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Abstract

Massively univariate regression and inference in the form of statistical parametric mapping have 

transformed the way in which multi-dimensional imaging data are studied. In functional and 

structural neuroimaging, the de facto standard “design matrix”-based general linear regression 

model and its multi-level cousins have enabled investigation of the biological basis of the human 

brain. With modern study designs, it is possible to acquire multiple three-dimensional assessments 

of the same individuals — e.g., structural, functional and quantitative magnetic resonance imaging 

alongside functional and ligand binding maps with positron emission tomography. Current 

statistical methods assume that the regressors are non-random. For more realistic multi-parametric 

assessment (e.g., voxel-wise modeling), distributional consideration of all observations is 

appropriate (e.g., Model II regression). Herein, we describe a unified regression and inference 

approach using the design matrix paradigm which accounts for both random and non-random 

imaging regressors.
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1 Introduction

The strong relationship between structure and biological function holds true from the 

macroscopic scale of multi-cellular organisms to the nano scale of biomacromolecules. 

Experience informs the clinical researcher that such structure-function relationships must 

also exist in the brain and, when discovered and quantified, will be powerful informers for 

early disease detection, prevention, and our overall understanding of the brain. Brain 

imaging modalities, such as positron emission tomography (PET) and magnetic resonance 

imaging (MRI), are primary methods for investigating brain structure and function. 

Quantification of the structure function relationship using imaging data, however, has been 
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challenging owing to the high-dimensional nature of the data and issues of multiple 

comparisons.

Statistical Parametric Mapping (SPM) enables exploration of relational hypotheses without 

a priori assumptions of regions of interest (ROIs) where the correlations would occur [1, 2]. 

SPM was limited to single modality regression with imaging data represented only in the 

regressand until extensions (e.g., Biological Parametric Mapping, BPM) were developed to 

enable multi-modality regression, allowing for imaging data to use considered for both 

regressors and regressand [3, 4]. These multi-modal methods rely on the traditional ordinary 

least squares approach in which regressors are exactly known (i.e., conditional inference). 

Although this assumption may be reasonable in SPM, where scalar regressors are likely to 

have significantly less variance than the regressand imaging data, such an assumption is 

clearly violated when both regressors and regressand are observations from imaging data. 

With BPM inference is not inverse consistent; interchanging the regressors and regressand 

images would yield different estimates of relationships. The inconsistent inverse behavior of 

BPM is a result of violated mathematical assumptions, not underlying biological truths. A 

researcher is seeking to uncover the two way structure-function relationship and a 

mathematical technique that optimizes an inverse consistent mapping rather than a 

unidirectional mapping would bring estimates closer to modeling these underlying physical 

truths.

Regression analysis accounting for errors in regressors would greatly improve the credibility 

of the truth model whilst reasonably considering the randomness of the imaging modality. 

Statistical methods accounting for random regressors have been developed and are 

collectively known as Model II regression [5, 6]. Surprisingly, Model II regression has not 

been generalized for the massively univariate case. To more accurately reflect clinical 

imaging data, herein we develop a general model that accounts for both random regressors 

and non-random regressors for use in the context of BPM and multi-modality image 

regression.

2 Theory

Our aim is to explain the observed intensity from one imaging modality, y, with a set of 

regressors, x, of which at least one member is observed intensity from another imaging 

modality. We begin with a typical general linear model (GLM) and reformulate it to 

explicitly reflect the clinical imaging case of both random and non-random regressors. To 

begin, GLM is formulated as,

(1)

where d is the total number of regressors, ε is a parameterization of observational error in y, 

and β is a vector of the fitted coefficients. Let σx(l) and σy represent the common variance of 

each element about its truth in x(l) and y respectively. Then the x(l) can be divided into two 

disjoint sets, fixed regressors whose values are considered to be exactly known, xf, s.t. (σxf 
≪ σy), and random regressors, xr, s.t. (σxr not ≪ σy). In BPM, all regressors are treated as 
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fixed regressors. By inclusion of random regressors, that Model-II diverges from BPM. 

