
Chronic cannabinoid CB2 activation reverses paclitaxel 
neuropathy without tolerance or CB1-dependent withdrawal

Liting Deng1,2,3, Josée Guindon1,4, Benjamin L. Cornett4, Alexandros Makriyannis5, Ken 
Mackie1,3,4, and Andrea G. Hohmann1,3,4,*

1Program in Neuroscience, Indiana University, Bloomington, IN, USA

2Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA

3Interdisciplinary Biochemistry Graduate Program, Indiana University, Bloomington, IN, USA

4Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA

5Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, 
MA, USA

Abstract

Background—Mixed cannabinoid CB1/CB2 agonists such as Δ9-tetrahydrocannabinol (Δ9-

THC) can produce tolerance, physical withdrawal, and unwanted CB1-mediated central nervous 

system side effects. Whether repeated systemic administration of a CB2-preferring agonist 

engages CB1 receptors or produces CB1-mediated side effects is unknown.

Methods—We evaluated anti-allodynic efficacy, possible tolerance, and cannabimimetic side 

effects of repeated dosing with a CB2-preferring agonist AM1710 in a model of chemotherapy-

induced neuropathy produced by paclitaxel using CB1KO, CB2KO, and WT mice. Comparisons 

were made with the prototypic classical cannabinoid Δ9-THC. We also explored the site and 

possible mechanism of action of AM1710.

Results—Paclitaxel-induced mechanical and cold allodynia developed equivalently in CB1KO, 

CB2KO, and WT mice. Both AM1710 and Δ9-THC suppressed established paclitaxel-induced 

allodynia in WT mice. Unlike Δ9-THC, chronic AM1710 did not engage CB1 activity or produce 

antinociceptive tolerance, CB1-mediated cannabinoid withdrawal, hypothermia, or motor 

dysfunction. Anti-allodynic efficacy of systemic AM1710 was absent in CB2KO mice or WT mice 

receiving the CB2 antagonist AM630, administered either systemically or intrathecally. Intrathecal 

AM1710 also attenuated paclitaxel-induced allodynia in WT but not CB2KO mice, implicating a 

possible role for spinal CB2 receptors in AM1710 anti-allodynic efficacy. Finally, both acute and 
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chronic treatment with AM1710 decreased mRNA levels of tumor necrosis factor alpha and 

monocyte chemoattractant protein-1 in lumbar spinal cord of paclitaxel-treated WT mice.

Conclusions—Our results highlight the potential of prolonged use of CB2 agonists for 

managing chemotherapy-induced allodynia with a favorable therapeutic ratio marked by sustained 

efficacy and absence of tolerance, physical withdrawal, or CB1-mediated side effects.

Keywords

Cannabinoid CB2; chemotherapy-induced neuropathic pain; knockout mouse; tolerance; 
precipitated withdrawal; side effect

Introduction

Cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of 

cannabis, are used clinically to treat neuropathic pain and chemotherapy-induced nausea and 

vomiting (1, 2). However, unwanted psychotropic side effects limit widespread therapeutic 

use (1). These side effects (e.g. psychoactivity, dizziness, physical dependence) are centrally 

mediated by cannabinoid CB1 receptors (3, 4). A preferable strategy that avoids safety and 

efficacy concerns while preserving antinociceptive property is to target cannabinoid CB2 

receptors.

CB2 receptors are found predominantly in immune cells and tissues and also occur at low 

levels, relative to CB1, in the central nervous system (CNS) (5, 6). In preclinical studies, 

CB2-preferring agonists promote neuroprotection (7–9) and produce antinociception (10–

19). However, CB2-preferring agonists often have significant affinity at CB1 receptors. 

Given the high abundance of CB1 in the CNS, even low-level CB1-occupancy by CB2-

preferring agonists could eliminate the benefits of receptor selectivity and/or produce 

adverse side effects following chronic treatment (2). Whether it is possible to obtain 

therapeutic benefits from repeated systemic administration of CB2-preferring agonists 

without engaging CB1 receptors or producing unwanted CB1-mediated side effects remains 

poorly understood.

Dose-limiting peripheral neuropathy can develop in cancer patients receiving 

chemotherapeutic agents (paclitaxel, cisplatin, vincristine, etc.) (20). Side effects and limited 

efficacy of clinically available medications make this neuropathy difficult to manage (21). 

Thus, there is a significant need to identify novel analgesics for treating chemotherapy-

evoked neuropathic pain. CB2-preferring agonists exhibit antinociceptive properties in 

animal models of chemotherapy-induced neuropathy (22–27). However, the site of action 

and mechanism by which CB2 receptors modulate chemotherapy-induced neuropathy are 

not yet clear. Several proinflammatory cytokines (e.g. tumor necrosis factor alpha (TNFα), 

interleukin-1 beta (IL-1β), interleukin 6 (IL-6)) and downstream chemokines (e.g. monocyte 

chemoattractant protein-1 (MCP-1)) are implicated in mechanisms of neuropathic pain (28–

35) and CB2-mediated actions (36). The potential contributions of such cytokines and 

chemokines in the antinociceptive action of CB2 agonist on chemotherapy-induced 

neuropathy remain unknown.

Deng et al. Page 2

Biol Psychiatry. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Here, we characterized antinociceptive efficacy of the CB2-preferring agonist AM1710 in a 

model of paclitaxel-induced neuropathy using CB2 knockout (CB2KO), CB1 knockout 

(CB1KO), and wildtype (WT) mice. We evaluated whether repeated administration of 

AM1710 would produce antinociceptive tolerance or CB1-mediated side effects (i.e. 

physical withdrawal, motor ataxia, and hypothermia). In addition, we investigated the site of 

action and the impact of AM1710 on mRNA levels of pro-inflammatory cytokines and 

chemokine in lumbar spinal cords of paclitaxel-treated mice.

