
Joint Model for a Diagnostic Test without a Gold Standard in the 
Presence of a Dependent Terminal Event

Sheng Luo [Assistant Professor],
Division of Biostatistics, The University of Texas Health Science Center at Houston, 1200 
Pressler St, Houston, TX 77030, USA (sheng.t.luo@uth.tmc.edu; Phone: 713-500-9554)

Xiao Su [PhD candidate],
Division of Biostatistics, The University of Texas Health Science Center at Houston

Stacia M. DeSantis [Associate Professor],
Division of Biostatistics, The University of Texas Health Science Center at Houston

Xuelin Huang [Associate Professor],
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Texas 77030, 
USA

Min Yi [database manager], and
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Texas 
77030, USA

Kelly K. Hunt [Professor]
Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Texas 
77030, USA

Abstract

Breast cancer patients after breast conservation therapy often develop ipsilateral breast tumor 

relapse (IBTR), whose classification (true local recurrence versus new ipsilateral primary tumor) 

is subject to error and there is no available gold standard. Some patients may die due to breast 

cancer before IBTR develops. Because this terminal event may be related to the individual 

patient’s unobserved disease status and time to IBTR, the terminal mechanism is non-ignorable. 

This article presents a joint analysis framework to model the binomial regression with 

misclassified binary outcome and the correlated time to IBTR, subject to a dependent terminal 

event and in the absence of a gold standard. Shared random effects are used to link together two 

survival times. The proposed approach is evaluated by a simulation study and is applied to a breast 

cancer dataset consisting of 4,477 breast cancer patients. The proposed joint model can be 

conveniently fit using adaptive Gaussian quadrature tools implemented in SAS procedure 

NLMIXED.
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1 Introduction

The misclassification of a binary disease status in biomedical research due to imperfect 

sensitivity and specificity of a diagnostic test can have important ramifications for patient 

management. However, relative to a large body of methods on covariate measurement error, 

research on error- “contaminated outcomes,” such as a misclassified diagnostic status, has 

been quite limited [1, 2]. When the interest is in predicting a binary misclassified disease 

status from a group of covariates, Neuhaus [3] and Neuhaus[4] have clearly demonstrated 

that a naive analysis that ignores the misclassification leads to biased results in a variety of 

settings. Most available methods require the use of a gold standard, which can provide 

estimates of the sensitivity and specificity of the imperfect measure, and then incorporate 

these external estimates into the likelihood to obtain corrected effect estimates [5–8]. Or, if 

an internal validation subsample allowing comparison of an imperfect measure with the gold 

standard is available, a variety of techniques, e.g., those based on likelihood or on weighted 

estimating equations, have been proposed [9–12].

However, a gold standard or validation subsample may be unavailable, impractical [13, 14], 

expensive, time consuming, or unethical to perform on all subjects and is commonly 

difficult to obtain in clinical studies [15]. In the absence of a gold standard/validation 

subsample, few methods have been proposed for obtaining the accuracy of a single 

diagnostic test as most methods exploit the information contained in a battery of correlated 

imperfect diagnostic tests [16, 17]. For a single misclassified binary endpoint, early research 

by Rindskopf and Rindskopf [18] and Formann [19] utilized a latent class analysis that 

allows for the estimation of the characteristics of indicators when an accurate diagnosis was 

unavailable. Duffy et al [20] presented assumption-dependent corrections to odds ratios 

when the disease was misclassified; however, this approach requires a priori knowledge of 

the relationship in order to apply a correction factor. Moreover, Joseph et al [21] used a 

Bayesian approach to estimating diagnostic error for a single diagnostic test by specifying 

priors for disease prevalence, sensitivity, and specificity, but determining which priors to use 

may not be straightforward in all applications.

In light of a single imperfect diagnostic test for disease status, adjustment for potential bias 

due to misclassification requires information on the misclassification structure [22]. 

Nagelkerke et al [23] suggested modeling the unobserved true disease classification as a 

logistic function of an instrumental variable, which is considered as an additional parameter 

serving to increase the outcome degrees of freedom. This instrumental variable framework 

can be extended whereby survival information is used to inform the disease classification. In 

oncology research, time to a survival event such as tumor relapse is likely informative for 

diagnosis, and its utilization in a model conditional on true disease status is conceptually 

analogous to conditioning on an instrumental variable. But before the disease status and the 
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time to tumor relapse are observed, the follow-up of some patients could be stopped by a 

terminal event such as disease-related death, or dropout due to adverse event or severe 

adverse event. Because this terminal event may be related to the individual patient’s 

unobserved disease status and time to tumor relapse, the terminal mechanism is non-

ignorable. The dependent terminal event time is often termed “dependent censoring” or 

“informative censoring”. It has been shown in the joint modeling literature that ignoring the 

dependent censoring leads to biased estimates [24, 25]. However, to the best of our 

knowledge, there is no literature investigating the impact of ignoring the dependent 

censoring in the framework of binomial regression with misclassified binary outcome and a 

correlated survival time.

The goal of this article is to develop a joint analysis framework to model the binomial 

regression with misclassified binary outcome and the correlated time to IBTR, subject to a 

dependent terminal event and in the absence of a gold standard. The proposed model is 

applied to a data set on breast cancer relapse diagnosis after breast conservation therapy 

(BCT). The article proceeds as follows. Section 2 describes a motivating dataset. Section 3 

formulates the joint statistical methodology. Section 4 presents results of a simulation study. 

