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Abstract

Advanced upper-limb prostheses capable of actuating multiple degrees of freedom (DOF) are now 

commercially available. Pattern recognition algorithms that use surface electromyography (EMG) 

signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition 

systems are limited to activate only one degree of freedom at a time. This study introduces a novel 

classifier based on Bayesian theory to provide classification of simultaneous movements. This 

approach and two other classification strategies for simultaneous movements were evaluated using 

non-amputee and amputee subjects classifying up to three DOFs, where any two DOFs could be 

classified simultaneously. Similar results were found for non-amputee and amputee subjects. The 

new approach, based on a set of conditional parallel classifiers was the most promising with errors 

significantly less (p<0.05) than a single LDA classifier or a parallel approach. For 3-DOF 

classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on 

combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on 

combined motions. The low error rates demonstrated suggest than pattern recognition techniques 

on surface EMG can be extended to identify simultaneous movements, which could provide more 

life-like motions for amputees compared to exclusively classifying sequential movements.
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I. Introduction

Myoelectric prostheses are often used to effectively treat upper-limb amputation, and can 

provide a more intuitive method of control than traditional body-powered prostheses. 

Natural limb control involves simultaneous movement of multiple degrees of freedom 

(DOF), which provides significant functionality during activities of daily living (such as 

simultaneous hand closing and wrist rotation to turn a door knob). Recent multifunction 

prosthetic hands [1-5] and advanced arm system prototypes described in the literature 

(which include 2 DOF wrist units) [6-8] offer the mechanical means to restore such function. 

However, an intuitive method of control is desirable to direct the multi-DOF movements 

provided by these devices.

Current clinically-used strategies for myoelectric control may only be extended to provide 

simultaneous control in a small subset of patients. The most common clinical strategy for 

single-DOF myoelectric control, known as ‘direct control’, uses the amplitude of a pair of 

agonist/antagonist EMG signals to directly control the motions of a DOF [9]. Simultaneous 

control using this method requires at least four ‘control sites’ for surface electrode 

placement on the residual limb at which the EMG activity of each can be modulated 

independently of the others. Most patients cannot use direct control methods for 

simultaneous control, as either they do not have enough independently controllable muscles 

in the residual limb (as in a transhumeral amputee), or EMG crosstalk prevents 

independently modulated signals (as in a transradial amputee). Simultaneous myoelectric 

control using direct control has primarily been implemented clinically in patients who have 

undergone targeted muscle reinnervation (TMR) surgery [10], as this procedure constructs 

new control sites that can be independently controlled with decreased crosstalk for two 

DOFs.

Given the limitations of direct control, several approaches to providing simultaneous multi-

DOF commands have been previously investigated to provide classification of simultaneous 

movements to patients without TMR. Many studies have focused primarily on either 

combined wrist movements or combined finger movements but few have investigated 

combined wrist/hand motions that are frequently used during activities of daily living. 

Artificial neural networks were previously used to predict the joint kinematics [11] and 

kinetics [12] of the contralateral arm during mirrored bilateral training, but was limited to 3-

DOF wrist movements. The activation patterns of underlying muscle synergies have also 

been used to predict the movement of multiple wrist DOFs [13, 14] or static postures 

involving multiple finger DOFs [15]. Projection of the EMG signal energy onto an 

orthonormalized set of principle movement vectors has been investigated to predict 

combined movements of up to 3 wrist and hand DOFs [16].
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In contrast, there has been relatively little investigation into extending pattern recognition 

control to direct multiple DOFs simultaneously at different joints. Pattern recognition has 

provided important improvements in myoelectric prosthesis controllability of discrete 

motions when compared to the current clinical paradigm of amplitude-based direct control 

by extending the number of DOFs that can be controlled sequentially [17]. This method 

classifies intended movements by training a classifier to discriminate between features of 

complex EMG signal patterns. Many different feature set and classifier combinations have 

been found successful in classifying intended motion classes [18].Pattern recognition 

systems have subsequently been successfully used to control advanced robotic 

prostheses[19]. This has been accomplished by using a linear combination of EMG signal 

amplitudes to provide an estimate of the subjects' proportional control after selecting 

movement [20] and allowing seamless transitions between classes [17]. The overall pattern 

recognition system, with smoothing ramp added to accommodate spurious 

misclassifications, was tested using virtual environments and a physical prosthesis and 

resulted in a functional system with smooth and continuous control [21].