Methods and Materials

Subjects

Adult CB2KO (B6.129P2-CNR2(tm1Dgen/J), Jackson, ME, USA) and WT littermates 

(Jackson) on C57BL/6J background, and CB1KO (generated as previously described (4)) 

and WT littermates (Charles River, MA, USA) on CD1 background, weighing 25–33g and 

of both sexes, were used in these experiments. Mice were periodically backcrossed to 

maintain genetic integrity. Animals were single-housed in a temperature-controlled facility 

(73±2 °F, 45% humidity, 12h light/dark cycle, lights on at 7am), with food and water ad 

libitum provided. All experimental procedures were approved by Bloomington Institutional 

Animal Care and Use Committee of Indiana University and followed guidelines of the 

International Association for the Study of Pain (37).

Drugs and chemicals

Paclitaxel (Tecoland, NJ, USA) was dissolved in cremophor-vehicle (1:1:18 ratio of 

cremophor® EL (Sigma-Aldrich, MO, USA)/ethanol (Sigma-Aldrich)/saline (Aqualite 

System, IL, USA)). AM1710 (Makriyannis lab), AM630 (Cayman, MI, USA) and 

rimonabant (SR141716A, National Institute on Drug Abuse (NIDA), MD, USA) were 

dissolved in vehicle (5:2:2:16 ratio of dimethyl sulfoxide (DMSO, Sigma-Aldrich)/

alkamuls® EL-620 (Rhodia, NJ, USA)/ethanol/saline). Δ9-THC (NIDA) was dissolved in 

vehicle (1:1:18 ratio of ethanol/cremophor/saline). Drugs were administered 

intraperitoneally (i.p.) to mice in a volume of 5 ml/kg. AM1710 and AM630 were also 

dissolved in vehicle (1:1:1:17 ratio of DMSO/alkamuls/ethanol/saline) and administered 

intrathecally (i.t.) to animals in a volume of 5 μl (38).

General experimental protocol

All experiments were conducted double-blinded with mice randomly assigned to 

experimental conditions. Prior to paclitaxel treatment, no genotype or gender differences 

were detected in any dependent measure (P>0.26 for all comparison). Paclitaxel (4 mg/kg 

i.p.) was administered four times on alternate days (cumulative dose: 16 mg/kg i.p.) to 

induce neuropathy (39). Controls received an equal volume of cremophor-vehicle. 

Development of paclitaxel-induced allodynia was assessed every two days.

Effects of pharmacological manipulations were assessed at 30 min post drug administration 

during the maintenance phase of paclitaxel-induced neuropathy (day 15 post initial 

paclitaxel injection). In Experiment #1, we assessed the dose responses of acute AM1710 on 

mechanical and cold allodynia in paclitaxel-treated WT (C57BL/6J) animals. In Experiment 
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#2, we examined anti-allodynic efficacy and possible side effects of chronic AM1710 (5 

mg/kg/day i.p. × 9 days) in paclitaxel-treated CB2KO, CB1KO, and respective WT 

littermates. Effects of chronic Δ9-THC (5 or 10 mg/kg/day i.p. × 9 days) in paclitaxel-treated 

WT (C57BL/6J) animals were also evaluated. Responsiveness to mechanical and cold 

stimulation was evaluated on treatment days 1, 4 and 8. Motor performance and rectal 

temperature were measured on treatment days 2 and 7. We also assessed whether chronic 

AM1710 would activate CB1 receptors sufficiently to produce CB1-dependent withdrawal 

symptoms following treatment with a CB1 antagonist. Thus, after the last injection of 

AM1710 (treatment day 9), we challenged CB2KO and WT mice with the CB1 antagonist 

rimonabant (10 mg/kg i.p.) to precipitate CB1-mediated withdrawal. We also challenged 

CB1KO and WT mice receiving chronic AM1710 with the CB2 antagonist AM630 (5 mg/kg 

i.p.) to determine if this treatment elicits behavioral signs reminiscent of CB1 or opioid 

receptor-mediated withdrawal. In Experiment #3, we examined pharmacological specificity 

of AM1710 in paclitaxel-treated WT or CB1KO mice that received vehicle, AM1710 (5 

mg/kg/day i.p. × 8 days) alone or co-administered with AM630 (5 mg/kg/day i.p. × 8 days). 

In Experiment #4, we investigated the site of action of AM1710. We evaluated whether 

antagonism of spinal CB2 receptors by AM630 (5μg i.t.) would block the anti-allodynic 

effects of systemic AM1710 (5 mg/kg i.p.) in paclitaxel-treated WT mice. We also 

examined effects of intrathecal AM1710 (5μg i.t.) on paclitaxel-evoked allodynia in CB2KO 

and WT mice. In Experiment #5, we explored the impact of paclitaxel and AM1710 on 

spinal mRNA levels of pro-inflammatory cytokines (TNFα, IL-1β, IL-6), chemokine 

(MCP-1), and markers of the endocannabinoid system (CB1, CB2, fatty acid amide 

hydrolase (FAAH), monoacylglycerol lipase (MGL)) in WT (C57BL/6J) mice.

Assessment of mechanical allodynia

Withdrawal thresholds (g) to mechanical stimulation were measured in duplicate for each 

paw using electronic von Frey anesthesiometer supplied with 90-gram probe (IITC, CA, 

USA) (25). See Supplementary Material.