Section 5 provides results of the motivating dataset analysis and comparisons with 

previously published findings. Section 6 gives a discussion.

2 Motivating Data

Tumor relapse after breast conservation therapy (BCT) for primary breast cancer has 

significant morbidity and mortality. Approximately 8–20% of patients undergoing BCT for 

primary breast cancer will experience ipsilateral breast tumor relapse (IBTR), defined as the 

relapse of the tumor in the treated breast [26, 27]. It is important to accurately classify true 

local recurrence (TR) from a new ipsilateral primary tumor (NP), as treatment regimens are 

markedly different for the two conditions. The TR diagnosis is consistent with regrowth of 

malignant cells that are not removed by the initial surgery, while the NP diagnosis is 

consistent with a de novo case of malignancy arising from mammary epithelial cells of the 

residual breast tissue. The correct classification of IBTR status has significant implications 

in therapeutic decision-making and patient management; for example, patients experiencing 

a TR usually benefit from a more aggressive hormone therapy, chemotherapy, and/or 

additional radiotherapy while NP patients often only require milder treatment. Currently, 

only imperfect histological test criteria are available to classify IBTR patients as TR or NP, 

for which there is no gold standard test. Statistically speaking, the binary diagnostic 

classification based on tumor histology suffers from misclassification.

The data from this study include 4,477 patients with invasive breast cancer who underwent 

BCT between 1970 and 2010 at The University of Texas MD Anderson Cancer Center. A 

total of 397 patients later developed IBTR as a first relapse and the remainder (4,080) did 

not develop IBTR (censored for relapse process). The data have been described elsewhere in 

detail [17, 28–30] and will now be presented in the context of the current study. Relevant 

variables collected include patient characteristics (age, race, family history of breast cancer, 

and other cancer history), contra lateral breast cancer (the occurrence of a second 

independent primary cancer in the other breast, location, histology, stage, size, estrogen 
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receptor [ER] status), treatment characteristics (surgery, radiation), and patient status at last 

follow-up. IBTR status was classified as being either NP or TR using a single test based on 

tumor location and histologic subtype. Specifically, IBTR was defined as TR if the tumor 

was located within 3 cm of the primary tumor bed and its histologic subtype was consistent 

with that of the primary tumor; otherwise, IBTR was defined as NP [28–30]. Among the 397 

patients with IBTR, 201 (50.6%) and 196 (49.4%) were classified as TR and NP, 

respectively. However, because of the inherent uncertainties of the clinical and pathologic 

criteria used for classification, this diagnostic test to classify IBTR was subject to 

misclassification.

Figure 1 displays the data structures of the patients with or without IBTR, where R is an 

indicator of IBTR occurrence (1 if IBTR occurs, 0 otherwise), tR is time from BCT to IBTR 

(referred to as time to IBTR), and tD is time from BCT to breast cancer related death or 

censoring (referred to as time to death). While all patients have observed tD, the patients 

with IBTR (R = 1) have one additional observable time tR. Two interesting features of this 

patient dataset are: (1) the IBTR status is strongly correlated with both time to IBTR and 

time to death for the patients with IBTR; (2) the occurrence of IBTR is strongly correlated 

with time to death for all patients. To visualize the first correlation, Figure 2 displays the 

Kaplan-Meier curves showing differences in time to IBTR (tR, left panels) and time to death 

(tD, right panels) for patients with IBTR (R = 1, sample size N = 397) and classified as either 

NP or TR. The left panel indicates that TR patients have shorter time to IBTR than NP 

patients (log rank test p-value< 0.0001), while the right panel indicates that TR patients have 

shorter time to death than NP patients (log rank test p-value< 0.0001).

Among a total of 4,477 patients, 251 died of beast cancer. The occurrence of IBTR is likely 

informative for the time to breast cancer death. To visualize this correlation, Figure 3 

displays the Kaplan-Meier curves showing differences in time to death for patients with or 

without IBTR. The patients with IBTR have shorter time to death than the ones without 

IBTR (log rank test p< 0.0001). Hence, the breast cancer related death is likely to be 

dependent terminal event. The purpose of this article is to develop a joint model of a 

misclassified binary outcome and time to relapse with dependent terminal event in order to 

(1) estimate the sensitivity and specificity of the diagnostic test, (2) quantify covariate 

effects on the probability of IBTR being NP and on the hazards of IBTR and the terminal 

event.

3 Statistical models and likelihood inference

3.1 Model and notation

In this section, a joint modeling framework for a single diagnostic test for IBTR status is 

formulated. Suppose R is an indicator of IBTR occurrence (1 if IBTR occurs, 0 otherwise). 

Let tR be the time to IBTR and tD = min(C,D), the minimum of an independent censoring 

time C and a dependent terminal event time D (e.g., breast cancer related death), 

respectively, both measured from the BCT. Let tD denote time to death. Let δ (1 if breast 

cancer death is observed, 0 otherwise) be the censoring indicator. Let t = min(tR, tD). Thus, t 

= tR and R = 1 for the patients with IBTR and t = tD and R = 0 for the patients without IBTR. 

Suppose y (1 if NP, 0 if TR) is the unobserved true IBTR status. Let z (1 if NP, 0 if TR) be 
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the observed outcome from the error-prone diagnostic test. Let p and q be the sensitivity and 

specificity of the test given the true IBTR status y, i.e., p = p(z = 1|y = 1) and q = p(z = 0|y = 

0). Hence, the sensitivity and specificity are the probabilities of correctly classify NP and 

TR patients, respectively.