A limitation of current applications of pattern recognition for myoelectric control, however, 

is that only one class may be selected for a given classifier. This forces the user to use a 

combination of sequential movements to command the prosthesis to perform a coordinated 

task. Such sequential control prevents the user from making fluid, lifelike movements and 

introduces additional cognitive burden in planning the intended movement. Therefore, while 

current pattern recognition methods have improved myoelectric prosthesis control from 

current clinical practices, providing simultaneous DOF control may allow for further 

improved functionality.

Three previous approaches have been attempted in the literature for applying pattern 

recognition classification to combined motions. Davidge used a single LDA classifier in 

which both discrete (1 DOF) movements and combined (2 DOF) movements were labeled as 

unique classes [22]. No information regarding how the motion classes may be related was 

used. Using this method, discrete and combined wrist flexion/extension and hand open/

closed movements for three of four combinations were successfully classified. A second 

approach was proposed by Baker et al., where a parallel classification scheme was used. 

Here, three separate LDA, classifiers were used to predict the motion of three digits 

simultaneously in a non-human primate [23]. The LDA classifiers in this structure were 

trained only with discrete motions, using separate subsets of EMG channels for each 

classifier. A similar architecture of parallel classifiers using support vector machines was 

also suggested for providing classification of simultaneous movements of an elbow and a 

wrist/hand [24].

In this study, we propose a new method for classifying combined movements, which 

employs a parallel set of LDA classifiers that use conditional probabilities to draw 

boundaries between similar motion classes. Two wrist DOFs, one functional hand-grasp 

pattern, and their combinations were used. We compare the performance of this new 

conditional parallel method to those of pattern recognition approaches previously described 

[22-24].
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II. Background

Three types of combined motion pattern recognition strategies were tested, which are 

referred to as single LDA classification, parallel classification, and conditional parallel 

classification (Fig. 1).

The single classification strategy consists of one LDA classifier in which each of the 

discrete and each of the combined motions are separate classes. The parallel classification 

strategy uses one LDA classifier for each DOF, where the decision of each classifier is 

calculated independently. Each classifier consists of three motion classes: the two opposing 

motion classes of a DOF and no motion. Each motion class is trained using data from its 

discrete motion and all combined motions in which it participated. The classification scheme 

then outputs combined actions when two of the parallel classifiers have active motion 

classes as output. The architecture of this strategy is notably different from those previously 

reported [23], which did not use combined motions to train the LDA classifiers, and used 

some channels for one classifier and others for a different classifier [24]. In this study, all 

channels were always used for every classification decision.

The conditional parallel strategy is a novel classification system that also uses a parallel set 

of LDA classifiers, though here a classifier is designated for each discrete motion class. 

Each classifier discriminates between its designated discrete movement and all combined 

motion classes that have this discrete movement as a component. Each classifier is therefore 

conditioned on an a priori assumption that this designated discrete motion class is active. For 

the example in Figure 1, the wrist flexion conditional classifier chooses between wrist 

flexion with hand open, wrist flexion with hand closed or wrist flexion alone. The no motion 

conditional classifier discriminates between all discrete movements and no motion. Each 

conditional classifier discriminates between a unique set of motion classes, and each motion 

class is included in only two of the conditional classifiers. When classifying a movement, 

each of the conditional classifiers chooses a motion class from within its pool of possible 

classes. The final output of this architecture is the movement class that is selected by both of 

the conditional classifiers that contain this motion class. Fig. 2 shows a flowchart detailing 

the exact operations of this classification strategy and the appendix contains algorithms for 

all classification strategies.

III. Methods

A. Experimental Protocol

Six non-amputee subjects (three males and three females) and two transhumeral amputees 

who had undergone TMR surgery [19, 25] (one male and one female) completed the 

following experiment that had been approved by the Northwestern University Institutional 

Review Board. For non-amputee subjects, six pairs of electrodes were placed equidistant 

from each other around the circumference of the upper forearm approximately 2 cm distal to 

the elbow. A ground electrode was placed on the olecranon, away from the muscles of 

interest. For amputees, eight pairs of electrodes were placed on the biceps and triceps, over 

both naturally and reinnervated sites. All data were collected using a Delsys (Boston, MA) 

Bagnoli-16 Amplifier. Signals were amplified to a convenient value through hardware, 
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digitally sampled at 1000 Hz and high pass filtered at 20 Hz using a 3rd order Butterworth 

filter to reduce motion artifact, and acquired using a 16-bit data acquisition system using 

MATLAB (The Mathworks, Natick, MA).