Assessment of cold allodynia

Response time (s) spent attending to (i.e. elevating, licking, biting, or shaking) the paw 

stimulated with acetone (Sigma-Aldrich) was measured in triplicate for each paw to assess 

cold allodynia (39). See Supplementary Material.

Evaluation of cannabinoid CB1 withdrawal symptoms

WT (C57BL/6J) mice receiving vehicle or Δ9-THC (5 or 10 mg/kg/day i.p. × 9 days) were 

challenged with vehicle or rimonabant (10 mg/kg i.p.). CB2KO and WT littermates 

receiving vehicle or AM1710 (5 mg/kg/day i.p. × 9 days) were challenged with rimonabant 

(10 mg/kg i.p.). CB1KO and WT mice receiving vehicle or AM1710 (5 mg/kg/day i.p. × 9 

days) were challenged with AM630 (5 mg/kg i.p.). Challenge compounds were given 45 

min post final injection. Mice were videoed and the number of paw tremors, headshakes, 

and scratching bouts were scored over 30 min following challenge (40).
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Rotarod test

Motor performance was assessed using an accelerating rotarod (IITC) (4–40 rpm with cut-

off time of 300 s) (41). See Supplementary Material.

Rectal temperature

Rectal temperature (°C) was measured using a thermometer (Physitemp, NJ, USA) with 

mouse rectal probe (Braintree, MA, USA).

RNA extraction and qRT-PCR

Total RNAs were extracted from lumbar spinal cords (42). One-step quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) was performed using PowerSYBR 

green PCR kit (Applied Biosystems, CA, USA) to quantify mRNA levels (43). The 

quantified mRNA levels were expressed as fold induction relative to control. Primer 

sequences (Table S1) see Supplementary Material.

Statistical analyses

The dose-response curves and ED50 values for AM1710 were determined using GraphPad 

Prism (CA, USA). Analysis of variance (ANOVA) for repeated measures was used to 

determine time course of paclitaxel-induced allodynia and drug effects. One-way ANOVA 

was used to identify the source of significant interactions at each timepoint and compare 

post-injection responses with baselines, followed by Bonferroni post hoc tests or two-tailed 

t-tests, as appropriate. Impact of paclitaxel or AM1710 on mRNA levels was analyzed using 

two-tailed t-tests or one-way ANOVA, respectively. Statistical analyses were performed 

using IBM-SPSS Statistics V21.0 (IL, USA). P<0.05 was considered significant.

Results

Paclitaxel-induced allodynia developed similarly in WT, CB2KO and CB1KO mice

In both CB2KO and WT mice, paclitaxel decreased mechanical thresholds (F3,20=519.03, 

P<0.0001, Figure 1A) and increased response time to cold stimulation (F3,20=553.78, 

P<0.0001, Figure 1B). Similarly, paclitaxel induced mechanical (F3,20=426.66, P<0.0001, 

Figure 1C) and cold (F3,20=707.28, P<0.0001, Figure 1D) allodynia in CB1KO and WT 

littermates. Mechanical and cold allodynia were present in paclitaxel-treated CB2KO, 

CB1KO, and WT mice relative to cremophor-vehicle since day 4 (P<0.0001). 

Responsiveness to paclitaxel did not differ between CB2KO and WT mice, or between 

CB1KO and WT mice (P=1.000).

Effects of Δ9-THC in paclitaxel-treated WT mice

In WT mice, Δ9-THC (5 or 10 mg/kg/day i.p.) suppressed paclitaxel-evoked mechanical 

(F2,14=26.57, P<0.0001) and cold allodynia (F2,14=13.58, P<0.002) relative to vehicle in a 

dose-and time-dependent manner (F8,56=27.97, P<0.0001 mechanical, F8,56=24.44, 

P<0.0001 cold, Figure 2A–B). The high dose of Δ9-THC (10 mg/kg/day i.p.) produced 

greater antinociceptive effects than the low dose (5 mg/kg/day i.p.) (P<0.01 mechanical, 

P<0.03 cold) and normalized responses to pre-paclitaxel levels (P=0.13 mechanical, P=0.07 
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cold) on treatment day 1. Tolerance developed more rapidly to the high dose of Δ9-THC. 

The high (P=1.00 day 4 and 8) and low (P<0.0001 day 4, P=1.00 day 8) doses of Δ9-THC 

failed to produce antinociception relative to vehicle after 4 or 8 days of injections, 

respectively. Both doses of Δ9-THC decreased motor performance and produced 

hypothermia in paclitaxel-treated WT mice relative to vehicle on day 2 (P<0.04), but not 

day 7 (P>0.11), of chronic dosing (Figure 2C–D). Thus, over 8 days of Δ9-THC (5 or 10 

mg/kg/day i.p.) administration, tolerance developed to antinociceptive efficacy, motor 

ataxia, and hypothermia in paclitaxel-treated animals.

In paclitaxel-treated WT mice, chronic Δ9-IHC (5 or 10 mg/kg/day i.p.) produced 

cannabinoid withdrawal signs following rimonabant (10 mg/kg i.p.) challenge, characterized 

by paw tremors (F5,26=65.60, P<0.0001) and headshakes (F5,26=38.13, P<0.0001) relative 

to vehicle (P<0.0001, Figure 2E). Rimonabant, but not vehicle, produced scratching 

behaviors (F5,26=10.34, P<0.0001) in animals receiving chronic vehicle or Δ9-THC (Figure 

2E).