Owing to their larger σ values, the observed xr are only therefore noisy estimates of the 

truth, xrT. Eq. 1 then becomes,

(2)

where q and m represent the total number of random and fixed regressors respectively. The 

challenge here, that is not present in Model-I, is to estimate βr and βf given that xrT in Eq. 2 

is not observed, but rather the noisy xr. There are many possible methods for solving for β, 
here we choose an approach that follows the ordinary least squares example. We seek a 

solution for the parameters, β, that maximize the log-likelihood of the model given the 

observed data (maximize ln P(y, xr|β, Σ, yT, xrT)).

Let i = 1,2, … n index the observations in y and in each of the  (e.g. n = the number of 

subjects and i indexes the subject number). Let zi be a vector representing the i’th set of 

observational errors in y and in each . We can assume the errors follow a multivariate 

normal distribution with mean 0 and covariance matrix, Σ [7].

(3)

Note that the observational errors, z, are errors across subjects and do not condition errors 

across an image. Given that each  vector is observed from a unique experimental 

technique, it is reasonable to assume that the columns of zi are independent. We further 

assume that zi is independent as each subject is independent. Under these assumptions 

(normal and i.i.d.), the log-likelihood of the observed data, given the model in Eq. 2 is,

(4)

Maximizing the log likelihood, Eq. 4, is equivalent to minimizing . 

With the assumption of independent observations (independent subjects, i, and independent 

experiments, xr
(j)), the covariance matrix, Σ, is diagonal with entries . 

Hence, s can be re-expressed as,

(5)

where  represents the ith element of . Eq. 5 is minimized when its partial derivatives 

w.r.t to each dependent variable is zero. We first solve for xrT at the minimum of Eq.5 by 

differentiating s with respect to  and setting the result to 0 gives q total equations, one for 
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each . With q equations and q unknowns,  can be solved in terms of the other 

parameters. For a given term indexed by h,

(6)

Substituting Eq. 6 for  in Eq. 5, s becomes,

(7)

Eq. 7 is now independent of the unknown xrT and provides an intuitive form as the model 

error in the numerator is balanced by the individual variances in the denominator and 

mirrors the more readily available multivariate case with non-random x and the univariate 

case that accounts for a single random x [8]. Eq. 7 is a function of two unknowns, β and σ. 

Note that the true σ does not factor into s, only the ratio of variance matters. If these ratios 

are known, then β is the only unknown; and the β that maximizes Eq. 4 can be solved by 

taking the partial derivative of s with respect to β and setting the result to 0. The partial 

derivative equations are nonlinear w.r.t. β, and solving for the closed form solution of β is 

involved, so we employ numeric optimization methods.

In the Model II approach, the variance ratio needs to be known in order to minimize s by 

solving β. The restriction arises because the number of unknown parameters is larger than 

the number of equations [9]. If we add the further assumption that the ratio of the overall 

variance across subjects is proportional to the ratio of the image noise variance, then we can 

estimate the model variance ratio by estimating the ratio of image noise for each modality.

Inference on β

The maximum likelihood estimate of β, βest, with a true value βT, is asymptotically normally 

distributed as βest − βT)~Φ(0, nI−1) where I is the Fisher information matrix (Iw,g = 

E[−∇β(w)β(g) ln Pi(yi, xri|β, Σ, yT, xrTi)]), with w = 1,2,…q+m, g = 1,2,…q+m, Pi is the 

probability function for data i. Noting the distribution 

, the Fisher 

information can be estimated from prior ratio and dataset. Allowing c to represent the 

contrast vector and βT = βnull to be the null hypothesis, then it follows that the test-statistic, 

 is t-distributed with n-(q+m) degrees of freedom. This is an 

asymptotic t-test as all estimated parameters and Fisher information are asymptotically 

valid.
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3 Methods and Results

3.1 Single voxel simulations with known true variance ratios

Model II regression is implemented using the Nelder–Mead method to find the optimized 

solution of β. For each of the following 3 scenarios, a simulated voxel with 50 observations 

(i.e., subjects) was studied using a model with one random regressor, one fixed regressor, 

and a single constant: yT = xrTβr + xfβf + β1. In each of 500 Monte Carlo trials: βT were 

chosen randomly from the uniform distribution (0–2); errors were added to yTi and xrTi from 

a normal distribution with fixed standard deviations, and the true variance ratio was assumed 

known. Model II and OLS performance were evaluated with the relative root mean squared 

error in β (rβRMS).

