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Abstract How mutations accumulate in genomes is the cen-
tral question of molecular evolution theories. However, our
understanding of this process is far from complete. Drake’s
rule is a notoriously universal property of genomes from
microbes to mammals—the number of (functional) mutations
per-genome per-generation is approximately constant within a
phylum, despite the orders of magnitude differences in ge-
nome sizes and diverse populations’ properties. So far, there is
no concise explanation for this phenomenon. A formal model
for the storage of genetic information suggests that a genome
of any species operates near its maximum informational stor-
age capacity, and the mutation rate per-genome per-generation
is near its upper limit, providing a simple explanation for the
rule with minimal assumptions.

Keywords Drake’s rule - Molecular evolution - Information
theory - Neutral theory

Introduction

For about a hundred years, the key parameter in modeling
Darwinian selection has been “fitness”—it defines which
organisms survive and reproduce in a population and which
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are eliminated. Alleles or mutations (“variants”) are presumed
to have different fitness, and the dynamics of variant destiny
(its frequency in a population) is traced by a mathematical
model.

There are numerous models with different assumptions
about how to model real populations “correctly”. For exam-
ple, the “Moran process” (Moran 1962) represents a model
with “overlapping generations” where elementary time step is
defined as a death of an arbitrarily chosen individual and the
reproduction of another random individual, deriving the ana-
lytical solutions for some simple scenarios. Alternatively, the
“Wright-Fisher model” (Durrett 2008) presumes the non-
overlapping generations, such as annual plants. Then there
are questions of how to calculate the cumulative fitness for a
few independent variants, taking into account the effects of
newly appearing variants, and many other subtleties. In the
traditional models, the fitness is “relative”, i.e., it is normal-
ized so it is distributed around the unit. In the case of calcu-
lating cumulative fitness for multiple alleles, sometimes for-
mulas analogous to what we introduce here are used (Ofria
et al. 2008; Strelioff et al. 2010; Frank 2012). However, in
these cases, the absolute value is not interpreted and can also
be normalized. For example, in traditional approaches, there is
no sense including into fitness formulas sites that are not
variable in a population (i.e., sites where any variation is
lethal), and usually most of the genome is not variable in
realistic modeling, while in our formula it is essential to sum
overall sites to gain proper interpretation of fitness. Hence, for
relative fitness, there is no fixed “baseline”—an individual
cannot be assigned a fitness value ignoring the rest of the
population. It is impossible to compare a fitness of an elephant
to a fitness of yeast. Such fitness keeps no population histo-
ry—a gain (or loss) of fitness for a whole population is
untraceable, because after the gain the organisms are compet-
ing with each other formally in the same way. So the progres-
sive evolution is presented as an opportunistic non-directional
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“Brownian” motion, fixation of accidental “positive”
mutations.

It would be tempting to have a measure, which is “abso-
lute”, has a baseline, and reflects the genetic complexity—the
total “genetic information” or “evolutionary progress”. On
one hand, this measure would allow us to compare different
species. On the other hand, what is more important, this
measure would be a natural choice for the fitness function
within a population for modeling purposes. The proposed
model is capable of recapitulating all traditional dynamics
(e.g., “fixation”, “drift”, etc.); however, it quantifies an addi-
tional dimension—total genetic complexity. Modeling evolu-
tion without tracing this value can easily lead to “un-physical”
solutions—when the complexity is allowed to wander arbi-
trarily in the course of sequence evolution. From common
observations, it is natural to expect that a given species’
genomic complexity is a sufficiently preserved value on an
evolutionary scale, despite the numerous ongoing changes in
underlying genomic sequences. Then, if the complexity has
changed significantly in the course of simulation, we should
count the end product as a different species. Modeling speci-
ation events per se is a very different subject from modeling
species preservation. In essence, we model the very basic
biological phenomenon, the preservation of form, while the
matter (e.g., cells) in this form is continuously renewed.
Instead of the matter, we show how functional genomics
sequences can be continuously renewed while preserving
species-specific phenotype, so the phenotype (typical set)
and hence the total genomic information are invariants.

Besides introducing the invariant, the total genomic infor-
mation, the “physical” property of our approach can be further
illustrated by the stability notion: in order for a system to be
stable under external perturbations (random mutagenesis can
be considered as such) it must reside in a “potential well”.
These perturbations are compensated for by forces that return
the system to initial conditions. Without such compensations,
the system would “smear out” in Brownian fashion. Random
mutations can both increase and decrease genetic information
(GI), and in our case, these compensating forces are selection,
which tries to increase G/, and the channel capacity limit,
which makes it impossible to maintain G/ above a certain
value and increasingly costly to approach the limit from below.

Despite the abundance of evolutionary models, their ex-
planatory power remains arguably limited, so much so that in
1996 Ohta and Gillespie admitted “a looming crisis™: “all
current theoretical models suffer either from assumptions that
are not quite realistic or from an inability to account readily for
all phenomena” (Ohta and Gillespie 1996). It is likely that the
limits of the current models are rooted in the basic fitness
definition and/or the absence of suitable genomic information
measure, because if it is similar in all models the reshuffling of
other parameters will not drastically change the behavior and
predictions on a fundamental level.
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Recently, we proposed an information-theoretical model
(Shadrin et al. 2013) that can provide an “absolute” measure
that estimates the total genomic information and that can be
used for the fitness calculations, sensibly accounting for inter-
actions of any number of variants in a genome. Technically,
our fitness is quantifying the degree of “typicality”, and the
size of corresponding “typical set” is related to genomic
information or complexity. Fitness connection with complex-
ity is the most essential difference of our model from the
traditional approaches, while the modes of reproduction and
other parameters are of secondary importance. Due to the
novelty of such (interpretation of) the fitness function, we
have to explore the model properties starting from very basic
considerations, omitting the moment phenomena which are
routinely considered in standard models, such as the influ-
ences of recombination, linkage, sexual selection, fluctuating
environment, and so on. Though clearly, such phenomena
would be interesting to include in the subsequent development
of the model and to compare results with traditional
approaches.

Technically, our model can accommodate any fitness ex-
pression including “relative” variations. However, in the latter
case, additional care should be taken to monitor the equilibri-
um condition and the complexity dynamics, while the sug-
gested “absolute” fitness expression automatically makes the-
se tasks trivial.

An interesting approach for quantifying complexity and
modeling its increase for digital organisms was suggested in
Adami et al. (2000). Our approach is different—we quantify
information by a mechanistic model of molecular interactions
and are mostly concerned with the preservation of such infor-
mation with mutation/selection balance.

The so-called Drake’s rule (Drake 1991; Drake et al. 1998;
Sung et al. 2012) is an observation that states: within broad groups
of organisms, the density of accumulated mutations per genera-
tion is roughly inversely proportional to genome size, which can
vary by a few orders of magnitude. Naturally, the genome size
and total genomic information are somehow related. While this
relation can be complex in general, it is clear that accounting for
this information might shed light on the coevolution of the
mutation rate and genome size, and hence on Drake’s rule.

Another closely related phenomenon is the “molecular
clock”—the rate of mutation accumulation is roughly propor-
tional to the time of divergence from the last common ancestor.
Roughly speaking, the “molecular clock™ is a manifestation of
Drake’s rule on the evolutionary timescale, because despite the
fluctuations in genome sizes and numerous population prop-
erties in the course of divergence (assuming the generation
time changing slowly), the clock is sufficiently monotonic
when comparing gene sequences (i.e., mutations density and
rate are constant). Usually, it is explained with the neutral
theory—the majority of mutations are behaving “as if” they
were neutral (Kimura 1983). However, it is not clear how
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to properly apply the neutral theory to the molecular clock—
the clock is ticking monotonously but at a different pace in
strongly and weakly conserved genes. Should we then intro-
duce some kind of differential “neutrality density” in order to
accommodate “neutrality” for the explanation? A cleaner
approach is to treat mutations with a continuous spectrum of
effects—from zero to lethal (fully conserved position). In this
case, it is clear that point zero (pure neutrality) is not special,
because the next infinitesimally close value (minuscule func-
tional) will have the same properties. It seems that the aim of
the neutral Theory is not the point zero per se, but some
loosely defined region in its vicinity.