Effects of acute AM1710 in paclitaxel-treated WT mice

In WT mice, acute systemic AM1710 dose-dependently suppressed paclitaxel-induced 

mechanical (ED50: 1.14±0.07 mg/kg i.p.) and cold (ED50: 1.49±0.06 mg/kg i.p.) allodynia 

(Figure S1). AM1710 (5 mg/kg i.p.) produced maximal anti-allodynic efficacy and was used 

for chronic dosing.

Chronic AM1710 suppressed paclitaxel-induced allodynia in WT but not CB2KO mice

In WT mice, chronic AM1710 (5 mg/kg/day i.p.) suppressed paclitaxel-induced mechanical 

(F1,13=98.97, P<0.0001) and cold (F1,13=249.03, P<0.0001) hypersensitivities relative to 

vehicle (P<0.0001) and pre-injection levels (F4,52=67.12, P<0.0001 mechanical, 

F4,52=62.04, P<0.0001 cold, Figure 3A–B). AM1710 anti-allodynic efficacy was stable 

throughout the chronic dosing paradigm (P=0.75 mechanical, P=1.00 cold). AM1710 fully 

reversed paclitaxel-induced allodynia and normalized responses to pre-paclitaxel baselines 

(P=0.86 mechanical, P=0.46 cold, Figure 3A–B).

By contrast, in CB2KO mice, AM1710 (5 mg/kg/day i.p.) failed to suppress paclitaxel-

induced mechanical (P=0.22) or cold (P=0.79) allodynia relative to vehicle (P>0.20) on any 

day (P=1.00 mechanical, P=0.59 cold, Figure 3C–D). AM1710 did not alter responsiveness 

to mechanical (P=0.94) or cold (P=0.66) stimulation in CB2KO or WT littermates treated 

with cremophor-vehicle at any timepoint (P=0.84 mechanical, P=0.89 cold, Figure 3E–F).

Anti-allodynic effects of AM1710 were independent of CB1 signaling

In both CB1KO and WT littermates, AM1710 (5 mg/kg/day i.p.) reversed paclitaxel-induced 

mechanical (F3,17=112.37, P<0.0001) and cold (F3,17=29.24, P<0.0001) allodynia relative to 

vehicle (P<0.0001) and pre-injection levels (F12,68=17.04, P<0.0001 mechanical, 

F12,68=21.97, P<0.0001 cold, Figure 4A–B). AM1710-induced anti-allodynic effects were 

stable throughout the treatment paradigm (P=0.97 mechanical, P=0.12 cold). AM1710 fully 

reversed paclitaxel-induced mechanical (P>0.88) and cold (P>0.052) allodynia and 

normalized responses to pre-paclitaxel baselines in both CB1KO and WT littermates. Anti-
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allodynic efficacy of AM1710 did not differ between CB1KO and WT littermates at any 

timepoint (P>0.99, Figure 4A–B). AM1710 did not alter mechanical (P=0.72) or cold 

(P=0.11) responsiveness in CB1KO or WT littermates treated with cremophor-vehicle on 

any day (P=0.88 mechanical, P=0.53 cold, Figure 4C–D).

Anti-allodynic effects of AM1710 were mediated by CB2 receptors

In paclitaxel-treated WT (C57BL/6J) mice, AM1710 (5 mg/kg/day i.p.)-produced 

suppressions of mechanical (F3,19=65.57, P<0.0001) and cold (F3,19=95.35, P<0.0001) 

allodynia were blocked by the CB2 antagonist AM630 (5 mg/kg/day i.p.) at all timepoints 

(P<0.0001, Figure 5A–B). Identical results were obtained in WT (CD1) mice (data not 

shown).

In paclitaxel-treated CB1KO mice, the anti-allodynic effects of AM1710 (5 mg/kg/day i.p.) 

on mechanical (F3,16=111.06, P<0.0001) and cold (F3,16=37.02, P<0.0001) 

hypersensitivities were blocked by AM630 (5 mg/kg/day i.p.) at all timepoints (P<0.0001, 

Figure 5C–D). AM630 alone did not alter mechanical or cold responsiveness relative to 

vehicle in WT or CB1KO mice (P=1.00, Figure 5A–D).

Chronic AM1710 did not produce motor dysfunction or hypothermia

Paclitaxel did not alter motor performance or body temperature in CB2KO, CB1KO or 

corresponding WT littermates relative to cremophor-vehicle (P>0.11, Figure S2). Moreover, 

AM1710 (5 mg/kg/day i.p.) did not produce motor dysfunction or hypothermia in either 

paclitaxel- or cremophor-treated groups in CB2KO, CB1KO, or WT littermates on treatment 

day 2 or 7 (P>0.95, Figure S2).

CB1 antagonism did not elicit classic cannabinoid withdrawal signs in mice receiving 
chronic AM1710

We asked whether the CB1 antagonist rimonabant would elicit cannabinoid CB1-dependent 

withdrawal symptoms in mice receiving chronic AM1710. In paclitaxel-treated WT mice 

that received chronic Δ9-THC (10 mg/kg/day i.p.), rimonabant (10 mg/kg i.p.) challenge 

produced paw tremors (F4,20=272.81, P<0.0001) and headshakes (F4,20=32.10, P<0.0001, 

Figure 6A). Rimonabant challenge did not elicit paw tremors or headshakes in CB2KO or 

WT mice receiving chronic AM1710 (5 mg/kg/day i.p.) relative to vehicle (P=1.00, Figure 

6A, S3A). Neither Δ9-THC nor AM1710 treatment altered rimonabant-induced scratching 

(P=0.22) compared to vehicle (Figure 6A).