For non-amputee subjects, the motions performed while EMG data were collected were 

hand open/close (HO/HC), wrist flexion/extension (WF/WE), wrist pronation/supination 

(WP/WS), no motion (NM) and all 2-DOF combined motions using these discrete motions. 

Because transhumeral patients require elbow movements, the motions performed while 

EMG data were collected for amputees were elbow flexion/extension (EF/EE), HO/HC, 

WF/WE, NM and all 2-DOF combined motions using these discrete motions. Combined 

motions involving greater than 2 DOFs were not trained due to subjects reporting difficulty 

in visualizing such complex motions during pilot data collection, and the impracticality of 

collecting training data for every combined motion involving more than 2 DOFs. The data 

collection sessions were guided using visual prompts from custom designed software [26].

The subjects were instructed to make medium, constant force contractions to the best of their 

ability. No feedback was provided to the subjects during the data collection procedure. Non-

amputee subjects were seated for the entire data collection session, with their arms resting in 

a neutral position on an armchair. Amputee subjects were also seated with their residual 

limb in a comfortable position parallel to their torso. Subjects were unconstrained and could 

move their arm or residual limb freely during data collection if desired. Ample rest periods 

were provided during the data collection process to prevent fatigue. Each motion class was 

collected four times, each consisting of a three second contraction.

EMG data were divided into 250 ms windows with 50 ms frame increment [17, 27] where 

each 250 ms window was provided to the classifier as a single example for the training 

procedure. The EMG data were represented using four time domain (TD) features which 

were mean absolute value, zero crossing, number of slope sign changes, and waveform 

length which have been used extensively as a feature set in previous myoelectric pattern 

recognition literature [17] [17, 28]. Four-fold cross validation was used to test each 

classification strategy, in that the windows from three of the four contractions of each 

motion were provided as training, and the windows of a fourth contraction were withheld for 

testing. This was done such that each contraction was analyzed as the test contraction one 

time to obtain an average classification across all four repetitions collected. Additionally, a 

parallel classification strategy trained with only discrete motions was trained and compared 

to the parallel classification strategy trained with both discrete and combined movements (as 

described above).

For each of the three classification strategies (see Background), four different DOF 

configurations were tested on non-amputee subjects. Table I displays these four DOF 

configurations, which were chosen based on clinical relevance for transradial amputees. The 

hand DOF is always included as this is a mandatory function; more discrete and combined 

wrist movements are included in more complex DOF configurations. The most complex 

configuration allowed for classification of three DOFs, where any movement from two 

different DOFs could be activated simultaneously. During the data collection for this study, 

subjects reported that combined wrist movements (WF/WE with WP/WS) felt unnatural and 
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were difficult to conceptualize and perform. Thus, a second three DOF configuration was 

tested in this study in which these four combined wrist motions were excluded.

For the parallel classification strategy, the output of the 3 configurations was limited to only 

produce the two active motion classes (the two with the highest likelihood were chosen). 

Similarly, for the conditional parallel strategy, if more than one set of two classifiers had the 

same output, the motion class that had the highest likelihood of the sets was chosen. If none 

of the conditional parallel classifiers had the same output, the final output was set as no 

movement.

B. Classification Strategy Evaluation

Offline classification error, defined as the percent of incorrect classifications, was used to 

evaluate classifier performances. For each of the three combined motion classification 

strategies, the classification error resulting from testing discrete motions and combined 

motions were reported for all four DOF configurations. Additionally, the influence of the 

number of channels on the combined motion strategies was analyzed.

Statistical comparisons were conducted using a general linear model with classification error 

as the response variable, classifier strategy, DOF configuration, and number of channels as 

fixed factors, and subject as a random factor. This test was conducted for both 2 and 3 DOF 

configurations. Post-hoc comparisons with a Bonferroni correction factor were conducted to 

further analyze differences between significant variables.