Denote xP, xR, and xD as covariate vectors for the probability of IBTR being NP, time to 

IBTR, and time to death, respectively. Three covariate vectors can be the same or different. 

The following assumptions are made: (a) the sensitivity p and specificity q do not depend on 

covariates (non-differential assumption); (b) the times to IBTR and breast cancer death for 

the same patient are correlated through a shared frailty ; (c) the diagnostic test 

results, time to IBTR, and time to death are independent conditional on the frailty u and 

covariate vectors. The binomial regression model for the probability that the IBTR being NP 

is

(1)

where α is the corresponding vector of regression coefficients, and g−1 is the inverse of a 

link function (e.g., probit, logit, complementary log-log). Specifically, the logit link function 

is used in this article. The likelihood of observing outcome z for one patient is f(z|xP) = [πp 

+ π̅q̅]z [πp̅ + π̅q]z̅, where the overhead bar denotes 1 minus the variable (e.g., π̅ = 1 − π).

The hazard of breast cancer death is modeled by

(2)

where λ0(tD) is the baseline hazard, with corresponding survival function being 

. The hazard function of time to IBTR tR is

(3)

where the superscript N denotes NP status, r0(t) is baseline hazard for IBTR. The 

corresponding survival function , The hazard for 

TR patients is rT (t) = r0(t) exp(xRβ + ζ + γu), where ζ describes the additional hazard of 

being TR patients compared with NP patients and the superscript T denotes TR status. The 

hazard functions of IBTR and death are linked together via the shared random effect u and 

the parameter γ measures the association between two models. The likelihood of the relapse 

process is

(4)

where the unknown parameter vector θ=(α, β, η, σu, ζ, γ, p, q). The likelihood of the death 

process is

(5)
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Thus, the marginal likelihood for one patient is

(6)

The proposed model, L (θ), is referred to as joint model. In addition the reduced model 

refers to the analysis of maximizing L1(θ|u) and L2(θ|u) separately by assuming the time to 

IBTR is independent of time to death (i.e., γ = 0).

3.2 Maximum likelihood estimation

The marginal likelihood function in (6) involves an integral with respect to random effects u 

and this integral cannot be evaluated analytically. Numerical integration such as Laplace 

approximation [31], Gaussian quadrature [32], can be used for estimation. Liu et al [33] 

pointed out that both methods generally perform well, with the Laplace approximation being 

much faster in high dimensional random effects settings. However, Laplace approximation 

is not yet available in commercial software packages for fitting nonlinear mixed effects 

models, while Gaussian quadrature can be conveniently implemented in SAS procedure 

NLMIXED. Thus, adaptive Gaussian quadrature is adopted to approximate the integral in 

model (6). In numerical analysis, a quadrature rule is an approximation of the definite 

integral by a weighted sum of function values at specified points within the domain of 

integration. Moreover, the adaptive Gaussian quadrature method accounts for the shape of 

the likelihood when placing quadrature points and provides a better approximation than the 

non-adaptive Gaussian quadrature with equally spaced points [34]. In addition to accurate 

parameter estimates and available standard error estimates, this estimation approach 

possesses the advantage of easy implementation because SAS procedure NLMIXED requires 

inputting the likelihood (conditional on random effects) explicitly and the approximation of 

the marginal likelihood can be directly maximized.

However, with the unspecified baseline hazard functions r0(t) and λ0(tD), there are non-

parametric terms (i.e., baseline hazard functions) in the likelihood functions L1(θ|u) in (4) 

and L2(θ|u) in (5). Hence, the adaptive Gaussian quadrature method is not directly 

applicable. Instead, a piecewise constant function to approximate the baseline hazard 

function r0(t) and λ0(tD) is used. It has been shown that survival models with a piecewise 

constant baseline hazard with 8 to 10 intervals yield good estimators for both fixed effects 

and frailty [35, 36], although fixed cut points need to be specified a priori. It is more flexible 

than the a priori choices of parametric baseline hazard distribution (e.g., Weibull 

distribution) and it retains enough model structure [32]. Piecewise constant baseline hazard 

function has been widely used in the literature [32, 37, 38]. Given a set of fixed time points 

τD = (τD0, …, τDm) with the constraint 0 = τD0 < τD1 < .… < τDm, and the baseline hazard 

vector gD = (gD0, gD1, …, gD−1) for the time to death tD, the piecewise constant baseline 

hazard function is defined as , with indicator function Il(tD) = 1 if 

τl ≤ tD < τl+1 and 0 otherwise. Similarly, the piecewise constant baseline hazard function 

r0(t) for time to IBTR can be defined based on a fixed time points vector τR and a baseline 

hazard vector gR. The marginal likelihood L(θ) in model (6) can be approximated by 
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replacing r0(t) and λ0(tD) by their piecewise constant counterparts. The resulting parametric 

likelihood is maximized by SAS procedure NLMIXED. An example of SAS code for fitting the 

proposed model with piecewise constant baseline hazard functions is presented in the 

Appendix.

4 Simulation studies

This section presents results from a simulation study of two settings to compare the 

performance of the proposed joint model and reduced model. The simulated data structure is 

similar to but simpler than the motivating dataset. In each setting, 3,000 datasets are 

generated with sample size N = 500 using the following algorithm.

1. Simulate y from a Bernoulli distribution with π generated from logit(π) = xPα in 

model (1) with α = (−2, 3, 4) and xP = (1, x1, x2) with x1 ~ N(0, 1) and x2 ~ 

Bernoulli(0.3).

