bars omitted for clarity.
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