We next asked whether the CB2 antagonist AM630 could precipitate paw tremors, 

headshakes and/or scratching behaviors in mice receiving chronic AM1710. AM630 (5 

mg/kg i.p.) challenge did not elicit paw tremors (P=0.29), headshakes (P=0.88), or 

scratching (P=0.96) relative to vehicle in CB1KO or WT mice receiving chronic AM1710 (5 

mg/kg/day i.p.) (Figure 6B, S3B). In addition, no autonomic signs (e.g. diarrhea, eyelid 

ptosis) or writhing behaviors were observed following AM630 challenge.
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Spinal CB2 receptors were necessary for the anti-allodynic effect of systemic AM1710

In WT mice, anti-allodynic effects of AM1710 (5 mg/kg i.p.) on paclitaxel-induced 

mechanical (F3,20=16.51, P<0.0001) and cold (F3,20=30.93, P<0.0001) allodynia were 

blocked by intrathecal AM630 (5 μg i.t.) (P<0.0001, Figure 7). Intrathecal AM630 alone did 

not alter paclitaxel-evoked mechanical (P=1.00) or cold (P>0.72) allodynia relative to 

vehicle (Figure 7).

Intrathecal AM1710 suppressed paclitaxel-induced neuropathy in WT but not CB2KO mice

We asked whether activation of spinal CB2 receptors was sufficient to suppress paclitaxel-

induced allodynia. In WT mice, intrathecal AM1710 (5 μg i.t.) suppressed paclitaxel-

induced mechanical (F1,10=42.42, P<0.0001) and cold (F1,10=78.99, P<0.0001) allodynia 

compared to vehicle (P<0.0001); intrathecal AM1710 fully reversed paclitaxel-evoked 

allodynia and normalized responses to pre-paclitaxel levels (P=0.89 mechanical, P=0.87 

cold, Figure 8A–B). By contrast, in CB2KO mice, AM1710 (5 μg i.t.) failed to attenuate 

paclitaxel-induced mechanical (P=0.85) or cold (P=0.46) allodynia relative to vehicle 

(Figure 8C–D).

Impact on spinal mRNA levels of markers of the endocannabinoid system, cytokines, and 
chemokine

In WT mice, paclitaxel increased MCP-1 (P<0.004), but not IL-1β (P=0.52), IL-6 (P=1.00), 

TNFα (P=0.83), CB1(P=0.34), CB2 (P=0.26), FAAH(P=0.28), or MGL (P=0.18) mRNA 

levels in spinal cords relative to cremophor-vehicle (Figure 9A, S4) during the maintenance 

phase of paclitaxel-induced neuropathy. In paclitaxel-treated WT mice, both acute and 

chronic (8 days) AM1710 (5 mg/kg/day i.p.) decreased TNFα (F2,9=19.52, P<0.002) and 

MCP-1 (F2,9=15.00, P<0.002), but not IL-1β (P=0.38) or IL-6 (P=0.68) spinal mRNA levels 

(Figure 9B).

Discussion

Drug development for neuropathic pain management has proved a challenge due in part to 

limited efficacy and troubling side-effect profiles. Indeed, these challenges also apply to 

potential therapeutic use of cannabinoids (44). Here, we showed that repeated systemic 

administration of the CB2-preferring agonist AM1710 suppressed chemotherapy-induced 

allodynia without tolerance or significant CB1 involvement (i.e. the absence of CB1 

antagonist-precipitated withdrawal symptoms, motor ataxia, and hypothermia). We also 

confirmed a CB2-mediated mechanism of antinociceptive action for AM1710 both 

pharmacologically and through use of knockout mice. Moreover, we identified a spinal site 

of action of AM1710 and explored AM1710-mediated regulation of pro-inflammatory 

cytokines and chemokine mRNA levels following paclitaxel treatment.

CB2 receptors are implicated in pain mechanisms following sciatic nerve injury (45) and 

joint pain (46). In our study, neither the development nor the maintenance of paclitaxel-

induced allodynia differed between CB2KO and WT mice. CB2 receptors are highly 

inducible and are expressed in spinal microglia upon inflammation (47) or neuropathic pain 

(48–52). However, we did not detect changes in CB2 or FAAH mRNA levels in lumbar 
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spinal cords of WT animals following paclitaxel treatment. By contrast, cisplatin alters 

endocannabinoid tone (43, 53), highlighting distinct mechanisms underlying neuropathies 

produced by these two chemotherapeutic agents (20). More work is needed to understand 

the role of the endocannabinoid system in induction and maintenance of chemotherapy-

induced neuropathy.

In our study, both acute and chronic systemic treatment with the CB2-preferring agonist 

AM1710 attenuated paclitaxel-induced allodynia in WT mice. Notably, deletion of CB2 

receptors or pharmacological blockade with the CB2 antagonist AM630 prevented the anti-

allodynic effects of AM1710. Thus, AM1710 suppressed chemotherapy-induced allodynia 

via CB2 receptor activation, consistent with previous observations on anti-allodynic 

efficacies of other CB2 agonists (14, 24, 26, 54) in neuropathic or inflammatory pain 

models. Taken together, these studies suggest therapeutic potential of CB2 agonists in 

managing a wide spectrum of pain states.