2. Simulate the frailty  with .

3. Set the baseline hazard function for the time to death as λ0(t) = t−0.5 in model (2) 

and set η = (0.5, 0.5) and xD = (x1, x2). Simulate SD from uniform(0, 1) and 

generate uncensored time D for the terminal event, subject to independent 

censoring time C. Obtain tD = min(C, D) and the censoring indicator δ.

4. Set the baseline hazard function for the time to relapse as r0(t) = 1.5t−0.5 in model 

(3) and set β = (0.5, 0.5), xD = (x1, x2), and ζ = 3. Set γ = 0 for setting I and set γ = 

0.5 for setting II. Conditional on y, simulate SN and ST from uniform (0, 1) and 

generate tR for the relapse process. If tR ≤ tD, set R = 1 and simulate z with 

sensitivity p and specificity q. If tR > tD, set R = 0 and IBTR is not observed.

5. Repeat steps 1 to 4 until all patients are generated.

In setting I, the terminal event is independent of the relapse process subject to 

misclassification (i.e., γ = 0) and the reduced model is the true model. In setting II, the 

terminal event is dependent on the relapse process subject to misclassification (i.e., γ = 0.5), 

which is likely a reasonable estimate for the application of interest, considering Figure 3. So 

in setting II, the proposed joint model is the true model. The simulation results presented in 

Tables 1 and 2 report the bias, standard error (SE) of parameter estimates, mean of standard 

error estimates (SEM), and coverage probability (CP) of 95% confidence interval for each 

parameter of interest under the joint and reduced models defined in Section 3.

Table 1 suggests that setting I with no correlation (i.e., γ = 0), the reduced model gives 

reasonable parameter estimates, i.e., the bias is negligible, SE is close to SEM, and the 

confidence interval coverage probabilities are reasonably close to 0.95 nominal level. In 

comparison, the joint model generates comparable results with slightly larger bias, SE, and 

SEM. Under model over parameterization, the estimate of γ from the joint model is correctly 

close to zero, although the standard error estimate is slightly inflated.

Table 2 suggests that in setting II with some correlation (i.e., γ = 0.5), the joint model 

provides less biased estimates of covariate effects on time to IBTR (β) and time to terminal 
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event (η) than the reduced model. Although the standard errors of the parameter estimates 

are similar for the parameters predicting the probability of IBTR (α), when events are 

assumed to be independent, the standard errors of covariate effects related to the two event 

processes (i.e., β and η) are drastically underestimated, as would be expected under the 

incorrect assumption of independence of event times. Correspondingly, the estimated 

coverage probabilities are nearer to the 0.95 nominal level for the joint model versus the 

reduced model. For parameters related to the times to IBTR and terminal event (i.e., β and 

η), the coverage probabilities produced by the reduced model are extremely inaccurate. 

Further, the parameter estimate of ζ, which represents the additional log hazard of being TR 

versus NP, is highly negatively biased when fitting the reduced model, since the dependency 

of the events cannot be accurately measured by assuming independent likelihoods. In 

comparison, the true value of ζ in simulation is adequately recovered by the joint model.

The proposed joint modeling framework is a shared random effects model, in which two 

survival models share a function of the random effects. This model has been widely used in 

joint model literature. Another alternative is multivariate random effects survival models, 

which assume two survival processes are linked by a vector of two correlated random 

effects. Specifically, models (2) and (3) are expressed as λ (tD) = λ0(tD) exp(xDη+u1) and 

rN(t) = r0(t) exp(xRβ+u2), respectively, where u = (u1, u2)′ ~ N (0, Σ) with Σ being denoted 

as . However, this model is unidentifiable in this context because 

each breast cancer patient can possibly have only one IBTR occurrence and one breast 

cancer death. There is insufficient information to identify parameters in the multivariate 

random effects correlation matrix. Nevertheless, it is essential to assess the robustness of the 

proposed joint model under random effects structure misspecification. We simulate 1, 000 

datasets from the multivariate random effects survival model with , and ρ = 

0.636 and all other parameters identical to setting II. Table 3 compares the simulation results 

from the joint and reduced models. The results indicate that the proposed joint model 

provides reasonable results to all parameters with relatively small bias, SEM being close to 

SE, and CP being around the nominal value. In contrast, the reduced model gives biased 

estimates and low CP, especially for α, β, η, and ζ, although the estimation results for the 

sensitivity p and specificity q are reasonably good.

The simulation study suggests that the joint model provides results comparable to the 

reduced model under the independent terminal event (setting I). Under the dependent 

terminal mechanism (setting II), the joint model provides more accurate estimates for the 

regression parameters of the probability of IBTR and two survival times than the reduced 

model. Moreover, when the random effects structure is misspecified, the proposed joint 

model still provides accurate estimates for all parameters of interest while the reduced model 

gives biased estimates to most parameters.

5 Real Data Analysis

In this section, the methods are applied to the breast cancer patient dataset (n = 4,477). The 

terminal event is defined as the breast cancer related death (251 patients), all other terminal 

events (e.g., death unrelated to breast cancer, censoring) are treated as independent 

censoring. The following 3 covariates are considered: x1 represents age at breast cancer 
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diagnosis (mean: 55.4 years; SD: 12.1 years); x2 represents whether a distant recurrence 

developed in organs other than breasts (e.g., bones, lung, brain, liver; prevalence: 7.5%); x3 

represents primary tumor stage (1 if more aggressive stage II or higher and 0 otherwise; 

prevalence: 23.1%) [39]. Let xP = (1, x1, x2, x3) and xR = xD = (x1, x3).