At the time of its appearance, due to the absence of com-
puters, the neutrality assumption served as a useful simplifica-
tion explaining a number of phenomena as it postulated that
stochastic processes without selection drive the majority of
mutations. However, consider a mutation in a “non-functional”
genomic region—first it will change replication dynamics due
to different weights, shapes, and abundances of nucleotides,
then it will affect the local chromosome or chromatin shape.
These changes can be minuscule; however, in a strict mathe-
matical sense the resulting organism is different. Hence, the
strict neutrality is an exception rather than a rule. Now, we do
not need the simplifying assumption for computer modeling—
all mutations can be counted as functional with arbitrarily small
effects if required. Here, we show that while (expectedly) most
genomic dynamics can be attributed to the mutations with small
effects, the less recognized issue is that their cumulative contri-
bution to genomic complexity evolution can be significant due
to their abundance. There are experimental indications of this
phenomenon (Yuan et al. 2013). Indeed, collectively they can
behave “as if” they were neutral, however, the reason for this is
not their weak functionality per se (we show that the degree of
functionality does not matter), but the “saturation” of genomes
with information, the proximity to the “channel capacity”.

Random mutations deteriorate the genomic information
and must be compensated for by selection to maintain the
total genomic information. Here, we illustrate some simple
scenarios of such a process under equilibrium condition. With
some arguably plausible assumptions, such a process readily
explains Drake’s rule and molecular clock without involving
neutrality. Here, we address the purely theoretical (postulated)
phenomenon of Drake’s rule, while its experimental validity
for all species is quite a different subject and not covered here.
In fact, the provided theory may suggest some clues about
species which are the “outliers” for the rule, having a signif-
icant deviation from the trend.

Information in sequence patterns

The measure of genetic information (GI) was proposed by
Schneider et al. (1986). It represents an adaptation of the

entropy concept from the Shannon’s information theory (IT)
(Shannon 1948) to the context of biological sequences. Dur-
ing the last 25 years, it became a popular tool for the investi-
gation of variability of functional sequences (Schneider and
Stephens 1990; Hertz and Stormo 1999).

The acceptable variability in each position (P) is defined by
the frequencies of four nucleotides in an equilibrium popula-
tion and quantified by Shannon’s entropy:

H(P) =~ Z Jnlogyfy (1)

Ne{d,G,C,T}

where f3, Be{4,G,C,T} is the frequency of nucleotide B at the
position P. The genetic information for a single position is
defined as GI(P)=2-H(P). One possible interpretation is that
such function conveniently (additively and linearly) quantifies
the amount of biases from the uniformity in equilibrium
distribution of alleles.

For technical simplicity, we (after Schneider et al.) assume
independent positions in patterns (no epistasis), otherwise we
would have to deal with general “typical sets” and the G/
computation would be more complicated. However, there are
no indications that assuming some positional dependencies in
patterns would drastically influence the main conclusions.
While covariable sites are known, significantly correlated sites
can be grouped in “pseudo-sites” (now with more than four
states) so that correlations can be canceled (concealed) with a
proper basis selection. For example, RNA viruses may have
numerous secondary/tertiary structures and thus many strong-
ly covariable sites, so the above assumption is violated. How-
ever, such genomes still have some total genomic information,
which is more difficult to calculate formally. Our simplified
calculations here merely illustrate the general principles: the
interplay of the total genomic information, genome size, and
mutation rate. While complexities of formal G/ calculations in
diverse-specific cases can be interesting to investigate, the
basic principles of genomic complexity evolution, which we
discuss here, are invariant.

Recently, we showed (Shadrin et al. 2013) that the sum of
Gls can serve as a measure of localization information. This
“additivity” should not be confused with a simple additivity of
Shannon’s entropy—the problem is to prove that the sum of
GIs for a functional sequence (or a genome) is linearly linked
to the “localization information” (the specificity of molecular
interactions), i.e., the information required to locate a se-
quence in the corresponding sequence context. One could
use other measures of frequencies bias—why is the defined
one “fundamental”? In order to sum up the positional GIs to
discern the informational meaning, the number of possible
functional variants for the sequence (the size of its typical set)
must depend exponentially on the defined variability of the
sequence (the value reciprocal to the sum of GIs). This
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exponential dependence is the non-trivial result of the IT
(Shannon-McMillan—Breiman theorem). The corresponding
“natural choice” of the logarithmic function for information
measure is discussed in detail in the classical Shannon paper
(Shannon 1948). With such a well-defined positional infor-
mation measure, it is possible to build a formal (“mechanis-
tic””) model for the evolution of “molecular machines”.

Then we can use the position-specific GIs to calculate the
total amount of information contained in a population of
genomes as a simple sum over all positions:

L
Gliotar = 2L + Z Z SiBlogaf ip (2)

j=1 Be{4,G.C,T}

where fip, 1</<L, B € {4,G,C,T} is the frequency of nucleo-
tide B at the positionj. Let us also define an average density of
genetic information in a population as GI,=Gl,,/L bits per
sequence. It is obvious that 0<GI,<2.

Hence, a functional sequence (or a genome) is represented
by the corresponding pattern, the “GI profile”, so that G/ and
the corresponding 4-vectors of the acceptable equilibrium
frequencies are defined in each position. As we discussed in
Shadrin et al. (2013), the equilibrium condition is important
for the correct GI definition and measurement, while, in
general, real populations are far from the equilibrium. Impor-
tantly, the GI profile is the “prior”, inherent property of mo-
lecular functionality, for example a protein domain can be
functional only within a certain set of sequences, e.g., in G/
terms, and a conserved domain has high G/ value and a small
“typical set”. So, we posit that a given species is fully charac-
terized by the set of all possible sequences, which produce the
species-specific phenotype and define the typical set. It is clear
that this set is much smaller than all possible random se-
quences. However, in general, it is much larger than a realistic
population size. For this reason, we need to simulate the
equilibrium in order to enumerate the complete typical set.
Then, the average density G/, cannot be significantly different
in close species—functional genes are conserved similarly,
unless some novel mechanisms of molecular functioning are
introduced. The actual variability in a population depends on
this predefined G7 and a population history. The equilibrium
population, which we simulate here (effectively canceling out,
“erasing” the history influence, and revealing the unobscured
“pure functionality” profile), is necessary for the correct G/
measurement (the knowledge of the complete typical set) and
the determination of an “error threshold”. However, a slice (a
small subset) of such a population will have the same muta-
tional properties as the whole equilibrium population, but
smaller variability. Such subset represents a realistic popula-
tion, which recently (relatively to mutation rate) underwent a
bottleneck and experienced a “founder effect”, that is, all
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individuals are closely related through a few recent population
founders. The variability in this subset does not correctly
reflect the GI profile. However, this profile still “exists”,
though more in a platonic sense. It could be revealed if this
subset was allowed to diverge for a sufficiently long time
without any disruptive events. This equilibrium population
shows the principle limit on the maintainable pattern (reveal-
ing the full typical set, total G, quantifying the total amount of
biases), which is then defined solely by the mutation rate and
reproduction/selection properties of the population, since the
dynamical part (“history”) is excluded. It is clear that, with
other things being equal, this limit plays the same limiting role
for the “collapsed” population (after a bottleneck). We can
imagine that under the influence of mutagenesis a realistic
population is drifting inside a large typical set. Nonetheless,
this is much more restrained drift in comparison with the
drifting in a space of all possible sequences by random walk.
However, since a typical set can be huge, in general, the drift
might give an impression of a random walk.