A. Model II vs OLS response to σx: σy ratios (Figure 1A). Simulations were 

performed varying σx:σy. Model II regression performs equally well as OLS with 

small σx:σy, but becomes advantageous as more relative error is introduced into xr 

observations. The improvement is observed specifically on βr, whereas the 

constants not associated with random regressors, β1 and βf, remain with equal 

accuracy in estimation between the two models.

B. Model II vs OLS response to number of random x regressors (Figure 1B). The 

above model was altered by including up to 4 additional random regressors with 

randomized coefficients. Model II has smaller errors in the βr estimates than OLS, 

however Model II becomes less advantageous with increases in the number of 

random x regressors. Note, the number of observations was not increased to 

compensate for the increased model complexity so less data per regressor is 

available with more regressors.

C. Model II sensitivity to the estimated ratio (Figure 1C). To assess the response of 

Model II to estimated ratios that deviate from the truth, the assumed true ratio of 

variance was altered between 1/10th and 10 times its true value. Under the cases 

simulated here, Model II is insensitive to the ratio estimate for the range (0.5–2) 

and relatively insensitive over the range (.1–3).

At extremely incorrect ratio values, the βr estimate rapidly looses accuracy. Based on this 

analysis we can apply Model II regression using estimated error ratio, with reasonable 

confidence in the methods’ tolerance to mis-estimation of variance ratios.

3.2 Volumetric Imaging Simulation

Model II regression is incorporated as a regression method choice in the BPM toolbox for 

the SPM software using Matlab (Mathworks, Natick, MA). We simulated images of two 

modalities and regressed one modality on the other modality. The true regressor images are 

simulated from smoothed gray matter density images of 20 participants in the normal aging 

study of the BLSA neuroimaging project consisting of 79*95*69 voxels with 0.94*0.94*1.5 

mm resolution [10]. The observed regressor images are simulated by adding zero mean 

Gaussian noise. The true regressand image intensity is “1.5*true regressor images – 

constant” inside the caudate region and equals a different constant everywhere else inside 

the brain mask. The observed regressand images were generated by adding zero mean 
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Gaussian noise to the true regressand images. The standard deviation of the noise is selected 

to make SNR=15. (SNR is defined as the mean signal divided by the standard deviation of 

noise). The observed regressor images and observed regressand images are used for 

simulation and the ratio of noise standard deviation is used as the ratio of observation error 

in Model II regression.

Fig. 2 presents the results for 20 simulated subject brains, each represented by a pairs of 

images. The statistical significance map is shown according to uncorrected p-value with 

p<0.001 and 5 voxels extent threshold to exclude noise. Type I error and type II error are 

calculated at uncorrected p-value<0.001 inside (for true-positive, TP, and false-negative, 

FN) and outside a caudate mask (for false-positive, FP, and true-negative, TN). In this 

simple model, both OLS and Model II regression control type I error as expected. 

Meanwhile, Model II regression improves true positive rate as compared to OLS regression.

3.3 Empirical demonstration of Model II regression

Image-on-image regression offers a direct opportunity to study associations between 

differing spatially located factors. As an illustrative example, consider potential correlations 

between GM tissue density (a structural measure) and PET signal (a measure of functional 

activity). A first model would associate tissue presence with greater functional signal. An 

analysis of modulating factors for this relationship (such as disease condition, intervention, 

or task) could reveal anatomical correlates of functional reorganization and shed light on the 

applicability of the structural-functional hypothesis.

Following this approach, we perform regression analysis of the relationship between 

anatomical MRI gray matter images (GM, as classified by SPM5) and functional PET 

images. PET and GM data were collected on a total of n = 46 observations (23 subjects 

imaged twice). Regression was performed in both directions in order to quantify both 

structure→function and function→structure relationships. The regression model used 1 

random regressor and a single constant. For the Model II ratio, noise ratio is estimated 

following the method in [11]. The raw data and the resulting regression lines for a single 

voxel comparison are displayed. Fi.e 3 shows that Model II is symmetric, i.e., the mapping 

PET→GM is the inverse of the mapping GM → PET. The corresponding estimated 

variances for Model II are also smaller than the corresponding estimated variances in OLS 

forward regression and OLS inverse regression.

