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Abstract

This study described the cerebrospinal fluid (CSF) exposure of vancomycin in 8 children 

prescribed intravenous vancomycin therapy for cerebral ventricular shunt infection. Vancomycin 

CSF concentrations ranged from 0.06 to 9.13 mg/L and the CSF: plasma ratio ranged from 0 to 

0.66. Two children out of three with a staphylococcal CSF infection had CSF concentrations > 

minimal inhibitory concentration at the end of the dosing interval.
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Cerebral ventricular shunt infections are a common cause of shunt failure and occur in 11% 

of children with shunts.1 In this setting, vancomycin is the most commonly used 

antimicrobial drug because staphylococcal species account for nearly 75% of shunt 

infections.2 Successful cerebrospinal fluid (CSF) sterilization depends on optimal drug 

exposure and, despite its widespread use, limited vancomycin CSF pharmacokinetic (PK) 

data are available in children. This study describes the CSF exposures of vancomycin in 

children with a shunt.

Methods

This was a prospective, single-center, open label PK study of intravenous (IV) vancomycin 

in children with suspected or documented ventricular shunt infection. Children <18 years of 
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age were included if they received IV vancomycin and had CSF collected per standard care. 

Vancomycin dosing, infusion rate and duration of treatment were prescribed at the discretion 

of the treating physician. This trial was approved by the institutional review board of the 

Duke University Medical Center.

CSF was collected as part of standard of care through ventricular or CSF reservoir tap, if the 

subject had a shunt, or by lumbar puncture if no shunt was present. Vancomycin serum 

concentrations and dosing were retrospectively recorded from routine therapeutic drug 

monitoring.

Serum PK samples were analyzed by immunoassay in the Duke Hospital Clinical 

Laboratory using a validated assay under Good Laboratory Practice (GLP) standards. CSF 

PK samples were analyzed using a validated liquid chromatography–tandem mass 

spectrometry assay (HPLC/MS/MS).

The serum PK of vancomycin was characterized using nonlinear regression in WinNonlin v.

6.3 (Pharsight Co., St. Louis, MO). A one-compartment model with zero-order infusion was 

used to fit the serum PK data based on previous vancomycin PK models in children.3 The 

model fit was evaluated using standard model goodness of fit criteria. Vancomycin CSF 

penetration was measured using the ratio of CSF to serum concentrations (CSF: serum) at 

the same time point. Because serum and CSF concentrations (Cserum and CCSF) were not 

sampled simultaneously, Cserum was predicted at each CSF sample time point using the 

following equation:

where Cmax is the predicted maximal serum concentration; ke the elimination constant in 

serum and t the time of CSF sampling. Using the same equation, serum trough concentration 

(Cmin) was also predicted during the dosing interval when CSF was sampled.

As a pharmacodynamics (PD) endpoint, CCSF was compared with minimum inhibitory 

concentration (MIC) of vancomycin for children with bacteriologically proven infection. 

MIC was determined by the clinical microbiology laboratory using validated broth 

microdilution method or Etest.

Demographics and clinical characteristics were summarized using descriptive statistics using 

STATA 12 (College Station, TX).

Results

Serum and CSF samples were obtained from 8 children (4 males) with a median (range) age 

of 4.3 years (0.2, 17), a weight of 14 kg (1, 116), and a serum creatinine of 0.42 mg/dL 

(0.13, 0.82) (Table 1). All children had a cerebral ventricular shunt except for one subject 

who had a history of external ventricular drain that was removed 7 days prior to the lumbar 

puncture. Among the 5 children (63%) who had a positive CSF culture, 2 had a methicillin-

resistant Staphylococus aureus (MRSA) (vancomycin MIC of 0.75 and 1 mg/L) and 1 had a 
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Staphylococcus epidermidis (vancomycin MIC of 2 mg/L). All children with confirmed 

infection underwent externalization of their ventriculo-peritoneal shunt and placement of an 

external ventricular drain. Shunt was internalized when CSF cultures were negative as 

decided by the treating physician. All children with confirmed infection were cured and did 

not have recurrent infection over a 6 month period. Of the 3 children with confirmed 

Staphylococus sp infection, subject #2 and #8 cleared the infection after 3 days of 

vancomycin therapy, whereas subject #5 had persistent MRSA in CSF on day 3 and had his 

first negative CSF culture on day 5. The median vancomycin dose was 19 mg/kg/dose (11, 

30) every 8 hours (7–13) for a mean duration of 17 days (4, 27). The median number of 

doses received prior to PK sampling was 47 (7–74).

Of the 8 children enrolled, one was excluded from the serum PK analysis because only a 

single serum sample was collected. The median number of serum and CSF samples per child 

was 5 (1, 14) and 2 (1, 3), respectively, resulting in a total of 43 and 12 serum and CSF 

samples, respectively. In serum, the median CL was 0.08 L/h/kg (0.05, 0.15), V was 0.70 

L/kg (0.22, 4.46) and ke was 0.12 /h (0.02, 0.26). The median predicted serum Cmin was 

11.5 mg/L (3.9, 32.1).

The median CCSF was 1.07 mg/L (0.06, 9.13), and CSF:serum ratio was 0.08 (0, 0.66). 

Visual inspection of scatter plots suggested no relationship between CSF:serum ratios and 

age, time after last dose, or CSF white blood cell count (data not shown). However, it 

appeared that CSF: serum ratio increased as CSF protein level increased (data not shown).