Such modes of mutagenesis and maintenance of variability
are similar to those in quasispecies theories: “The quasispecies
concept becomes important whenever mutation rates are high.
This is often the case in viral and bacterial populations” (Nowak
1992). In these theories, a population is represented by a
“cloud” of diverged genotypes. However, the distinction be-
tween “normal” species and quasispecies is blurred, and noth-
ing can prevent us from viewing a “normal” population as the
aforementioned subset of a quasispecies (in the process of
divergence). Here, we assume that this mode of high mutation
rate is precisely that which deserves careful examination in the
large genomes of higher organisms as well—what matters is the
mutation rate per-genome per-generation, and as we now know,
this parameter is quite large in mammals (and other highly
evolved forms) at about a few hundred mutations, with few in
coding regions. This is actually the main point of Drake’s rule.

For simplicity, we presume that selection has an opportu-
nity to act in a compensatory manner (to increase G/) only in-
between generations, ignoring possible germ-line selection
issues. That is the reason for focusing on the per-genome
per-generation mutation rates—selection does not “see” a
genome size or per-base mutation rate. What it does “see” is
the cumulative effect of all the mutations in the genome,
which it tries to compensate through genetic deaths, the re-
moval of the genomes from a population. So, the natural
“units” for selection actions are a genome and a bunch of
mutations in it. In comparison, the quasispecies theory is used
to address the evolution of HIV with 1-10 mutations per
division, so from the selection point of view the functional
impact (at least in G/ terms) is comparable. As pointed out by
Nowak (1992), a given HIV population “seems to operate
very close to its error threshold”. The existence of the “thresh-
old” is our main postulate here. However, we apply it to all
species, and with the provided IT framework, such a threshold
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seems to be well defined and ready for modeling. The main
difference between virus and mammals populations seems to
be the generation time and the genome size—the virus geno-
type “cloud” can be readily observed empirically. However, to
generate the actual equilibrium “cloud” for a large, slowly
replicating genome would take an astronomically large time
and population size—equivalent to enumerating the full typ-
ical set. Nevertheless, this does not mean that we cannot
explore the properties of this limit theoretically and then
assume that these properties are applicable to the aforemen-
tioned population slice. The equilibrium mode of maintaining
variability is considered in quasispecies theories too, and after
we introduce the pattern definition and the measure of genetic
information with fitness function, we arrive at our model.
However, in the quasispecies theory, the fitness is defined
for the whole population of mutants, not for individuals
(Nowak 1992).

The analogy with quasispecies serves illustrative purposes
but should be taken with a grain of salt—there are important
differences from our model. For example, the quasispecies
“cloud” arbitrarily depends on replication/mutation rates and
other parameters, and has no deeper meaning, while our
“cloud” represents the typical set as defined as all genotypes
producing a species-specific phenotype (defining species total
GI, which is missing in quasispecies model). Our threshold
arises from the IT notion of channel capacity. Although it is
conceptually similar to the “error threshold” from the
quasispecies model (both, in essence, speculate about an
inability to maintain species-specific phenotype) (Eigen
1971), they have substantial differences. While quasispecies
model considers dynamics of infinite populations with non-
lethal mutagenesis, our model allows for finite populations
with lethal mutagenesis (which is the realistic scenario). Also,
Eigen’s error threshold is not equivalent to channel capacity,
in the sense that in the latter case there is no unavoidable
“catastrophe”—information can persist with arbitrarily low
sequence conservation, where information density can be
arbitrarily low, as we discuss below. Analogously, in IT,
reliable transmission is possible with any noise level, but the
rate will be lower for higher noise.

Another related question is that the mutation rate must be
sufficiently high to invoke the “quasispecies dynamic”, oth-
erwise the expediency of the quasispecies approach can be
challenged (Holmes and Moya 2002; Wilke and Adami 2003;
Wilke et al. 2001). Some microbes (e.g., wild-type
Escherichia coli) have mutation rates significantly lower than
one per-generation, though they still acceptably fit into
Drake’s rule because it holds on a logarithmic scale. In such
a case, our simple simulation will converge to trivial mono-
clonal population, actually reflecting in vivo situation for a
single bacterial colony. To regain Drake’s rule and molecular
clock phenomena, we need then to revise some simplifying
assumptions. A good candidate is constant environment—if

the environment is oscillating, then we effectively have many
different GI-profiles (or one multidimensional) where the
global population is distributed and individuals are moving
from one environment to the other. In this case, the effective
(global) mutation rate must be higher, when averaging over all
sub-environments and population transfers between them, and
we will regain a “cloud” instead of monoclonal population. In
lay terms, for a species in a fluctuating environment, it would
be advantageous to have some “memory” about different and
recurring sub-environments, instead of adapting to them de
novo at every encounter. In that case, the decreased mutagen-
esis can provide this improved memory. For a single sub-
environment, such species would look overly complex and
the mutation rate would be below the Drake’s rule prediction.
Lineages with higher mutation rate were wiped out by the
environmental fluctuations.

These considerations lead to an interesting prediction: mi-
crobes enjoying more stable environments should have higher
(properly normalized) mutation rates. This seems to be con-
sistent with observations: wild-living microbes usually have
lower mutation rates in comparison with parasitic relatives
who enjoy a host’s homeostasis. Usually, the increased rate is
attributed to the “arm-race” with a host’s immune system;
however, the story might be more complicated—the arm-
race (an increased mutagenesis) could be confined to a few
specific genes (which are indeed observed in some cases, e.g.,
cell-surface proteins and so on) while the whole-genome
elevated mutagenesis is costly and is not so well-motivated.
When wild-living microbes “compete” with a significantly
changing environment, it might impose the “racing” pressure
genome-wide, because of large differences in entire metabo-
lism in different environments.

In our model (for GI,<2 bit), a large number of allowable
sequences (constituting a typical set) have nearly the same
fitness and can coexist in a population in the case of equilib-
rium maintenance evolution. However, they are not complete-
ly equal in fitness so that selection can maintain a pattern by
discarding the most deviant (“atypical”) sequences. Given the
defined weight matrices of a desired conservation profile, the
model provides selective values of individuals considering all
mutations, present and de novo. Recently, we showed
(Shadrin et al. 2013) that the substitution rate in functional
sequences can be arbitrarily close to the neutral rate, and the
fraction of positive mutation can be high in general. About
50 % of the retained mutations must be “positive”—a trivial
requirement for the balance of G1.

This model, analogous to studying evolution with Turing
machines (Feverati and Musso 2008), can be described as a
population of machines operating on symbol sequences (of
limited length), reading out positional information, recognizing
corresponding patterns (via typical sets, technically, for a gen-
eral typical set an assumption of positional independence is not
necessary) of molecular interactions, and calculating a high-

@ Springer



944

Naturwissenschaften (2014) 101:939-954

level phenotype. However, it seems that our machine is closer
to describing the “molecular computations” through pattern
recognition in comparison with the sequential algorithmic Tu-
ring machine and some other forms of digital organisms. For
the purposes of this investigation, we do not have to specify the
phenotype calculations per se—once we define the patterns and
typical sets in a “genome”, we can address the problem of their
maintenance or evolution (e.g., the cost or speed of patterns
preservation or change). Here, we focus on the maintenance
properties, treating such machines as genetic information stor-
age devices that must resist the random noise of mutagenesis.
The only computation is done for selection actions—a degree
of genome “typicality” is used as fitness, accounting for all
variants in a genome (Eq. 3). As could be expected, our fitness
function is similar to the traditional one in its basic “common
sense” features—for example, a mutation in a highly conserved
site (high GI) will lower the fitness significantly. Notably, in
this model, all sites and variants are functional—there is no
need to postulate “neutral” (Kimura 1983) or (loosely specified)
“near-neutral” (Ohta 1973) variants (to explain the high rates of
sequence evolution). In our case, the equilibrium can be
interpreted as the cumulative neutrality of all mutations (re-
maining in a population), while assuming the individual neu-
trality for the majority of mutations would be throwing the baby
out with the bathwater.