We use the adaptive Gaussian quadrature estimation method. To specify the baseline hazard 

functions λ0(tD) and r0(t), we divide the time to IBTR and time to breast cancer death into 

M1 and M2 intervals by every 1/M1th and 1/M2th quantiles, respectively. We adopt M1 = M2 

= 4 in this article. We have also explored other selections of M1 and M2 and the results are 

very similar. For model selection and comparison, the A kaike information criterion (AIC) 

[40] and Bayesian information criterion (BIC) are computed [41]. The joint model performs 

significantly better than the reduced model with smaller AIC (7, 578. 0 v.s. 7, 632.6) and 

BIC (7, 687.0 v.s. 7, 728.7).

Table 4 provides the means, SE, p values, and 95% confidence interval (CI) of the 

parameters from the proposed joint model (6). Covariate interpretation is as follows. The 

odds ratio of the IBTR being NP for the patients who developed distant recurrence is 0.012 

(i.e., exp(−4.435); 95% CI: [4.273e − 4, 0.329]) versus the patients who did not develop 

distant recurrence. The covariates age at diagnosis and tumor stage are not statistically 

significant. These findings are consistent with the results of previous studies [28–30]. The 

sensitivity and specificity estimates of the diagnostic test are 0.648 (95% CI: [0.494, 0.802]) 

and 0.873 (95% CI: [0.757, 0.988]), respectively. Thus, this diagnostic test is more likely to 

correctly classify TR patients than NP patients. Because TR patients tend to have shorter 

time from BCT to IBTR and need more aggressive treatment than NP patients, the 

misclassification of TR patients into NP is likely to be more costly than vice versa.

The covariate effects on time to IBTR are interpreted as follows. The hazard rate of IBTR is 

0.588 (i.e., exp(−0.53); 95% CI: [0.522, 0.664]) for every 10-year increase in the covariate 

age at breast cancer diagnosis. The TR status significantly increases the hazard of IBTR, 

with an hazard rate of 6.209 (i.e., exp(1.826); 95% CI: [3.127, 12.317]) compared with NP 

patients. This large difference in hazard between TR and NP statuses is visually identifiable 

by the Kaplan-Meier curves (Figure 2) and has also been reported previously [28, 29, 42]. 

Finally, the hazard rate of breast cancer death is 0.763 (i.e., exp(−0.27); 95% CI: [0.677, 

0.861]) for every 10-year increase in age at breast cancer diagnosis. The hazard rate of 

breast cancer death is 2.968 (i.e., exp(1.088); 95% CI: [2.217, 3.975]) for the patients with 

higher tumor stage as compared with the ones with lower tumor stage. For model 

association, note that γ̂ is significantly larger than zero (mean: 0.532, p < 0.001, 95% CI: 

[0.249, 0.815]), indicating that patients with larger hazard of breast cancer death tend to 

have IBTR earlier. The statistical significance of γ̂ also suggests that the time to death is 

strongly correlated to the time to relapse, which justifies the need of joint modeling.

6 Discussion

This article presents a joint analysis method to model the binomial regression with a single 

misclassified binary outcome and the correlated time to IBTR, subject to a dependent 

terminal event and in the absence of a gold standard. The models of time to IBTR and time 

Luo et al. Page 9

Stat Med. Author manuscript; available in PMC 2014 October 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



to the terminal event are linked together via shared random effects. The simulation study 

shows that when the terminal event is independent of the relapse process, the proposed joint 

model provides comparable results to the reduced model. However, when there exists a 

dependent terminal event, the joint model provides accurate estimates of all parameters 

while the reduced model gives severely biased estimates for the regression parameters for 

the probability of NP at IBTR, and the two survival times. The analysis of the breast cancer 

dataset indicates that the target diagnostic test has higher specificity than sensitivity (i.e., 

more likely to correctly classify TR patients than NP patients). This is preferable because 

TR patients tend to have shorter time to IBTR and need more aggressive treatment than NP 

patients and the misclassification of TR patients into NP is likely to be more costly than vice 

versa. Further, our analysis results provide useful information in identifying and quantifying 

the covariate effects on the probability of IBTR status and survival times. From the analysis 

results, we found that the sensitivity and specificity of the diagnostic test, which uses only 

clinical and pathological criteria, are low. A more accurate diagnostic test using the 

molecular criteria should be developed in the future, as pointed out by Huang et al [28]. The 

proposed method can be broadly applied to many studies with similar data structure 

consisting of misclassified binary outcome and a dependent terminal event. The proposed 

joint model can be conveniently fit using adaptive Gaussian quadrature tools implemented in 

SAS procedure NLMIXED and can be easily accessible to, modified, and extended by applied 

researchers.

The difficulty of estimating diagnostic accuracy without a gold standard has been discussed 

in the literature. For example, Albert and Dodd [43] showed that the estimation of diagnostic 

accuracy and prevalence is sensitive to the choice of dependence structure for studies with 

multiple diagnostic tests. They hence recommended collecting gold standard information on 

a fraction of subjects if possible, doing a sensitivity analysis using very different methods 

for accounting for multiple test dependence, and taking a large number of tests. However, 

there is only a single imperfect diagnostic test in this article. It requires information on the 

misclassification structure to make the model identifiable [22]. The covariates in x in 

modeling IBTR status in model (1) are instrumental variables and they make the sensitivity 

and specificity parameters identifiable when their number of different possible realizations is 

sufficient [23]. Moreover, the survival information included in the proposed model is an 

important determinant of IBTR status. This is manifested by the clear dichotomy in the 

Kaplan-Meier curves displayed in Figure 2. The detailed discussion of the identifiability, 

modeling, and parameter estimation of multiple conditional dependent diagnostic tests can 

be found in some recent literature, e.g., Dendukuri and Joseph [44], Georgiadis et al [45], 

and Jones et al [46].