Most CB2 agonists identified to date exhibit low affinity for CB1 (2). Indeed, it has been 

speculated that antinociceptive therapeutic efficacy of CB2 agonists is mediated by CB1 

receptors (2, 55). In our study, AM1710 fully reversed paclitaxel-induced allodynia with 

similar efficacy in both CB1KO and WT mice following either acute or chronic 

administration, consistent with a previous study showing that CB2 agonist AM1241 retained 

antinociceptive efficacy in CB1KO mice subjected to spinal nerve ligation (56). We also 

showed that antinociceptive effects of chronic AM1710 were blocked by a CB2 antagonist in 

CB1KO mice, further demonstrating that CB2, but not CB1, receptors mediate the anti-

allodynic effects of the CB2 agonist AM1710 on paclitaxel-induced neuropathy.

Tolerance may limit an analgesic’s therapeutic use (57–59). It occurs following prolonged 

exposure of CB1 receptors to cannabinoids in preclinical (60–63) and clinical (44) studies. 

Here, we showed that chronic dosing over 4 to 8 days with Δ9-THC was sufficient to 

produce tolerance to both anti-allodynic efficacy and CB1-mediated side effects in the 

paclitaxel-induced neuropathy model. However, no decrement in anti-allodynic efficacy was 

observed in animals received daily administration of the maximally effective dose of 

AM1710 over 8 days. Our data are in line with previous works showing that intrathecal 

JWH015 (17) or systemic A-836339 (64) does not produce antinociception tolerance 

following traumatic nerve injury.

In binding assays, the CB2-preferring agonist AM1710 exhibits 54-fold selectivity for CB2 

over CB1 receptors (65). This limited selectivity raises the possibility that a low level of CB1 

occupancy by this compound could potentially activate CB1 receptors and translate into 

unwanted CB1-mediated side effects following chronic administration, negatively impacting 

its therapeutic ratio and hindering its clinical acceptance. We evaluated this possibility in 

two ways. The first was that in our study, chronic AM1710 did not result in motor deficits or 

hypothermia, hallmarks of CB1 agonists, consistent with previous observations with other 

CB2 agonists (11, 54, 64, 66–69). The second was to detect signs of CB1-mediated 

withdrawal. Physical dependence, quantified by signs of withdrawal following antagonist 

administration, has been reported after chronic cannabinoid (3, 58) and opioid (70–72) use. 

For example, challenge with the CB1 antagonist rimonabant elicits profound withdrawal 
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symptoms in animals treated chronically with CB1 agonists (40, 72–74). However, no study 

has examined whether prolonged treatment with a CB2-preferring agonist results in a state 

where cannabinoid withdrawal signs through residual CB1 activity can be elicited. In theory, 

this would be a very sensitive way to detect low levels of sustained CB1 receptor activation. 

Here, we showed that unlike with chronic Δ9-THC, mice treated with chronic AM1710 did 

not exhibit signs of rimonabant-precipitated withdrawal. Importantly, we assessed 

withdrawal signs in a neuropathic pain model to mimic a common clinical scenario. Coupled 

with the observation that CB2 agonists show little intrinsic reward (75, 76), this class of 

compounds may lack drug abuse liability. These findings collectively support the clinical 

potential of prolonged use of CB2 agonists.

Whether withdrawal symptoms could be elicited by precipitation at CB2 receptors in 

animals receiving chronic CB2 agonists is an important question that has never been studied. 

Here, we evaluated behaviors (i.e. paw tremors, headshakes, scratching) that are signs 

common to withdrawal precipitated by CB1 or opioid receptor antagonists (40, 70–72). 

These behaviors were absent in AM1710-treated WT or CB1KO mice following CB2 

antagonist AM630 challenge (CB1KO mice were used to avoid potential residual CB1-

mediated component of AM1710). Interestingly, scratching was produced independent of 

withdrawal by rimonabant, but not AM630, consistent with pruritis as a common response to 

CB1 antagonists (77). More work is necessary to further investigate possible withdrawal 

signs at CB2 receptors.

Here, we reported the first evaluation of the site of action of a CB2 agonist in the 

chemotherapy-induced neuropathy model. We showed that anti-allodynic effects of systemic 

AM1710 were blocked by intrathecal administration of a CB2 antagonist. Moreover, a 

systemically inactive dose of AM1710 (5 μg/animal, equivalent to 0.16–0.2 mg/kg), 

administered intrathecally, produced robust antinociception in WT but not CB2KO mice. 

Thus, activation of spinal CB2 receptors by AM1710 is sufficient to reverse paclitaxel-

induced allodynia. Peripheral (11, 12), spinal (14–17), or both peripheral and spinal (13, 18) 

sites of action are implicated in CB2 agonist efficacy in various preclinical pain models. The 

differences in site of action could be attributed to different functional properties of the CB2 

agonists or distinct mechanisms produced by the specific pain state. Interestingly, in line 

with our results in chemotherapy-induced neuropathy, spinal site of CB2 agonist action has 

been implicated in models of traumatic nerve injury (13–17). Therefore, CB2 agonists may 

possess a shared mechanism of action in suppressing neuropathic pain through activation of 

spinal CB2 receptors.

To further explore the mechanism of CB2-mediated antinociception, we studied the impact 

of AM1710 on expression of cytokines and a chemokine in paclitaxel-induced neuropathy. 

Pro-inflammatory cytokines (e.g. IL-1β (28), IL-6 (29), TNFα (30–34)), and the chemokine 

MCP-1 (35) are implicated in mechanisms of neuropathic pain produced by traumatic nerve 

injury. Inflammatory processes are also generated by chemotherapy treatments (78–81). We 

did not detect alterations of spinal mRNA levels of IL-1β, IL-6 or TNFα during the 

maintenance phase of paclitaxel-induced allodynia. Transient upregulations of TNFα (81) or 

IL-6 (29) have been observed during the development of neuropathy induced by vincristine 

or nerve injury. It is possible that earlier timepoints during the development of paclitaxel-
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induced neuropathy would be sensitive to transient alterations in cytokine production. 