Simulation
Simulation terms

An organism in the simulation is represented by the nucleotide
sequence of given length (L), O=[B;, B>, ..., B;], where V
i€[1,L], B{4,G,C,T}. A population is a set of organisms of
the same length. The parameters that govern the simulation
process are shown in Table 1. The mutational bias (of transi-
tions/transversions) is included in the code for universality,
but has no effect on the trends we investigate here. As we
discussed in Shadrin et al. (2013), species-specific biases can
play an interesting role for GI storage optimization and may
slightly affect species dispersion along the Drake’s rule trend
line. However, for brevity, here, we assumed it as constant.

Each organism (O) in a population can be associated with a
weight specified by the weight matrix W:

W(0)=W([By.B,,....B)) =Y Wi(B;) (3)

i=1

A “typical” probability is the expected probability of a
sequence for a given Gl-profile. It can be estimated through
multiplication of the expected frequencies for corresponding
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Table 1 Simulation parameters

Notation Description

N Number of organisms in the population
(population size).

L Length (number of bases) of genome of each
organism in the population.

ny Number of descendants each organism produces
in a single round of reproduction.

P, Probability of mutation per base.

Py Probability that an occurred mutation will be a

transition mutation.
w=(W; | je[1.L]) Selection weights of nucleotides in each position,
where I/Vj:(M/jA’ WjGa W/'Ca 1/VjT)a VV}(B):VVJ'Ba
Be{4,G,C,T}—selection weight of the

corresponding nucleotide B in j-th position.

positions. Here, for computational convenience, we define the
fitness as a sum of position-specific weights that, for our
purposes, is equivalent to the multiplication thereof if we
had used logarithms of frequencies. However, as we men-
tioned, any fitness expression (additive, multiplicative, etc.)
for multiple alleles will produce some conserved pattern. Such
(potentially interesting) complications can influence only the
shape of the resulting G/-profile and its stability (fluctuations);
they do not affect the existence of the mean density and the
independence on the population size. However, for example,
the specifics of reproductive success dependencies are obvi-
ously important for the dynamical part before the equilibrium
is reached.

We do not know the resulting G/-profile before the simu-
lation is performed. Hence, the weight matrix defines a gen-
eral direction of pattern conservation by selection, not the
actual G/-profile per se.

Weights (W) are used to determine selection preferences,
which try to maintain a pattern. In our experience, the partic-
ular recipes for selection actions (e.g., probabilistic/determin-
istic) and reproduction modes (overlapping/non-overlapping
generations) play a little role in the described trends, as long as
the main purpose of these actions is to maintain a pattern, a
biased frequencies distribution, while the opposing force,
random mutagenesis, tries to flatten the bias. Each mutations
round decreases the genomes “typicality”, on average. So a
more “typical” genome has higher reproductive success, be-
cause its progeny is more likely to stay typical and avoid
elimination. As we mentioned, G/ can be viewed as a conve-
nient measure of functionally acceptable variant frequency
biases. Such an interpretation of fitness, which allows one to
trace the total information value, is the key departure from
traditional models. For example, it seems to be inherently
difficult to approach the Drake’s rule explanation with a
traditional fitness function, which is relative as it is “blind”
to genetic complexity and genome size. In our case, the total
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GI, the genetic complexity, is measured by the amount of
pattern (functionally acceptable) biases. It seems to be an
intuitively appealing quantification: the larger the total amount
of biases (further from the flat distribution), the higher the
information content and energy required to maintain it. How-
ever, such an approach is a necessary simplification—it works
under the assumption that the remaining (“higher order”)
information unfolding processes are approximately the same,
which should work at least for a similar species.

Presumably, the sophisticated error correction mechanisms,
such as DNA repair, constitute a biological burden. Then, we
can ask: what is the maximum mutation rate compatible with a
given total GI? The differences of G/, of functional sequences
are assumed to be small for close species. Formally, for our
phenotype-calculating machines, the conservation of GI is
equivalent to the whole phenotype conservation, because, as
we reasoned in Shadrin et al. (2013), conservation of G/
preserves the positional information of molecular interactions,
so that a phenotype is mechanistically derived from the whole
genome pattern.

Simulation process

The entire simulation process can be divided into three suc-
cessive stages: initialization, spawning, and selection:

* Initialization: The initial population consisting of N
organisms of length L is generated. All organisms in
the initial population are identical and have maxi-
mum possible weight according to matrix W, i.e., at
each position j of each organism stands a nucleotide

By B; = {B

wip = mgx(ij,Be{A G,C, T}) .

*  Spawning: The progeny is spawned. Each organism in the
population produces n, descendants (here we consider in
detail only the case of binary fission, i.e., when n,=2). A
descendant organism has the same length as its parent and
is obtained by copying the parental sequence with a cer-
tain probability of mutation (P,,) and with a bias of muta-
tional spectrum (P,). The parental organism is excluded
from the population after the reproduction, so the genera-
tions are non-overlapping and after this step the popula-
tion consists of n,N organisms.

o Selection: Selection reduces the number of organisms in
the population back to the initial size. It acts deterministi-
cally, leaving N organisms, whose weight W(O) is larger.

Initialization occurs only in the very beginning, and then
the spawning and selection are repeated in a loop until the
simulation process is stopped. The choice of procedure for
generation of the initial population does not affect the steady
state of the simulation process, so we can simply generate a

random initial population. However, generating the initial
population as described above will provide faster convergence
to the steady state, the equilibrium condition, which reveals
the “error threshold”, the goal of our experiments. The above
mode of reproduction describes the non-overlapping genera-
tions for the simplicity of defining and counting mutations.
However, we experimented with other modes, including the
overlapping generations similarly to Moran model, and found
the trends invariant.

Results
GI behavior in the course of simulation

Immediately after the initialization stage of the simulation, G/,
of the population according to formula (2) is equal to 2 bits
because all organisms are identical. However, as we discussed
carlier, this is not the “correct” functional GI (because a
population is far from equilibrium), but a formally computed
value in the course of simulation. If we start the simulation
process as described above with the probability of mutation
P, high enough to allow occurring mutations to propagate in
the population, then the diversity will emerge and G/, will
start to decrease. While reducing, G/, will finally reach the
level when mutagenesis is balanced by the force of selection
and in consequent iterations will fluctuate in the vicinity of
some value. The existence of the balance (mean GI)) is clear
because the capacity (the averaged effect) of random muta-
genesis to decrease G/ monotonically drops from some value
at GI,=2 to zero at G/,=0, while the corresponding selection
capacity to increase GI behaves reciprocally by having non-
zero value at GI,=0 and zero at GI,=2. Thus, these two
functions intersect at some equilibrium point. In our numerical
experiments, we consider that the population is already in the
equilibrium state if during the last 7 generations (7=100 in
our tests) two conditions are met: The sum of all G/, changes
between consequent generations is less than a specified
threshold (/e-3 in our tests), the maximum number of conse-
quent generations increasing/decreasing G, is less than 77/10.

The observable magnitude of G/, fluctuations around the
equilibrium value depends on the size of the population, but
the equilibrium value per se does not, which is natural to
expect for the population maintaining constant (average) var-
iant frequencies. So setting the size of the population () large
enough, we can identify the moment of equilibration and
equilibrium value of G/, with the required precision. Even if
we assume a more complicated scenario where the fluctua-
tions are not settling down, the aforementioned capacities of
mutagenesis and selection to change G/ cannot depend sig-
nificantly on the population size. They operate on the variants
frequencies, which are disentangled from the absolute
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population size; hence the balance (even if it is the dynamic
balance) between these two forces is also free from the pop-
ulation size dependence.