4 Discussion

Properly accounting for error is essential for valid parameter estimation and statistical 

inference. Herein, we have demonstrated that a full consideration of observation variability 

is feasible within the confines of a design matrix paradigm. Furthermore, we can readily 

consider simultaneous treatment of parameters with measurement error (xr) alongside 

traditionally defined fixed parameters (xf). Our formulation of “random observations” 

remains within the context of a “fixed effects” model as the βr are deterministic parameters, 

as opposed to the classic “random effects” model where parameters are stochastic. These 

two approaches are complementary and could be combined for an appropriate experimental 
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framework. Extension of the Model II concepts to time series, hierarchical and complex 

model designs would be a fascinating area for continuing research.

We have observed substantial improvements in model fit and increased statistical power 

using Model II regression as opposed to OLS (Fig. 1A). While robust to model complexity 

(Fig. 1B) and prior estimation of observation variability (Fig. 1C), the improvements were 

not universal. When the OLS is appropriate (i.e., σx ≪ σy), there was a slight increase in 

observed error (Fig. 1A); however, as the relative variance in x increased, the OLS 

assumption of fixed regressors becomes increasingly violated and notable bias and increased 

variance could be observed in the OLS estimates. Examination of the inlays in Fig. 1 reveals 

a slight increase in error for the fixed parameters, βf and β1, but a lack of appreciable bias.

The generalized Model II regression model can be used to analyze any complicated 

relationship by applying Taylor series and expand design matrix. Our presentation of Model 

II regression is inverse consistent, provides a logical framework for exploring relationships 

in multi-modal image analysis, and can help model relative uncertainty in imaging methods. 

Other error models may be more appropriate for specific imaging modalities and warrant 

further consideration.

Our presentation of the empirical analysis is preliminary and ongoing as is highlighted by 

the single voxel presentation. Interpreting the ratio of model variances is subject of active 

consideration as must consider the potential impact of both the imaging variability and 

model fit error in multiple dimensions. As discussed, we currently approximate this 

combined quantity as proportional to the imaging variability alone. Relaxing this assumption 

would greatly aid in generalization of this approached. These methods are available in open 

source as plug-ins for the SPM package.
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Fig. 1. 
The relative RMSEs of Model II to OLS for each estimated coefficient (βr, βf, β1) are plotted 

as a function of the ratio of the true standard deviations, σx:σy (A), the number of random 

regressors,  (B) and the accuracy of the ratio estimate (C). With increasing σx:σy ratios, 

model II regression has increased relative accuracy in βr estimates compared to OLS with 

increasing σx:σy ratios. Comparison of the βf, βr, and β1 error distributions formed is shown 

explicitly in the inlay for the point σx/σy =1 in (A). The gray column shows the OLS error 

and the white column shows the Model II error, the horizontal line is where the error is zero. 

In (C), for one unit σy, the estimated ratio μx was allowed to deviate from the ideal case, 

μx/σx = 1. The common point shared in (A, B, C) is located in (B) at ‘Number of Random 

Regressors’ = 1, and (C) at ‘Ratio of Estimate to Truth’ = 1.
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Figure 2. 
(A) is one regressor image, (B) is one regressand image in Model II BPM simulation. (C) is 

one dimension of the glass brain which is the projected statistical significance. The glass 

brain is shown according to uncorrected p-value p<0.001 and 5 voxels extent threshold to 

exclude noise. The table is calculated with p<0.001.
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Figure 3. 
Model II and Model I (OLS) multi-modality regression analysis. Model I (A) and Model II 

(B) lead to distinct patterns of significant differences (p<0.001, uncorrected) when applied 

to identical empirical datasets and association models. Inspection of single voxel: PET vs 

Grey Matter MRI (GM) illustrates the reasons for the different findings (C). The GLM 

model used for the forward mapping is y = xrβr + β1, where y represents PET image 

intensity and xr represents GM normalized image intensity. On the left-hand side of (C), 

example images of PET and GM are shown, along with the location of the single example 

voxel whose regression analysis is displayed in the right-hand plot. The individual data 

points (blue circles) were fit using OLS (red lines) and Model II regression (green dashed 

line). The inverse mapping for OLS (red dash) is unique from the forward mapping (red 

full). The Model II mapping was found to be reversible and can be represented by the same 

line. Resulting error bars and corresponding σx:σy value estimates are compared between 

OLS and Model II in the lower right-hand insert.
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