Nonetheless, AM1710 robustly decreased spinal mRNA levels of TNFα in paclitaxel-treated 

WT mice. Our results, along with published report on CB2 agonist JWH015-induced TNFα 

downregulation in vitro (36), suggest possible TNFα involvement in CB2 activity. We also 

observed that spinal MCP-1 mRNA levels were elevated by paclitaxel and were decreased 

by AM1710. Thus, suppression of MCP-1 may contribute to the mechanism of CB2-

mediated anti-allodynic efficacy in chemotherapy-induced neuropathy (79, 80). In 

inflammatory and neuropathic pain, TNFα upregulates MCP-1 (82) and modulates central 

sensitization (83–85) and c-fiber responses (86, 87). CB2 agonists suppress central 

sensitization (88–91). More studies are necessary to identify the source of spinal TNFα and 

MCP-1, their regulation, and their potential roles in CB2-mediated suppression of central 

sensitization and chemotherapy-induced neuropathy.

In conclusion, chronic systemic treatment with the CB2 agonist AM1710 suppressed 

chemotherapy-induced allodynia without producing tolerance, CB1-mediated cannabinoid 

withdrawal or CNS side effects associated with CB1 activation. The observed anti-allodynic 

efficacy required activation of spinal CB2 receptors and was independent of CB1 signaling. 

Furthermore, the pro-inflammatory cytokine TNFα and chemokine MCP-1 are likely 

involved in CB2-mediated anti-allodynic efficacy. Together, our results support the 

therapeutic potential of prolonged use of CB2 agonists for managing toxic neuropathic pain 

without apparent adverse effects.
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2-AG 2-arachidonoyl glycerol

AEA anandamide

ANOVA analysis of variance

BL baseline

CB1 cannabinoid receptor 1

CB2 cannabinoid receptor 2

CNS central nervous system
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CR cremophor

DMSO dimethyl sulfoxide

Δ9-THC Δ9-tetrahydrocannabinol

GAPDH glyceraldehyde 3-phosphate dehydrogenase

FAAH fatty acid amide hydrolase

i.p intraperitoneal

i.t intrathecal

IL-1β interleukin-1 beta

IL-6 interleukin 6

KO knock out

MCP-1/CCL2 monocyte chemoattractant protein-1

MGL monoacylglycerol lipase

NIDA National Institute on Drug Abuse

PTX paclitaxel

qRT-PCR quantitative reverse transcription polymerase chain reaction

TNFα tumor necrosis factor alpha

WT wildtype
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Figure 1. Paclitaxel produced hypersensitivities to mechanical and cold stimulation
(A, C) Mechanical and (B, D) cold allodynia developed equivalently in (A, B) CB2KO, (C, 

D) CB1KO, and corresponding WT littermates following paclitaxel treatment. Non-

chemotherapy controls received cremophor-vehicle in lieu of paclitaxel. Arrows show 

timing of paclitaxel or cremophor injections (inj). Data are expressed as mean ± SEM (n=6 

per group). *P<0.05 vs. control, repeated measures ANOVA and one-way ANOVA at each 

timepoint.
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Figure 2. Effects of Δ9-THC in paclitaxel-treated WT mice
(A, B) Δ9-THC (5 or 10 mg/kg/day i.p.) attenuated paclitaxel-induced (A) mechanical and 

(B) cold allodynia in WT (C57BL/6J) mice in a dose- and time-dependent manner. (C, D) 

Δ9-THC (5 or 10 mg/kg/day i.p.) decreased (C) motor performance and (D) body 

temperature in paclitaxel-treated WT mice relative to vehicle on treatment day 2, but not day 

7. (E) Δ9-THC (5 or 10 mg/kg/day i.p.) produced withdrawal symptoms when challenged 

with the CB1 antagonist rimonabant. BL, pre-paclitaxel baseline; PTX, post-paclitaxel 

baseline. Data are expressed as mean ± SEM (n=5–6 per group). *P<0.05 vs. 
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vehicle, +P<0.05 vs. Δ9-THC (10 mg/kg/day i.p.), xP<0.05 vs. Veh+Rim (chronic vehicle 

and challenge by rimonabant), $P<0.05 vs. Veh+Veh (chronic vehicle and challenge by 

vehicle), one-way ANOVA followed by Bonferroni post hoc test or two-tailed t-

test. #P<0.05 vs. BL, repeated measures ANOVA.
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Figure 3. Chronic systemic administration of AM1710 suppressed paclitaxel-induced neuropathy 
in WT but not CB2KO mice
(A, B) AM1710 (5 mg/kg/day i.p. × 8 days) reversed paclitaxel-induced (A) mechanical and 

(B) cold allodynia in WT littermates. (C, D) AM1710 (5 mg/kg/day i.p. × 8 days) did not 

suppress paclitaxel-induced (C) mechanical or (D) cold allodynia in CB2KO mice. (E, F) 

AM1710 (5 mg/kg/day i.p. × 8 days) did not alter (E) mechanical or (F) cold responsiveness 

in cremophor-treated CB2KO or WT mice. BL, pre-paclitaxel baseline; PTX, post-paclitaxel 

baseline; CR, post-cremophor baseline. Data are expressed as mean ± SEM (n=4–8 per 