We will call the state of the simulation when the population
has already reached equilibrium of the G/-steady state and
denotes the mean value of G/, in equilibrium population as
Gleaqy The convergence of G, for different parameters is
presented in Fig. 1. A biological interpretation for this state
that it is a given species maintainable G/ value. It can be called
a “mutation-selection balance”, however, it is clearly different
from Fisher’s balance (Crow 1986), who considered a single
site, where in our case the balance is due to the compensatory
effects of multiple positive and negative mutations. Other
authors considered a balance similar to ours when the frequen-
cy of positive mutations is high so that they cannot be easily
brought to fixation as in one-by-one case (Sniegowski and
Gerrish 2010; Desai and Fisher 2007). This is also different
from our approach in a number of aspects—we are not con-
cerned with the fixations at all, and we quantify the limit on
genomic complexity—as we discussed earlier, without con-
siderations for this limit, a formal modeling might easily result
in “un-physical” solutions. It should be clearly understood that
the word “steady” here concerns only the total genetic infor-
mation (and hence the phenotype), the genomes in the popu-
lation remain variable, because new mutations still appear
with the steady rate (see Fig. 2). The “molecular clock™ is
ticking, and its empirical steadiness on the evolutionary scale
is another indirect hint that the average G/ density is a slowly
varying parameter. For example, mutations are more frequent
in a position with lower GI value, so if density fluctuates
strongly on the evolutionary scale, the clock would behave
erratically. As we argued (Shadrin et al. 2013), G/ increasing
(positive) mutations constitute a significant fraction of random
mutations (especially when GI in a position is low), thus
allowing the same fraction (in the G/ equivalent) of negative
mutations to remain in the population. The monotonous mo-
lecular clock is a simple prediction of the provided model.
Alternatively, it can be explained by the neutrality assumption,
which seems to be an oversimplification of reality. Also, the
provided model shows that the steadiness of the clock is
intimately connected with Drake’s rule and the “error thresh-
old”, while the neutral theory is inherently unable to make
such connections.

Counting mutations

In the simulation, the number of fixed mutations, i.e., the
observed mutations per-generation can be counted directly.
Following the common notation, we denote the number of
mutations per-generation per base as u;, and the mutation rate
per-generation per-genome as u,. Despite the fact that the
values u;, and P,, are closely related, u,, is always less or equal
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Fig. 1 Convergence of G, for different parameters. Common parame-
ters for all demonstrated cases are: N=1,000; n,=2; P,;=2/3;
W=(W=(0.8, 0.2, 0, 0) if j is even, else W,=(0.5, 0.3, 0.1, 0.1)). Color
determines organism length (L): green corresponds to L=100, blue to L=
200, and red to L=400. Line style determines probability of mutation per
base (P,,): solid corresponds to P,,=0.01 and dashed corresponds to P,,=
0.04

than P,,, since organisms with more mutations are more likely
to be eliminated at the selection stage.

Now, let us look at the somewhat inverse experiment: we
can fix the value of Gl.q, and all parameters from Table 1
except P, and then numerically find the value of P,, which
corresponds to the fixed parameters. This procedure was
performed for all combinations of different organism
lengths Le{64, 128, 256, 512, 1024}, different values
of Glseqay€il.2, 1.4, 1.6}, and different weights
we{[W;=(0.8, 0.2, 0, 0) if j is even, else W;=(0.5, 0.3, 0.1,
0.1)], [W=(0.9, 0.1, 0, 0) if j is even, else W;=(0.4, 0.3, 0.2,
0.1)]}. Other parameters in all experiments were fixed: N=
1,000; n;=2; and P,=2/3.

In the experiments, we estimated the number of mutations
observed in the G/-steady state and compared u;, parameters for
different genome lengths. The results are summarized in Fig. 3.

Figure 4 shows total genetic information (Gl,,,,,) and den-
sity of genetic information (GI,) depending on the genome
length (L) when the rate of mutations (Pm) is fixed. For each
population displayed G/, and G, were averaged over 1,000
generations after the population reached G/-steady state.

Through defining different weight matrices (Eq. 3), we
tested different scenarios of the density distribution: with
homogeneous GI distribution in a genome and bimodal—
one half of a genome consisting of highly conserved (“lethal’’)
sites—to model the regions such as conserved protein do-
mains and the other half consisting of weakly conserved sites,
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to model the variable parts of proteins, and weakly conserved
non-coding regulatory DNA. The behavior of GI density
versus mutation rate holds similar in all modeled scenarios,
so that the actual weight distribution does not affect described
trends.

Discussion

A simple simulation (with rather predictable results) was used
merely to illustrate the working of general principles we
introduced. More realistic implementations are easily conceiv-
able through modifying and extending our simplifying as-
sumptions. For example, particular alleles might interact in
more complex ways (i.e., epistasis) than described above, and
as we mentioned, such interaction can be accounted for by
constructing more complex typical sets. However, these com-
plications cannot influence the basic conclusions, which rest
on general principles without dependence on specifics of
implementation. Furthermore, since the model provides rea-
sonable explanations for observable phenomena with a

| i 1
200 300 400 500 600 700 800
Iteration

minimal number of parameters and assumptions, and is com-
putationally realizable, operating similarly to our understand-
ing of molecular interactions, we believe that the model fairly
captures the general properties of real genetic systems. Inter-
estingly, the model can be considered a simple generalization
of Hardy—Weinberg equilibrium (HWE) (Hardy 2003), ex-
plicitly including functional sites and their maintenance selec-
tion. HWE states that purely neutral alleles (in the absence of
selection and linkage influences) maintain their constant fre-
quencies in the sufficiently large (to avoid sampling/drift
effects) equilibrium population. However, our model states
exactly the same for the equilibrium population, but for the
functional alleles, which do produce differences in fitness and
selection (of arbitrary strength)! This may explain the persis-
tent (about half-century) illusion of the neutrality in common
tests (e.g., Tajima’s D (Tajima 1989)). Mutations in equilibri-
um population will “pretend” to be neutral, so such criterions
actually test for the (local in the case of recombining popula-
tion) equilibrium condition, rather than for the individual
mutations neutrality. Below, we discuss some possible conse-
quences for our understanding of real genetic systems, assum-
ing that the model is sufficiently valid.
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Fig. 3 Relationship between the mutation rate per site per-generation
(up) and the genome size (L) observed in the simulation. Color determines
density of genetic information in the steady state (Glyeaq): red corre-
sponds to Gleqq,=1.2 bit/site, blue to Glyeqq,=1.4 bit/site, and green to
Gleaqy=1.6 bit/site. The shape of the marker determines selection
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0) if j is even, else W;=(0.5, 0.3, 0.1, 0.1)), the triangle corresponds to
Waiangie=(W;=(0.9, 0.1, 0, 0) if j is even, else W;=(0.4, 0.3, 0.2, 0.1)).
Lines represent linear regression on a log-log scale. Dark red/blue/green
lines correspond to light red/blue/green markers; dash and dot lines
correspond to pentagons, dashed lines correspond to triangles. Regres-
sion lines and corresponding correlation coefficients (12): Glyeqa=1.2,
Wentagon (red dash and dot line): logou,=—0.68—0.9810g,L, (12=0.99).
Glsieair=1.2, Wyiangie (red dashed line): logyup,=—1.02—0.971og,L, (12=
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—1.52-0.97log,L, (12=0.99). Glseaqy=1.6, Wyentagon (green dash and
dot line): logyup=-2.31-0.93log,L, (12=0.99). Glseqay=1.6, Wyiangie
(green dashed line): logyu,=—2.23—0.96log,L, (12=0.99)