IV. Results

A. Classification Strategy Performance

Classification strategy was significant (p < 0.05) for all 2 DOF configurations (Fig 3). All 

strategies performed significantly better than the parallel strategy (p<0.05) for all conditions. 

The conditional parallel strategy performed significantly better (p < 0.05) than a single LDA 

classifier.

All strategies performed significantly better than the parallel strategy in both 3 DOF 

configurations (p < 0.05) (Fig. 4). The conditional parallel strategy performed significantly 

better (p < 0.05) than a single LDA classifier for all conditions. Further analysis of the 3 

DOF configurations showed that classification error of the combined movements could be 

significantly (p<0.05) reduced by 4.7 % when wrist and forearm combined motions were 

removed from the classifier.

Similar results were found for the two transhumeral amputee subjects. For both 2 DOF and 3 

DOF configurations (Fig. 5), the parallel strategy had the highest error rates. The conditional 

parallel strategy had the lowest error rates for all conditions, but reduced more error 

compared to the single LDA classifier for the 3 DOF configuration than the 2 DOF 

configuration. Error rates across all conditions tended to be higher with amputees than non-

amputee subjects.
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For all classification strategies, a significant portion of the combined motion error consisted 

of choosing correctly one of the two movements and choosing no motion as the second 

movement. This type of error accounted for, on average across all subjects and 

configuration, 68.0% of the combined motion error with the conditional parallel strategy. 

This error also accounted for similarly high percentages of the total combined motion error 

for the single and parallel classification strategies.

A parallel classification strategy was trained using only discrete motions and tested on 

combined motions. The error for this classification strategy on two DOFs (wrist and hand) 

was found to be 81.9% +/- 3.8% SEM on combined motions and 3.4% +/- 1.8% SEM on 

discrete motions.

B. Effect of the Number of Channels

As expected, for all configurations, the number of channels was significant (p < 0.05). For 2 

DOFs, there was a significant decrease in classification error for up to four channels (p < 

0.05). There were no significant differences between four, five and six channels for the 2 

DOF configurations, though there was a modest (∼2.2%) nonsignificant decrease in 

classification error on average going from four to six channels. For 3 DOF configurations, 

there was a significant decrease in classification error for up to five channels (p < 0.05). 

There was no significant difference between five and six channels, but six channels 

decreased classification error on average by 1.2% compared to five channels for the 3 DOF 

configurations.

There was a significant (p < 0.05) interaction between classification strategy and number of 

EMG channels for both 2 and 3 DOF configurations. This interaction indicated that 

classification strategy was more important (greater differences between strategies) with a 

fewer number of channels. The dependency between classification strategy and number of 

EMG channels is shown (Fig. 6) for a 3 DOF configuration and a similar trend existed 

across all configurations.

Table II shows the relative reduction in classification error with fewer channels across all 

subjects. Of the six recorded channels, three were located on the flexor muscle group and 

three on the extensor muscle group. Large increases in error were observed when more than 

one channel was removed from either the flexor or the extensor groups.

V. Discussion

Simultaneous myoelectric control has been previously implemented clinically using direct 

control of multiple independent EMG control sites [10]. However, pattern recognition 

control offers many benefits, such as the control of a greater number of DOFs. To date, 

pattern recognition control has been most often presented at the cost of simultaneous control 

of multiple DOFs.

This study introduced a new strategy and evaluated its classification performance when 

compared to two other potential classification strategies of simultaneous movements for 

powered prostheses. The new strategy – the conditional parallel method – demonstrated 
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superior classification performance compared to other techniques. The differences in 

performance between the three combined motion classification schemes may be explained 

by the different approaches in which these methods draw boundaries to discriminate 

between motion classes. Each of the classification methods tested used linear boundaries, 

and the high training accuracies in the single classification scheme (approximately 95% on 

average across all DOF configurations) suggest that it is possible to linearly separate the 

discrete and combined motions investigated in this study. These results are consistent with 

previous studies that show linear classifiers to perform as well as more complex nonlinear 

classifiers [29].