The joint modeling strategy has several limitations that can be addressed in future research. 

One limitation is the non-differential assumption, i.e., the sensitivity and specificity do not 

depend on the covariates. This assumption has been relaxed in some statistical literature 

[47]. We will explore this extension in the future research. In addition, this article only 

considers a single type terminal event. In the presence of multiple failure types, e.g., death 

due to breast cancer and other causes, the proposed joint model can be extended to 

accommodate competing risks survival data. One alternative to the proposed joint model is 
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the models based on pattern mixture modeling (PMM) which stratifies the subjects into 

subgroups by their censoring patterns, and then models the stratified subgroups separately, 

e.g., Hogan and Laird [48, 49], Molenberghs and Verbeke [50], Zhang et al [51]. We would 

like to investigate the application of the PMM model to the proposed joint modeling 

framework. Another issue is the normality assumption of random effects in our joint model. 

Some researchers [52, 53] have reported that the statistical inference of joint models is 

generally robust to the departure from the normality assumption. It is of interest to 

investigate our joint model’s performance when the underlying random effects distribution 

is symmetric non-normal or even asymmetric. Moreover, the random effects variance is 

assumed to be homogeneous (same for all individuals). However, the random effects 

variance may depend on subject-specific characteristics and is thus heterogeneous. Ignoring 

the heterogeneity can result in biased estimates [54, 55]. As a future direction, we would 

address the non-normal and heterogeneous random effects issues in the proposed joint 

modeling framework.
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Appendix

/* Invoke proc nlmixed using adaptive Gaussian Quadrature */

proc nlmixed data=piecewise hess maxit=8000 MAXFUNC=8000;

/* define the array */

* piecewise constant function for death

array r_D{3} r_D1-r_D3;

* cut points for the intervals of death event

array tau_D{4} tau_D1-tau_D4;

* piecewise constant function for IBTR

array r_R{3} r_R1-r_R3;

* cut points for the intervals of IBTR

array tau_R{4} tau_R1-tau_R4;

* initialize parameters

parms se=0.7, sp=0.7, sigma2_u=1.5, zeta=2, gamma=0.3,

r_D1=0.5, r_D2=0.5, r_D3=0.3, r_R1=0.8, r_R2=0.8, r_R3=0.6;

* set boundaries for parameters

bounds 1>se>0, 1>sp>0, sigma2_u>0, r_D1 r_D2 r_D3 r_R1 r_R2 r_R3 >0;

* specify the cut points for the intervals

tau_R[1]=0; tau_R[2]=2.5; tau_R[3]=8; tau_R[4]=20;

tau_D[1]=0; tau_D[2]=2.5; tau_D[3]=8; tau_D[4]=20;

*Calculate the cumulative hazard for relapse and death processes;

G_D=0; G_R=0; G_DR=0;

do i=1 to 3;

if i<IndicatorD then G_D=G_D+r_D[i]*(tau_D[i+1]-tau_D[i]);

if i<IndicatorR then G_R=G_R+r_R[i]*(tau_R[i+1]-tau_R[i]);

if i<IndicatorDR then G_DR=G_R+r_R[i]*(tau_R[i+1]-tau_R[i]);

if i=IndicatorD then G_D=G_D+(T_D-tau_D[i])*r_D[i];

if i=IndicatorR then G_R=G_R+(T_R-tau_R[i])*r_R[i];

if i=IndicatorDR then G_DR=G_R+(T_D-tau_R[i])*r_R[i];

end;

eta_p=alpha0+alpha1*x1;

eta_D=eta1*x1+u;

eta_TR=beta1*x1+gamma*u+zeta;

eta_NP=beta1*x1+gamma*u;

pi=exp(eta_p)/(1+exp(eta_p));

lambda_tD=r_D[IndicatorD]*exp(eta_D);

r_TR=r_R[IndicatorR]*exp(eta_TR);

r_NP=r_R[IndicatorR]*exp(eta_NP);

S_D=exp(−exp(eta_D)*G_D);

S_TR= exp(−exp(eta_TR)*G_R);
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S_NP= exp(−exp(eta_NP)*G_R);

S_TRD= exp(−exp(eta_TR)*G_DR);

S_NPD= exp(−exp(eta_NP)*G_DR);

*Calculate the log likelihood;

if R eq 1 then do;

if z eq 1 then ll=log(pi*se*r_NP*S_NP+(1-pi)*(1-sp)*r_TR*S_TR)

+delta*log(lambda_tD)+log(S_D);

if z eq 0 then ll=log(pi*(1-se)*r_NP*S_NP+(1-pi)*sp*r_TR*S_TR)

+delta*log(lambda_tD)+log(S_D);

end;

if R eq 0 then ll=log(pi*S_NPD+(1-pi)*S_TRD)+delta*log(lambda_tD)+log(S_D);

*specify random effect;

random u~normal(0,sigma2_u) subject=id;

model z~general(ll);

run;
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Figure 1. 
Data structures of patients with or without IBTR. R is an indicator of IBTR occurrence (1 if 

IBTR occurs, 0 otherwise), tR is time from BCT to IBTR, and tD is time from BCT to death 

or censoring. BCT, breast conservation therapy; IBTR, ipsilateral breast tumor relapse.
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Figure 2. 
Kaplan-Meier curves for time from BCT to IBTR (left panel), time from BCT to death (right 

panel) in those who had IBTR (R = 1, sample size N = 397). P-values are from log rank 

tests. BCT, breast conservation therapy; IBTR, ipsilateral breast tumor relapse.
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Figure 3. 
Kaplan-Meier curves for time from BCT to death of all patients, sample size N = 4,477, with 

associated log rank test p-value. BCT, breast conservation therapy.