Naturally, we do not reject possible roles of classical phe-
nomena. For example, the “strong selection”, which leads to
“selective sweep”, is a non-equilibrium event and falls out
from the applicable domain of the equilibrium model. In terms
of GI, such events alone provide only 2 bits of G/ for a given
site, for the price of the total population replacement (roughly
speaking). Such events are equivalent to considering a chang-
ing environment. Under the model’s assumptions of the con-
stant environment and the infinite time equilibrium, all such
events would occur and settle down. However, even for the
changing environment situation, we propose that the model
describes the “background” of such (presumably relatively
rare) events. The number of such events must be limited by
Haldane-type arguments (Haldane 1957), so we assume that
the rest of mutational background might be better described by
the provided model, than by the neutral approximation. In fact,
according to the model, a mutation per se, with any selective
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Fig. 4 Dependence of total genetic information (G/,,,,;) and density of
genetic information (G/,) on the length of genome (L) when the rate of
mutations (P,,) is fixed. Each point represents a population with organ-
isms having genome of size Le[100, 120, ..., 1080, 1100]. For conve-
nience of orientation, some points are colored in red and genome size of
corresponding population is labeled. Mutation rate (P,) was fixed to
0.007. Also, all other parameters were identical for all populations,
namely N=1,000; n,=2; P;=2/3; W=(W;=(0.8, 0.2, 0, 0) if j is even,
else 7,=(0.5,0.3, 0.1, 0.1))

value, while changing individual organism’s typicality or fit-
ness, cannot increase the amount of total G/ in the equilibrium
population—the phenomenon we explain below. Hence, in this
work, the model has well defined restricted applicability do-
main. However, it is straightforward to extend it to certain non-
equilibrium scenarios such as abrupt or gradual changes in GI-
profile, simulating changing environment. Admittedly, most
variants in real populations are of weak effect, however, their
number can be quite large, so that their collective effects can be
far from negligible (as in the simplistic interpretations of the
neutral theory), and our theory suggests a consistent way of
accounting for such effects.

According to Drake et al. (1998), the genomic mutation rate
“is likely to be determined by deep general forces, perhaps by a
balance between the usually deleterious effects of mutation and
the physiological costs of further reducing mutation rates”. As
can be seen, Drake correctly did not include considerations for
adaptive properties of evolution, practically solving the prob-
lem, hinting rather that it is the maintenance-related phenom-
enon, and once we interpret the maintenance as the equilibrium
in allele frequencies—the main property of our model—the
population size is obviously out of the equation (as in the case
of HWE).

The key assumption for Drake’s rule explanation is that the
total genomic information is saturated to its maximum main-
tainable value, or reciprocally and equivalently, the mutation
rate is near its upper limit for a given species total GI. The
mutation rates and thus the total GI are assumed to change
slowly on evolutionary time scale. We hypothesize that the
rate decrease is a basic event required for progressive evolu-
tion, and it is promptly followed by the gain in total G/,
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restoring the equilibrium. The equilibrium can be regained
“quickly” (~100 generations, judging by the speed of conver-
gence to the steady state in Fig. 1).

One difficult question is how to motivate the stability of the
mutation rate for a given species. For the rate decrease, we can
assume that it might happen due to the large difference of the
time scale of two phenomena. The first is merely a long-term
advantage of the lowered mutation rate: some generations
must pass to fill newly accessible G/ (if a niche requires it,
which does not have to be the case, in general). The second is
the immediate disadvantage: “physiological costs”—since the
lower rate, in principle, must be associated with a slower
replication rate and/or additional energy expenditures. On
the other hand, why are the rates not degrading, if increasing
the rate might yield a quick advantage and only a disadvantage
in the long-term? At this point, we can only speculate that for
higher organisms, an increased somatic mutagenesis might
also create a short-term disadvantage, preventing the rate
degradation (e.g., somatic mutations theories of aging or
carcinogenesis). Beside the somatic mutagenesis, we could
imagine any other selectively important phenotype somehow
linked to the changes in mutation rate. The other idea is that
while the rate decrease must come at some “physiological
costs”, the way back is not that easy—a mutation, which
degrades the rate, will not necessarily reduce the “physiolog-
ical costs” back to the previous values. Such a mutation must
be a rather specific “back-mutation” or, more likely, a number
of them, making it improbable to achieve both the rate in-
crease and the corresponding costs reduction. Hence, the rates
can only go down, locked from above by both short- and long-
term disadvantages. Alternatively, the rate maintenance might
require a regular population renewal, described below. Natu-
rally, there are examples of regressive evolution, which can be
easily caused, for example, by moving to a simpler niche
(habitat)}—“use it or lose it”. Interestingly, for our model,
regressive evolution is not a priory less frequent than progres-
sive; given sufficient niche separation, a subpopulation with
increased mutation rate will degrade to a simpler species. This
can probably be subjected to experimental verification, one
simple example of (organ-specific) decrease of complexity is
the blind salamander living in caves, which has “atavism:
rudiments of the eyes (sometimes even a lack of eyes). Wider
observations of such reversed “atavisms” might shed light on
how popular “degrading” evolution is. Technically, there are
no reasons for rejecting the possibility that a number of
simpler forms might “devolve” from more complex ones.
While the latter must have ascended from some simpler an-
cestors, in principle, the topology of the evolutionary tree
might resemble a willow tree (i.e., numerous descending
branches, from a few thick nearly horizontal branches—*liv-
ing fossils”™).

Hypothetically, a change in mutation rate would remold a
species phenotype (suggesting an explanation for “punctuated

equilibrium” phenomenon), since small relative changes in
the mutation rate can provide a significant absolute change in
total accessible G/ and a correspondingly significant change in
the phenotype. In principle, it is assessable experimentally: if
we were able to select flies (for example) for a lowered
mutation rate, then the model predicts that such a population
has the capacity to produce a more advanced species of flies.
The problem is, however, that the population must be chal-
lenged with the proper external conditions, which could cause
evolutionary progress, thus promoting an increase of
complexity.

It is natural to expect that the rates occupy discreet values,
due to the discreet nature of corresponding modifying muta-
tions and their (presumably) limited number. We could also
hypothesize about speciation scenarios: suppose that in a large
population the rates are heterogeneous and mixed, so that the
population has some average rate. Then after a “founder”
splits off, he produces a new population that has a potentially
different rate than the main population, leading to the fast
phenotype changes.

The evolution of the (functional) genome size is presumed
to occur through gene duplications (Ohno 1970), so that “gene
families” grow in size. That also motivates our postulate of
slow changes in G/, for functional sequences—new se-
quences perform molecular functions similar to the original.
The provided theory readily predicts that whole or partial
genome duplications would lead to an increased rate of se-
quence evolution and to a subsequent shrinking back of the
(functional) genome size, losing extra gene copies, due to
inability to maintain higher total G/ without changing the
mutation rates. Evolutionary progress (an increase in com-
plexity and GI) is happening not due to duplications per se
(which are relatively frequent events), but due to the mutation
rate decrease and/or the adoption of the lower G/, functional-
ity (Fig. 4)—these changes are assumed to be “slow”. This
hypothesis can be supported by several recent experimental
studies of RNA viruses. It is known that large- and
intermediate-sized nidoviruses encode an enzyme implicated
in controlling RNA replication fidelity, while other single
stranded RNA viruses, with smaller genomes, do not encode
the enzyme (Lauber et al. 2013). Nga et al. (2011) argued that
an acquisition of this enzyme might have promoted genome
extension. From the other side, Eckerle et al. (2007) demon-
strated that viruses containing a defective mutant of the
enzyme-encoding gene possess an enhanced mutation accu-
mulation rate. However, as we mentioned, progressive evolu-
tion naturally intervened with external conditions (niche or
habitat) and must be sufficiently complex to support the
increase of species complexity. Duplications might also cause
a reproductive isolation. Hence, together with the founder-
specific mutation rate hypothesis, this might be a path to
speciation and progressive evolution (when the founder re-
tains the lowered mutation rate).
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We suggest that the “channel capacity” notion of IT is
sufficiently deep and can serve as a general principle to
provide the desired understanding of Drake’s rule. The notion
also allows for a quantitative modeling of the process. Chan-
nel capacity is the upper bound on the information transmis-
sion rate for a given noise level. Practical solutions for infor-
mation transmission are somewhat below this theoretical lim-
it, and considerable engineering efforts are dedicated to ap-
proach the limit, simply because being closer to the limit saves
energy. Hence, yielding another basic consideration: if nature
does not use the genomic informational capacity to its full
extent, it would not be “thrifty”—why waste resources on the
unused capacity? Thriftiness should be favored by selection
(though there are some opposing ideas of “selfish” or “para-
sitic” sequences). If we presume that the early genetic systems
operated at the “error threshold”, it is not clear at which
moment and for what reasons this threshold was abandoned.
It seems to be the thriftiest and the fastest way to progress, to
stay always on the threshold, which is moving up due to the
enhancements in replication fidelity and other possible mech-
anisms. In fact, considering the “costs”, it is difficult to come
up even with an artificial reason to push fidelity beyond
necessity. Thus, unless we discover some good motives for
this reason, we have to admit (following Occam’s lines) that
contemporary species are also at the “error threshold”. It
seems that ignoring this fundamental threshold would make
the evolutionary modeling critically incomplete.