Within the conditional parallel architecture, each classifier makes an a priori assumption that 

one discrete motion class was active. By making such assumptions, each conditional 

classifier is able to decrease the number of classes that must be discriminated in feature 

space. This allows for better definition of boundaries between motion classes within any 

given classifier. The significant benefit of using conditional classifiers for classifying 

combined motions, likely derives from similarities in EMG patterns in motions that share a 

discrete component, making it more important to draw precise boundaries between similar 

motion classes to maintain low error. This is exemplified in Fig. 7. as wrist extension shares 

a similar EMG pattern to wrist extension combined with hand close. Thus the conditional 

parallel strategy is able to correctly discriminate between WE and WE/HC while the other 

two strategies make multiple misclassifications between these two classes. The use of 

multiple classifiers for this architecture increases the computation burden, but also 

significantly improves performance compared to the less complex strategies.

In contrast, the parallel scheme assumes that the EMG features of motion classes that share 

at least one active DOF motion (e.g. WF, WF/HO, and WF/HC for a 2 DOF configuration) 

will be clustered in feature space such that they are linearly separable from motion classes 

sharing the opposite motion (e.g. WE, WE/HO, and WE/HC) and motion classes with no 

motion in that DOF (e.g. NM, HO, and HC). The overall poorer performance of the parallel 

method suggests that this assumption is not always valid. In particular, the classification 

accuracies for each DOF classifier in the parallel scheme demonstrate that while some DOFs 

may be well discriminated by this assumption, others, such as the hand DOF–which had 

12-13% higher classification error compared to the other DOFs in the parallel strategy–are 

not. It is not surprising that the single classifier, which does not rely on the assumptions of 

the parallel scheme or use any the a priori information of the conditional parallel scheme, 

performed at error rates in between the other two.

The conditional parallel strategy also provided the lowest discrete motion error of the three 

combined-motion classification schemes (Fig. 3 and 4), further suggesting it as a preferred 

method for pattern recognition-based classification of simultaneous movement. Though 

none of the combined motion strategies tested were equivalent to discrete motion error 

levels seen with sequential classification, the conditional parallel scheme produced 

approximately 3.7% higher overall classification error (on average across all four DOF 

configurations for six channels) than sequential classification. Minimizing discrete motion 

error is an important component of developing a combined- motions controller, as ideally 

these new methods should provide additional capabilities without impairing the current 
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practice of sequential, discrete motion classification. Furthermore, clinical experience with 

multi-DOF direct control techniques [10] also suggests that misclassifications of discrete 

actions into combined actions is very detrimental to performance and is frustrating for the 

user.

An additional component of classification error with potential significance to real-time 

performance is the combined motion error where one discrete component is correct and the 

other is misclassified as no motion. It is anticipated that errors where one of the discrete 

components is misclassified as “No Motion” will have a less detrimental impact on online 

performance and user frustration than errors where DOFs are incorrectly activated [30]. 

Interestingly, this unique subset of error made up over two thirds of the combined motion 

classification errors observed in this study.

The reduction of classification error achieved by the conditional parallel scheme is most 

pronounced in situations where the task of discriminating between motion classes is more 

difficult (i.e. in circumstances where groupings of EMG features are more likely to overlap 

between classes). EMG features recorded from amputated limbs tend to similarly be less 

separable than features recorded from intact limbs [31]. The cause of such decreases in 

motion class separability has not been studied in detail, but may include less experience 

using pattern recognition systems [32], lack of proprioceptive feedback for producing 

consistent EMG patterns [33], and decrease in EMG information from altered limb anatomy 

or muscle atrophy.

For all three classification strategies, there was a significant increase in error when fewer 

EMG channels were provided to the classifier. For both 2 and 3 DOF configurations, the 

interaction term between classifier type and number of channels was significant; indicating 

that the differences in classification error observed between classification strategies depends 

on the number of channels used. Interestingly, post-hoc tests evaluating the effect of 

increased channel number on classification error show that all conditions except for 

combined wrist/hand, classification error may be reduced by increasing up to 5 EMG 

channels for combined motions, after which no significant benefit is seen. This result differs 

from previous reports that more than 4 EMG channels provide no significant benefit to 

reducing classification error when attempting to classify up to 12 discrete postures [34, 35]. 