Deng et al. Page 21

Biol Psychiatry. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



group). *P<0.05 vs. vehicle, one-way ANOVA followed by Bonferroni post hoc 

test. #P<0.05 vs. pre-paclitaxel baseline, repeated measures ANOVA.
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Figure 4. Chronic systemic administration of AM1710 reversed paclitaxel-induced neuropathic 
pain with similar efficacy in CB1KO and WT mice
(A, B) AM1710 (5 mg/kg/day i.p. × 8 days) reversed paclitaxel-induced (A) mechanical and 

(B) cold allodynia in both CB1KO and WT littermates. (C, D) AM1710 (5 mg/kg/day i.p. × 

8 days) did not alter (C) mechanical or (D) cold responsiveness in cremophor-treated 

CB1KO or WT mice. BL, pre-paclitaxel baseline; PTX, post-paclitaxel baseline; CR, post-

cremophor baseline. Data are expressed as mean ± SEM (n=4–8 per group). *P<0.05 vs. 

vehicle, one-way ANOVA followed by Bonferroni post hoc test. #P<0.05 vs. pre-paclitaxel 

baseline, repeated measures ANOVA.
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Figure 5. Anti-allodynic effects of chronic systemic AM1710 were mediated by CB2 receptors
AM1710 (5 mg/kg/day i.p. × 8 days)-induced suppressions of paclitaxel-evoked (A, C) 

mechanical and (B, D) cold allodynia were blocked by the CB2 antagonist AM630 (5 

mg/kg/day i.p. × 8 days) in both (A, B) WT (C57BL/6J) and (C, D) CB1KO mice. BL, pre-

paclitaxel baseline; PTX, post-paclitaxel baseline. Data are expressed as mean ± SEM (n=4–

9 per group). *P<0.05 vs. vehicle, xP <0.05 vs. AM1710 (5 mg/kg i.p.), one-way ANOVA 

followed by Bonferroni post hoc test. #P<0.05 vs. pre-paclitaxel baseline, repeated measures 

ANOVA.
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Figure 6. Chronic systemic AM1710 treatment did not produce cannabinoid CB1-dependent 
withdrawal signs
(A) AM1710 (5 mg/kg/day i.p. × 9 days) did not produce CB1-dependent withdrawal signs 

(i.e. paw tremors, headshakes) when precipitated with the CB1 antagonist rimonabant (10 

mg/kg i.p.) in CB2KO or WT littermates. (B) Challenge with the CB2 antagonist AM630 (5 

mg/kg i.p.) did not produce paw tremors, headshakes, or scratching behaviors in CB1KO or 

WT littermates treated chronically with AM1710 (5 mg/kg/day i.p. × 9 days). Data are 

expressed as mean ± SEM (n=4–5 per group). *P<0.05 vs. vehicle, one-way ANOVA 

followed by Bonferroni post hoc test.
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Figure 7. Antagonism of spinal CB2 receptors blocked anti-allodynic effects of systemic AM1710 
in WT mice
Intrathecal administration of the CB2 antagonist AM630 (5 μg i.t.) blocked AM1710 (5 

mg/kg i.p.)-induced suppressions of (A) mechanical and (B) cold allodynia in paclitaxel-

treated WT (C57BL/6J) mice. BL, pre-paclitaxel baseline; PTX, post-paclitaxel baseline. 

Data are expressed as mean ± SEM (n=6 per group). *P<0.05 vs. vehicle, xP<0.05 vs. 

AM1710 (5 mg/kg i.p.), one-way ANOVA followed by Bonferroni post hoc test. #P<0.05 

vs. pre-paclitaxel baseline, repeated measures ANOVA.
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Figure 8. Activation of spinal CB2 receptors suppressed paclitaxel-induced allodynia in WT but 
not CB2KO mice
Intrathecal administration of AM1710 (5 μg i.t.) suppressed paclitaxel-induced (A, C) 

mechanical and (B, D) cold allodynia in (A, B) WT, but not (C, D) CB2KO mice. BL, pre-

paclitaxel baseline; PTX, post-paclitaxel baseline. Data are expressed as mean ± SEM (n=6 

per group). *P<0.05 vs. vehicle, one-way ANOVA followed by Bonferroni post hoc 

test. #P<0.05 vs. pre-paclitaxel baseline (BL), repeated measures ANOVA.
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Figure 9. Impact of paclitaxel and AM1710 on cytokine and chemokine mRNA levels in lumbar 
spinal cord
(A) Paclitaxel increased the spinal mRNA levels of MCP-1, but not IL-1β, IL-6, or TNFα 

relative to cremophor in WT mice (day 15 post initial paclitaxel dosing). (B) Both acute 

(once daily injections of vehicle × 7 days followed by a terminal injection of AM1710 (5 

mg/kg i.p.) on the 8th day, grey bar) and chronic (5 mg/kg/day i.p. × 8 days, black bar) 

administrations of AM1710 decreased the spinal mRNA levels of TNFα and MCP-1, but not 

IL-1β or IL-6 relative to vehicle (once daily × 8 days, white bar) in paclitaxel-treated WT 

animals. IL-1β, interleukin-1 beta; IL-6, interleukin 6; TNFα, tumor necrosis factor alpha; 
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MCP-1, monocyte chemoattractant protein-1. Data are expressed as mean ± SEM (n=4 per 

group). #P<0.05 vs. cremophor vehicle in lieu of paclitaxel, one-tailed t-test. *P<0.05 vs. 

vehicle in lieu of AM1710, one-way ANOVA followed by Bonferroni post hoc test.
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