Luo et al. Page 18

Stat Med. Author manuscript; available in PMC 2014 October 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Luo et al. Page 19

T
ab

le
 1

Si
m

ul
at

io
n 

re
su

lts
 o

f 
fi

tti
ng

 th
e 

pr
op

os
ed

 jo
in

t m
od

el
 a

nd
 th

e 
re

du
ce

d 
m

od
el

 f
or

 s
et

tin
g 

I 
in

 w
hi

ch
 th

e 
te

rm
in

al
 e

ve
nt

 is
 in

de
pe

nd
en

t 
on

 th
e 

re
la

ps
e 

pr
oc

es
s 

su
bj

ec
t t

o 
m

is
cl

as
si

fi
ca

tio
n.

Jo
in

t 
M

od
el

R
ed

uc
ed

 M
od

el

P
ar

am
et

er
B

ia
s

SE
SE

M
C

P
B

ia
s

SE
SE

M
C

P

Fo
r 

th
e 

pr
ob

ab
ili

ty
 o

f 
IB

T
R

 b
ei

ng
 N

P

α
0 

=
 −

2
−

0.
08

2
0.

31
9

0.
31

2
0.

95
2

−
0.

05
6

0.
31

6
0.

30
6

0.
95

2

α
1 

=
 3

0.
10

2
0.

43
3

0.
41

9
0.

94
7

0.
08

3
0.

42
7

0.
41

4
0.

94
6

α
2 

=
 4

0.
11

7
0.

62
4

0.
60

8
0.

94
7

0.
09

4
0.

62
4

0.
60

3
0.

94
6

p 
=

 0
.8

0.
00

6
0.

05
6

0.
05

5
0.

92
1

0.
00

2
0.

05
6

0.
05

5
0.

93
3

q 
=

 0
.9

−
0.

00
0

0.
02

0
0.

02
0

0.
94

0
0.

00
0

0.
02

1
0.

02
0

0.
93

9

Fo
r 

th
e 

tim
e 

to
 I

B
T

R

β 1
 =

 0
.5

0.
01

4
0.

09
1

0.
09

1
0.

94
6

0.
00

3
0.

08
8

0.
08

5
0.

93
8

β 2
 =

 0
.5

0.
01

2
0.

18
5

0.
18

3
0.

95
0

0.
00

3
0.

18
1

0.
17

5
0.

94
1

ζ 
=

 3
0.

10
8

0.
26

6
0.

27
8

0.
95

3
0.

03
1

0.
23

8
0.

23
3

0.
94

5

Fo
r 

th
e 

tim
e 

to
 te

rm
in

al
 e

ve
nt

η
1 

=
 0

.5
0.

07
5

0.
12

8
0.

12
1

0.
95

0
0.

00
4

0.
07

1
0.

06
9

0.
94

4

η
2 

=
 0

.5
0.

07
6

0.
18

8
0.

19
0

0.
95

9
0.

00
2

0.
13

9
0.

13
8

0.
95

0

γ 
=

 0
0.

07
9

1.
04

4
1.

86
3

0.
99

8

Stat Med. Author manuscript; available in PMC 2014 October 26.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Luo et al. Page 20

T
ab

le
 2

Si
m

ul
at

io
n 

re
su

lts
 o

f 
fi

tti
ng

 th
e 

pr
op

os
ed

 jo
in

t m
od

el
 a

nd
 th

e 
re

du
ce

d 
m

od
el

 f
or

 s
et

tin
g 

II
 in

 w
hi

ch
 th

e 
te

rm
in

al
 e

ve
nt

 is
 d

ep
en

de
nt

 o
n 

th
e 

re
la

ps
e 

pr
oc

es
s 

su
bj

ec
t t

o 
m

is
cl

as
si

fi
ca

tio
n.

Jo
in

t 
M

od
el

R
ed

uc
ed

 M
od

el

P
ar

am
et

er
B

ia
s

SE
SE

M
C

P
B

ia
s

SE
SE

M
C

P

Fo
r 

th
e 

pr
ob

ab
ili

ty
 o

f 
IB

T
R

 b
ei

ng
 N

P

α
0 

=
 −

2
−

0.
01

5
0.

35
5

0.
33

8
0.

91
5

0.
06

1
0.

34
5

0.
35

8
0.

92
6

α
1 

=
 3

0.
04

7
0.

45
9

0.
46

1
0.

92
6

−
0.

09
7

0.
45

9
0.

47
6

0.
91

5

α
2 

=
 4

0.
03

6
0.

64
4

0.
66

0
0.

94
0

−
0.

11
8

0.
65

1
0.

68
8

0.
93

5

p 
=

 0
.8

0.
00

9
0.

07
2

0.
06

9
0.

91
6

−
0.