This difference is likely attributed to a significant increase in motion classes when 

combined-motions are added (up to 19 classes in the 3 DOF case), and similarities in EMG 

patterns between motion classes that share similar activity at a DOF (e.g. WF and WF/HC).

The applications of this work, which investigated classification of simultaneous wrist and 

hand movements, are primarily targeted to transradial amputees. The successful 

classification of combined wrist/hand movements in this study is particularly important, 

given the lack of significant previous work on classifying wrist and hand movements 

simultaneously. This is also highly relevant given the recently advances in multifunction 

prosthetic hands and emerging advanced arms that include both rotation and flexion units.

One limitation to the classification strategies presented is the requirement that training data 

be collected for the combined classes. The parallel classification strategy is the only one 
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presented that has a natural way to develop system that does not require combined motion 

training data. However, a supplementary analysis found that limiting training data to discrete 

motions substantially increased the combined motions error to > 80%. This method for 

training parallel scheme was therefore not used in this study. Other approaches such as the 

use of muscle synergies may prove beneficial for pattern recognition classification of 

simultaneous movement to reduce the amount of training data required.

This study was limited to only analyzing the classification abilities of different strategies and 

did not test online control. Online control is a function not only of classification accuracy, 

but also the ability to grade the level or speed of the desired motions. However, previous 

studies have shown a strong correlation between classification accuracy and online 

controllability [36, 37], and thus classification strategies with higher accuracy tend to yield 

more controllable systems. The conditional parallel strategy achieved fewer errors than the 

single strategy across multiple configurations, but the difference in magnitude of the overall 

classification error rate between the single strategy and the conditional parallel strategy was 

small, especially for 2-DOF classification. For 3-DOF classification on non-amputee 

subjects, the conditional parallel approach reduced error rates to 6.6% on discrete and 10.9% 

on combined motions compared to the single LDA which had error rates of 9.4% on discrete 

and 14.1% on combined motions. Amputees had a similar amount of decrease in overall 

classification error, but higher error levels were observed across all strategies. It is likely 

that these benefits in classification would lead to increased controllability, but additional 

investigation should be conducted using online control metrics.

This study is also limited the lack of online performance measures. Regardless, the results of 

this study demonstrate the need for additional investigation into the benefits and practicality 

of using simultaneous pattern recognition control, in particular the conditional parallel 

strategy. Therefore, future studies will use a simultaneous pattern recognition controller in 

real-time, in control subjects and then with both transradial and TMR subjects at the 

Rehabilitation Institute of Chicago.
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Appendix

A. Algorithm for single LDA strategy

f ← # of features

X ← features measurements at each window; ∈ ℝf

MC ← {set of discrete and dual combined motion classes}

RETURN(arg max(p(X|MC)))
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B. Algorithm for parallel strategy

NDOF ← # of DOFs

DOF ← {set of all DOFs}

MC ← {set of discrete and dual combined motion classes}

f ← # of features

X ← features measurements at each window; ∈ ℝf

for i=1:NDOF

 OUTPUT_CLASSi = arg max(p(X|TRAIN_CLASSES))

end

if sum(OUTPUT_CLASS > 1) > 2

 CLASS(1) = arg max(p(X|OUTPUT_CLASSES))

 CLASS(2) = arg max(p(X|OUTPUT_CLASS ≠ CLASS1))

else

 RETURN(OUTPUT_CLASS)

end

C. Algorithm for Conditional Parallel Strategy

f ← # of features

X ← features measurements at each window; ∈ ℝf

ND ← # of discrete motion classes

DMC ← {set of all Discrete Motion Classes}

MC ← {set of discrete and dual combined motion classes}

for i = 1:ND

 OUTPUT_CLASS1,i = DMCi

 OUTPUT_CLASS2,i = arg max(p(X|Movement#1 = DMCi))

end

Np ← # of paired of columns in OUTPUT_CLASS

P ← {set of all columns appearing twice in OUTPUT_CLASS} ∈ ℝNp

if Np = 0

 RETURN(No Motion)

elseif Np = 1

 RETURN(P)

elseif Np > 1

 RETURN(arg max (p(X|P)))

end
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Fig. 1. 
Block diagrams describing each classification strategy for 2-DOF simultaneous wrist and 

hand movements. This diagram only shows classification strategies for 2 DOFs, but these 

techniques can be extended to include more DOFs by adding additional classifiers for the 

parallel and conditional parallel strategies. Each box is an LDA classifier with motion 

classes from one or more DOFs as indicated by their label. The single LDA classification 

strategy (left) discriminates all discrete and combined classes as separate motions. The 

parallel classification strategy (middle) discriminates each DOF individually using two 