Intriguingly, in IT, the problem of approaching the channel
capacity limit has no general solution applicable to all practi-
cal situations, as it relates to the problem of achieving the best
compression rate, and in practice, is limited by the memory
and computational costs. That creates a recursive, self-
referenced evolutionary system: in order to become more
effective, resources must be invested in some analogs of
memory and computations, and these resources, in turn, must
be used in the thriftiest way, i.e., optimizing the optimization
and so on, producing a Godel-like system. Analogously to
Chaitin’s proposals (Chaitin 2012), we can speculate that
molecular machines have an infinite field for exercising the
mathematical creativity in attempts to approach the limit,
explaining the drive to complexity in living systems (Shadrin
etal. 2013). The physical restraints (e.g., energy conservation)
are thus the necessary prerequisites for forcing beings to
explore the “Platonic mathematical world” (Penrose 2005),
while the “Mental world” might arise out of necessity for
memory and computing. Naturally, the simple model captures
only the general properties of genetic information processing
as there are many features not included—epigenetics, rear-
rangements, roles of transposable and repetitive elements,
recombination, multiple ploidy, and so on.

In large genomes, there is a large number of repetitive and
transposable elements (sometimes called “junk DNA”), seem-
ingly challenging the thriftiness notion. However, we showed
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(Fig. 4) that in case of informational saturation it might be
advantageous to utilize a low-density G/ strategy (e.g., the
ENCODE project (The ENCODE Project Consortium 2012)
seems to support the broad functionality of intergenic re-
gions). From the IT point of view (semantically), if we had a
hundred copies of a book, then our information content will
not change if the number of books fluctuates, so what matters
is not their repetitive sequences but their structural properties;
they can serve as bricks but not uniquely informative books.
Repetitive sequences are not conserved in general, except for
the rare cases when they alter exon structures and acquire
“normal” functionality. Some animals and plants have ge-
nome sizes that are both much larger and much smaller than
mammalian genomes (while the number of genes is approxi-
mately the same), so we can conclude that the genome size
does not strongly affect organism performance. On the other
hand, there should be a balance between the proliferation of
these elements and some opposing force, because an un-
bounded multiplicative process would lead to an exponential
blowup. We speculate that this balance is the independent
(from usual substitutions) degree of freedom for phenotype
tinkering, and its model can be developed along similar lines
with the presented model. The tinkering probably affects
large-scale chromatin organization and in principle is not
much different from the usual mutagenesis. However, it might
be useful that it is independent from it. Once the 3D nuclear
organization became functionally important, some means of
tinkering provided additional dimensions of variability. It
seems that substitutions and small indels cannot significantly
affect nuclear organization (in a direct way), so they are not
well suited for this dimension of phenotype tinkering, in
comparison with large-scale rearrangements and mobile ele-
ments. However, the proliferation of such elements does not
immediately imply progressive evolution, an increase in com-
plexity (which yet has to be defined formally for such ele-
ments). The balance of these elements’ activity is analogous to
the mutation-selection balance of normal mutations, where we
showed that the increase of complexity is not happening
without special “creative” events that affect the balance (mu-
tation rate decrease and so on), and that balance is
reestablished quickly after such events.

Also, we can speculate that during replication polymerases
act in different modes in repetitive and unique sequences.
Otherwise, it is slightly puzzling that huge genomes of some
animals and plants do not produce some kind of “replicative
load”, while the channel capacity hypothesis suggests that
polymerases are working hard to minimize error rates and
“physiological costs”. It is known that for error correction,
polymerases can use homologous sequences; we can then
speculate that when such sequences are abundant the costs
and/or speed of replication are significantly affected.

Another thriftiness-based (posterior) “prediction” is CpG
sites. They are heavily underrepresented in mammals and
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some other lineages due to their hypermutagenesis. However,
it is known that some functional regulatory regions contain
highly conserved “CpG islands”. Either they are protected
from mutagenesis by some special mechanisms or by simply
purifying selection—apparently there are additional costs as-
sociated with their usage. These costs must be balanced by
some benefits, and indeed they have an additional informa-
tional capacity: methylation. The same logic may apply to
other over-conserved sequences such as histones.

Also, the “silent” substitutions (which do not affect protein
sequence) are unlikely to be purely neutral, since organisms
would capture unused informational capacity. Their suitability
for calibration (null hypothesis) purposes should be carefully
evaluated. Indeed, there are many reports which show their
functionality potential.

In comparison with the other recently proposed explanation
of Drake’s rule (Sung et al. 2012), our model does not call for
additional difficult-to-define entities like “molecular refine-
ments”, “drift barrier”, or “effective population size”. Esti-
mates of the latter are admitted by the authors to be “fraught
with difficulties”. It is not clear how to simulate that evolu-
tionary model in silico in order to perform its validation,
because genome-wide functionality and conservation is not
defined. Hence, there is no specific model for selection ac-
tions, and there are many arbitrary parameters. However, a
desirable feature of a “mechanistic” evolutionary model is the
ability of simulation and robustness evaluation in the
parameter space. Comparing Figure 1A of Sung et al. (2012)
with Fig. 3 presented here, we can hypothesize that eukaryotes
have lower G/ density, on average, which is consistent with
other observations (e.g., they exhibit weaker genomic conser-
vation). Moreover, Fig. 4 demonstrates that it can be advan-
tageous to utilize the lower density G/ storage. The G/ storage
strategy can be affected by particular demands for optimiza-
tion: e.g., viruses or bacteria might prefer compact genomes
with high GI, for faster replication or smaller physical size,
utilizing the double stranded and overlapping coding and
avoiding weakly conserved regulatory non-coding DNA.

An important consequence of our reasoning is that molec-
ular evolution on average is not about a continuous increase of
total GI. This suggests an explanation to the naive, but still
valid question of why we see “living fossils” or do not see
contemporary monkeys evolving into humans continuously,
(anthropocentrically) assuming the latter have higher GI,
while on the other hand we observe an amazing morpholog-
ical plasticity (e.g., dog pedigrees or Cetacean evolution).
Despite being “adaptive” for a given change of environment
(selection demands), evolution is not “progressive” in terms of
total G/, since we posit that each species already has the
maximum G/ allowed by the mutation rate, which is assumed
to vary slowly. That also calls for a revisiting of the popular
evolutionary concept that genes operate near their best func-
tional performance—the performance is as good as allowed