00
8

0.
07

3
0.

07
4

0.
94

2

q 
=

 0
.9

0.
00

1
0.

02
2

0.
02

2
0.

94
0

0.
00

2
0.

02
2

0.
02

2
0.

94
0

Fo
r 

th
e 

tim
e 

to
 I

B
T

R

β 1
 =

 0
.5

0.
00

3
0.

12
4

0.
11

7
0.

94
6

−
0.

11
2

0.
09

9
0.

09
3

0.
75

2

β 2
 =

 0
.5

−
0.

00
4

0.
25

1
0.

23
5

0.
93

6
−

0.
10

5
0.

21
1

0.
20

3
0.

90
3

ζ 
=

 3
0.

05
3

0.
37

8
0.

35
5

0.
93

6
−

0.
31

6
0.

26
2

0.
26

2
0.

76
9

Fo
r 

th
e 

tim
e 

to
 te

rm
in

al
 e

ve
nt

η
1 

=
 0

.5
0.

02
6

0.
13

9
0.

14
9

0.
95

8
−

0.
20

7
0.

06
6

0.
06

5
0.

12
2

η
2 

=
 0

.5
0.

01
2

0.
26

1
0.

26
4

0.
95

3
−

0.
21

5
0.

14
2

0.
13

5
0.

64
5

γ 
=

 0
.5

0.
02

6
0.

26
2

0.
26

2
0.

88
0

Stat Med. Author manuscript; available in PMC 2014 October 26.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Luo et al. Page 21

T
ab

le
 3

Si
m

ul
at

io
n 

re
su

lts
 o

f 
fi

tti
ng

 th
e 

pr
op

os
ed

 jo
in

t m
od

el
 a

nd
 th

e 
re

du
ce

d 
m

od
el

 w
he

re
 d

at
a 

ar
e 

si
m

ul
at

ed
 f

ro
m

 th
e 

m
ul

tiv
ar

ia
te

 r
an

do
m

 e
ff

ec
ts

 s
ur

vi
va

l 

m
od

el
.

Jo
in

t 
M

od
el

R
ed

uc
ed

 M
od

el

P
ar

am
et

er
B

ia
s

SE
SE

M
C

P
B

ia
s

SE
SE

M
C

P

Fo
r 

th
e 

pr
ob

ab
ili

ty
 o

f 
IB

T
R

 b
ei

ng
 N

P

α
0 

=
 −

2
−

0.
06

2
0.

43
6

0.
38

9
0.

90
6

0.
11

7
0.

41
1

0.
38

0
0.

87
2

α
1 

=
 3

0.
09

2
0.

56
0

0.
51

4
0.

91
8

−
0.

11
5

0.
54

7
0.

50
3

0.
87

5

α
2 

=
 4

0.
14

0
0.

79
4

0.
72

8
0.

92
8

−
0.

16
2

0.
74

4
0.

71
9

0.
89

6

p 
=

 0
.8

0.
00

8
0.

06
9

0.
06

6
0.

90
8

−
0.

00
4

0.
07

0
0.

06
9

0.
93

1

q 
=

 0
.9

0.
00

1
0.

02
2

0.
02

2
0.

94
2

0.
00

0
0.

02
3

0.
02

2
0.

92
9

Fo
r 

th
e 

tim
e 

to
 I

B
T

R

β 1
 =

 0
.5

−
0.

00
2

0.
13

5
0.

12
2

0.
93

0
−

0.
12

2
0.

09
3

0.
09

2
0.

72
1

β 2
 =

 0
.5

0.
01

2
0.

26
0

0.
24

1
0.

93
5

−
0.

11
8

0.
21

0.
19

6
0.

88
3

ζ 
=

 3
−

0.
00

5
0.

42
8

0.
40

0
0.

91
7

−
0.

52
6

0.
26

0.
25

3
0.

44
2

Fo
r 

th
e 

tim
e 

to
 te

rm
in

al
 e

ve
nt

η
1 

=
 0

.5
0.

01
0

0.
11

1
0.

11
4

0.
95

4
−

0.
11

1
0.

07
1

0.
06

6
0.

60
8

η
2 

=
 0

.5
0.

01
5

0.
19

5
0.

19
7

0.
96

0
−

0.
11

2
0.

13
4

0.
13

6
0.

87
5

Stat Med. Author manuscript; available in PMC 2014 October 26.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Luo et al. Page 22

Table 4

The maximum likelihood estimates (MLE), standard errors (SE), p-values, and 95% confidence interval (CI) 

of the parameters from the proposed joint model.

MLE SE P 95% CI

For the probability of IBRT being NP

intercept 4.298 2.511 0.087 [−0.626, 9.222]

Age −0.006 0.031 0.855 [−0.066, 0.055]

Distant −4.435 1.695 0.009 [−7.758, −1.111]

Stage −0.730 0.898 0.417 [−2.490, 1.031]

p 0.648 0.079 [0.494, 0.802]

q 0.873 0.059 [0.757, 0.988]

For the time to IBTR

Age −0.053 0.006 < 0.001 [−0.065, −0.041]

Stage −0.015 0.171 0.928 [−0.350, 0.319]

ζ 1.826 0.350 < 0.001 [1.140, 2.511]

For the time to breast cancer death

Age −0.027 0.006 < 0.001 [−0.039, −0.015]

Stage 1.088 0.149 < 0.001 [0.796, 1.380]

γ 0.532 0.144 < 0.001 [0.249, 0.815]

1.592 0.433
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