The 2 children with MRSA meningitis had CCSF (1.15 and 9.13 mg/L) above the 

vancomcyin MIC (0.75 and 1 mg/L) at the end of the dosing interval. The child with the S. 

epidermidis isolate had a CCSF (0.06 mg/L) below the MIC (2 mg/L) 5 h after the previous 

dose.

Discussion

Assessment of CSF vancomycin exposure of children with shunt infection is critical because 

this compartment represents the drug’s site of action. The range of CCSF (0.06, 9.13 mg/L) 

in our small cohort was similar to previous studies in children (0 to 6.6 mg/L).4–7 A wider 

range of concentrations has been reported in adults (0.1, 22.3 mg/L).8,9 This variability 

could be caused by a number of factors, including different vancomycin dosing and CSF 

sampling times, age-related changes in blood brain barrier (BBB) and blood-cerebrospinal 

fluid barrier permeability, and different disease states. Limited data suggest increased drug 

diffusion into CNS with decreasing age.10 However, no relationship between age and CSF 

penetration was observed in our small cohort. In addition to maturational change, variability 

could be explained by difference in disease state. Inflammation associated with meningitis is 

thought to increase drug BBB permeability, resulting in higher CSF concentrations.11 In the 

present study, the subject who had the highest CCSF (9.13 mg/L) had elevated inflammatory 

markers (leukocytosis, elevated protein) in the CSF. Moreover, this same subject had the 

highest serum creatinine (1 mg/dL) at the time of CSF collection which could have 

contributed to higher vancomycin and CSF exposure due to reduced renal elimination.
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Vancomycin displays time dependent activity and area under the concentration-time curve 

(AUC):MIC is the parameter found to best correlate with antimicrobial efficacy.12 In adults 

with S. aureus pneumonia or bacteremia, serum AUC:MIC>400 has been associated with 

clinical success, and has therefore become the vancomycin PK/PD target.12,13 However, this 

serum PK/PD target has not been evaluated in patients with meningitis and its extrapolation 

may not be valid due to variable vancomycin penetration in CSF. Adult studies have led to 

recommendations of trough concentrations of at least 15 mg/L for complicated infections, if 

vancomycin MIC is ≤1 µg/mL.14 In our study cohort, serum trough concentration was < 15 

mg/L in all children but 1. None of the 3 children with proven Staphylococcus spp infection 

met that target, but all cleared the infection.

The optimal method to assess vancomycin penetration into CSF is to compare AUC from 

both the CSF and serum compartments.4,15 Calculating AUC in the CSF is challenging 

because it requires multiple measurements of vancomycin over the dosing interval in the 

CSF. Because we only collected 1–3 CSF PK samples per subject, we were limited to 

calculating CSF:serum ratios at single time points. In the present study, distribution of 

vancomycin in CSF was markedly different from serum; elimination from the CSF 

compartment appeared to be slower than in serum allowing CCSF to be more stable than 

Cserum over the dosing interval (Figure 1). This difference in PK profiles partly explains why 

CSF:serum ratios (0–0.66) were variable between subjects in our cohort as well as in 

previous reports in children (0.14 to 0.68).5,7 However, a previous comparison of 

vancomycin AUC in CSF versus serum in 6 children on vancomycin therapy resulted in an 

AUC CSF:serum ratio range (0.01–0.18) comparable to the ratios observed in our study.4

Due to our inability to estimate CSF AUC:MIC as a PK/PD endpoint, we compared CCSF to 

the MIC for the 3 children with staphylococcal meningitis; only 2 of those achieved a CCSF 

above the observed MIC. Despite these findings, all three children subsequently cleared the 

infection. Among those 3 cases of documented staphylococcal infection, we found no 

correlation between CCSF and time to clear the infection. Subject #5 had the highest 

vancomycin CCSF (4.79 mg/L and 9.13 mg/L), but sterilization of CSF was slightly delayed 

compared with the 2 other children with Staphylococcus sp in their CSF (5 vs 3 days).

Results from this study highlight the need to better characterize CSF vancomycin exposure. 

Due to different PK profiles between serum and CSF, vancomycin AUCs need to be 

described in both matrices and correlated to outcomes in children with S. aureus meningitis. 

This will allow the determination of an AUC:MIC target in the CSF compartment and 

establish a valid surrogate serum PD endpoint to guide vancomycin dosing. Children with 

shunt are a population with easier access to CSF, would benefit from this knowledge and 

should be considered as a target population in future studies.

In summary, vancomycin concentrations in CSF in our cohort of children were low but 

persistently detectable across the dosing interval. Penetration ratios are variable probably 

because of a slower clearance of vancomycin in CSF compared with serum. The CSF 

concentration range described in this small cohort was associated with successful therapy. 

Future evaluations should include prospective collection of sufficient number of serum and 
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CSF concentrations to allow estimation of AUC ratios, as well as documentation of clinical 

outcomes to better identify serum PD endpoints for shunt infection.
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Figure 1. Vancomycin concentrations over time
CSF, cerebrospinal fluid

Two cerebrospinal fluid concentrations at 5 and 10 h are not paired with a predicted serum 

concentration. These concentrations are from the child who was excluded from the 

pharmacokinetic analysis due to insufficient serum sampling.
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