by the corresponding channel capacity, balancing at the brink
of “chaos and order”, so that a random mutation has a high
chance of being positive, in general. The dependence of the
“evolvability” on the population size is also practically a
“dogma” in traditional theories, which might be a conse-
quence of the unconstrained (“open-ended”) opportunistic
“Brownian” views on evolution. However, if a population is
at the GI limit, so that an advance in one function must be
associated with “costs” to others, the role of the population
size might be diminished, at least, as we showed for the
maintenance mode. In this scenario, when an individual re-
ceives an advantageous mutation, its progeny will tolerate and
keep more disadvantageous, new mutation-hitchhikers (and
the outcomes of recombination), which will eventually nullify
the effect of the initial mutation. Qualitatively, similar infor-
mation “jamming” was also explored in the chapter “Conflict
Resolution” in Forsdyke (2011). It seems that strong depen-
dencies on population size in traditional models lead to some
contradictions with observations, such as Lewontin’s ‘“Para-
dox of Variation” (Lewontin 1974), not to mention the general
trend that more evolved forms have smaller population sizes,
on average. Ironically, we can draw the opposite scenario for
evolvability versus population size: without immediate negative
effects, random mutations will degrade the rate on average.
Hence, a large population size in the long run can lead to the
accumulation of variants that increase the average mutation rate,
leading to degradation. The way out then is through bottlenecks:
the population must be regularly refreshed by the founding of
subpopulations with decreased (below the average) rates. Such
subpopulations will quickly gain an advantage and overcome the
main population. In a sense, it is the population genetic “ageing”
analogously to a somatic ageing. In that case, the reproductive
barriers, bottlenecks, and speciation events are necessities of
evolution, required for the renewal and progress, rather than
peculiar accidental features. We would like to remind the reader
that in this model positive mutations are abundant, so there is no
need in a large population size or waiting time. Periodic popula-
tion “purifications” by bottlenecks prevent “smearing” of the
population along the borders of the typical set—the area which,
in general, is supposed to contain many “weak”, less fit alleles.
Regular bottlenecks can be viewed as population-scale error
correction mechanism. The latter speculation is well consistent
with the concept of genome regeneration proposed by Battail
(2007) as a necessary implication for the long-term reliability of
genetic information transfer.

Of course, we acknowledge the role of population size in
certain circumstances, for example, sudden change of environ-
ment (e.g., the addition of antibiotic to bacterial culture). How-
ever, we need to clearly separate “survivability” from
“evolvability”. The same issue is with the transient
hypermutagenesis, which in some cases is used to escape harsh
conditions—the increased mutagenesis decreases genomic
complexity in a long run (according to the model) but may
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serve as a survival measure; after passing through the harsh
conditions, the rate is reversed to normal. Another interesting
example is cancer cells, which can be qualified as being of a
much simpler species: a parasite unable to survive without a
host; in that case, they can afford and gain an advantage from
increased mutagenesis. If we assume (for the sake of an exercise
of Drake’s rule application) a cancer in equilibrium, we can
speculate about the “cancer genome” size using Drake’s rule. If
the (per base) mutation rate is 1,000 time higher, then the cancer
functional genome size must be about 1,000 times smaller, with
the rest being junk DNA for this “species”. It is tempting to
establish how well such “cancer genomes” overlap in indepen-
dent cancer samples.

However, when survivability is not an issue, e.g., in a gradu-
ally changing environment, without mass extinctions, we suggest
that evolvability does not significantly depend on population
size. The relative contributions of diverse evolutionary strategies
must be further investigated; our point here is that to disentangle
these issues, it is necessary to account for the evolution of
genomic complexity. As such, we introduced here one possible
way of accounting for total G/ (there are likely other ways to
accomplish this (Watkins 2002; Battail 2014; Adami 2004 and
references in Shadrin et al. 2013)). Figure 2 illustrates the role of
population size in our model. A smaller population size leads to
more “drift” (including the “fixation by drift”), stochastic fluctu-
ations of frequencies. Nevertheless, these fluctuations have a
defined global average that can be revealed with a larger popu-
lation size (or sufficiently long averaging). However, the popu-
lation size has no impact on the total GI. Hence, the smaller
population size is not detrimental for species complexity, as
opposed to classical views where “slightly deleterious” variants
are more prone to fixation by drift, leading to genomic “melt-
down” and other problems. In general, it might be misleading to
imagine evolution as a chain of fixation events. The model shows
how evolution can proceed without any fixations, just by shifting
allele frequencies, while observable fixations are mostly the
consequence of drift, which might cause confusion because drift
depends strongly on population size. The “drift” in our model is
presented as a drift inside a huge typical set, so that for a
reasonable population size the stochastic frequency fluctuations
and fixations can be observed for numerous weakly conserved
sites. Our model is “deterministic” in the sense that an environ-
ment is fully formalized with GI-profile, making the system
“closed” in a sense, and thus more analyzable. Such “determin-
ism” can be compared to the situation in thermodynamics: the
trajectory of an individual molecule is unpredictable (though
having certain boundaries in a phase space), however, when we
average over large number of molecules we obtain some well-
defined laws and distributions. Analogously, individual lineages
can drift randomly (within a typical set) while the average over
all possible lineages reveals the species-specific boundaries (i.e.,
the typical set and total GI). In any case, a given species must
have some defined “deterministic”” boundaries.

@ Springer

The adaptation to new selection demands then happens at the
price of decreasing adaptation to other demands, a phenomenon
well known to breeders (Who now may attempt to select for the
lower mutation rates also). For our model, this can be imagined
as a reshaping of genomic GI profile (and corresponding pheno-
type) while keeping the total G/ constant. In biological interpre-
tations, it is the directional decrease of variability (reflected in the
increase of corresponding GI) of one phenotypic feature (which
is in demand), while increasing the variability (“loosening up’)
of others. A vast amount of literature is dedicated to searching for
traces of positive selection in genomes. We reason that for a
complete (“physical”) picture, the evidence of (local) positive
selection should be complemented with the evidence of corre-
sponding degradation in other genomic locations. The traditional
relative fitness function alone is unable to distinguish between
the “reshaping” (change in Gl-profile) and “progressive” (in-
crease of total GI, decrease of mutation rate) evolution modes,
because the channel capacity notion is absent in traditional
models (except for the somewhat analogous “error threshold”
considerations, which are presumed to be narrowly applicable in
some special cases). The general properties of such “reshaping
selection” (which seems to be much more frequent than the
progressive mode) can be easily modeled with the suggested IT
framework, to evaluate its basic features and the influences of
diverse evolutionary strategies. In the case of eukaryotes, we can
expect that such evolutionary plasticity resides mostly in non-
coding regions with low GI density, since the fraction of benefi-
cial mutations among random mutations is higher in weakly
conserved regions.
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Glossary

Equilibrium a population that has evolved for an
population infinite time without any disruptive events.
Genetic For a single nucleotide site (position), G/
information quantifies the bias of allele frequencies
(GI) from uniformity in equilibrium

population. The sum of positional Gls
over all positions quantifies fotal genetic
information and is interpretable as
localization information. It serves as an
estimate of genetic complexity, and we
posit that it is crucial to trace this value in
the course of evolution. A species with its
environment can be fully represented by
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its genomic GI-profile or in the more
general case by a typical set. GI (profile) is
a species-specific property characterizing
the closed system phenotype-
environment; we show how to connect it
with our fitness expression, which is the
individual genome property.

a set of all sequences which produce a
species-specific phenotype. For rather
long sequences, a good approximation to
the total G/ is given by the formula:
—log(7S/N), where T5 is the size of the
typical set and N is the total number of
possible sequences. In the case of inde-
pendent positions explored here, the #ypi-
cal set can be represented with G/-profile
(“sequence logo™).

a degree of “typicality” of a sequence with
respect to the GI-profile defined by the
typical set, the likelihood of occurrence of
the sequence in a typical set. From the
viewpoint of the selection process occur-
ring in our simulations, this fitness is
equivalent to the fitness in its common
meaning—i.e., it reflects the ability of an
organism to survive and reproduce. So, we
can use “fitness” in its general meaning
interchangeably.

random changes in population allele
frequencies from one generation to the
next due to the finite number of
individuals contributing alleles to the next
generation.

an allele is fixed, when its frequency is
equal to one. Fixation may occur due to
selection pressure or random drift.

upper bound of the information transfer
rate for which reliable (without
degradation) transmission through a given
noisy channel is attainable. Our central
hypothesis here is that genomes of all
species operate near their channel capacity
determined by the mutation rate and other
parameters.

DBypical set

Fitness

Random genetic

drift

Fixation

Channel
capacity
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