LDA classifiers. The conditional parallel strategy (right) has a separate classifier for each 

motion class, where each classifier has a class for a specific discrete movement and classes 

for each combined movement in which the discrete movement is one of the two 

movements.. The two classifiers that choose the same combination of motions determine the 

output of the conditional parallel classifiers.

Young et al. Page 16

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 October 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Flowchart for Conditional Parallel Strategy. EMG features are sent to each conditional 

classifier and each classifier outputs two motion classes (note one or both outputs can be no 

motion). The algorithm checks to see if any classifiers had the same output. If not, no 

motion is selected. Otherwise, if only two classifiers had the same output, that output is 

selected. If more than two classifiers had the same output, then maximum likelihood of the 

pairs selected is performed to choose which pair to select.
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Fig. 3. 
Discrete motion classification error and combined motion classification error of the three 

combined motion classifiers for both 2 DOF configurations on non-amputee subjects. 

Configuration 1 is wrist and hand DOFs and configuration 2 is rotation and hand DOFs. 

Results are shown for 6 channels of EMG and are an average of six subjects. Error bars 

show +/- 1 SEM.
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Fig. 4. 
Discrete motion classification error and combined motion classification error of the three 

combined motion classifiers for both 3 DOF configurations on non-amputee subjects. 

Configuration 1 is wrist, rotation and hand DOFs and all combinations except for 

combinations between rotation and wrist movements and configuration 2 is wrist, rotation 

and hand DOFs including all possible combined movement combinations. Results are shown 

for 6 channels of EMG and are an average of six subjects. Error bars show +/- 1 SEM.
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Fig. 5. 
Discrete and combined motion classification error for two transhumeral amputees. The 2 

DOF configuration includes elbow and hand DOFs, and the 3 DOF configuration 

additionally includes the wrist flexion/extension DOF. Results are shown for an average of 

the two transhumeral subjects.
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Fig 6. 
Combined motion classification error of the three combined motion classifiers as a function 

of number of EMG channels. These data are shown for the 3 DOF configuration consisting 

of wrist, hand, and rotation DOFs without combined movements between wrist and rotation; 

however, the same trend existed across all DOF configurations. Results are shown for 6 

channels of EMG and are an average of six subjects. Error bars show +/- 1 SEM.
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Fig. 7. 
EMG signals for two discrete movements and their combined movement. EMG data is 

shown from one non-amputee subject and all six channels. Each vertical dotted line divides 

50 ms of data, which corresponds to a single classifier decision. A total of 0.5 seconds of 

data is shown for each motion. The decisions of the parallel, single and conditional parallel 

strategies are shown for each window. Decisions in bold font were incorrectly classified, 

while decisions in black (non-bold) were correctly classified.
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Table I
DOF Configurations Tested in this Study

Number of DOFs DOFs Discrete Motion Classes Combined Motion Classes

2 Hand, Wrist HO/HC, WE/WF WE+HO, WE+HC
WF+HO, WF+HC

2 Hand, Rotation HO/HC, WS/WP WS+HO, WS+HC
WP+HO, WP+HC

3 Hand, Wrist Rotation HO/HC, WE/WF
WS/WP

WE+HO, WE+HC
WF+HO, WF+HC
WS+HO, WS+HC
WP+HO, WP+HC

3 Hand, Wrist Rotation HO/HC, WE/WF
WS/WP

WE+HO, WE+HC
WF+HO, WF+HC
WS+HO, WS+HC
WP+HO, WP+HC
WE+WS, WE+WP
WF+WS, WF+WP

*
Classes include discrete motions, combined motions, and no motion.
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Table II
Contributions of each Channel

Total # of Channels # on Flexor Group # on Extensor Group Increased # of Errors

6 3 3 0% (baseline)

5 2 3 10.4%

4 2 2 34.7%

3 2 1 95.8%

2 1 1 224.6%
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