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Abstract

The character of nanoparticle dispersion in the microvasculature is a driving factor in 

nanoparticle-based therapeutics and bio-sensing. It is difficult, with current experimental and 

engineering capability, to understand dispersion of nanoparticles because their vascular system is 

more complex than mouse models and because nanoparticle dispersion is so sensitive to in vivo 

environments. Furthermore, uncertainty can not be ignored due to the high variation of location-

specific vessel characteristics as well as variation across patients. In this paper, a computational 

method that considers uncertainty is developed to predict nanoparticle dispersion and transport 

characteristics in the microvasculature with a three step process. First, a computer simulation 

method is developed to predict blood flow and the dispersion of nanoparticles in the microvessels. 

Second, experiments for nanoparticle dispersion coefficients are combined with results from the 

computer model to suggest the true values of its unknown and unmeasurable parameters – red 

blood cell deformability and red blood cell interaction – using the Bayesian statistical framework. 

Third, quantitative predictions for nanoparticle tranpsort in the tumor microvasculature are made 
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that consider uncertainty in the vessel diameter, flow velocity, and hematocrit. Our results show 

that nanoparticle transport is highly sensitive to the microvasculature.
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1 Introduction

Nanoparticle (NP) transport in the microvasculature (Ferrari 2005; Duncan 2006; Peer et al. 

2007) has been of interest in new diagnosis and treatment of diseases. However, after 

synthesizing the NPs for systemic injection, experiments that aim to see NP dispersion in the 

microvasculature are limited to a small number of mouse models (Decuzzi et al. 2010; 

Chauhan et al. 2012; Cabral et al. 2011; van de Ven et al. 2012). Recently, experiments and 

simulations have been used to characterize the NP transport. Chauhan et al. (2012) studied 

the NP size effect on mammary tumors by using in vivo experiments and mathematical 

models. Sinek et al. (2009) predicted the pharmocokinetics and effect of drugs in a tumor 

environment by simulation. Also, at the nanoarticle level, blood flow simulations (Lee et al. 

2013) were performed to capture NP movement in a microvessel model including blood 

plasma, red blood cell (RBC), and NP drug carriers. In addition, several studies were 

performed to understand NP dispersion in the microvessel (Namdee et al. 2013; Tan et al. 

2012; Saadatmand et al. 2011).

Though that computer simulations and in vivo experiments gave useful results uncovering 

the mechanisms of NP motion in a confined microvascular system with specific size and 

flow characteristics, the results were difficult to extrapolate to other portions of the 

microvasculature due to the wide variation of these attributes (vessel size, flow, contents). 

Concordantly, for directly delivering NPs to the deseasd area, it is required to characterize 

the microvasculature of the targeted area in the body. So, the inclusion of microvascular 

information into the computational model, heretofore ignored in flow predictions, is critical 

to improving predictions of NP movement and drug carrier efficiency in the blood stream. 

Furthermore, the escape of NPs from the vessel by diffusion through the vessel wall should 

be considered. Extending the model to the tissue and target cells of therapeutic efforts 

requires the consideration of more important factors such as the enhanced permeability and 

retention (EPR) effect, specific/non-specific binding, and cellular uptake. A general model 

that can capture the journey of NPs from blood flow to a patient’s cell is more complex as 

shown in Fig. 1.

For more predictive design of NPs, we suggest a computational method that considers 

uncertainty. The ultimate goal of nanomedicine for cancer therapeutics is to ensure as many 

drug-carrying NPs as possible reaching the cancerous region in the human body after their 

injection of NPs into the blood stream. Here, the simulation parameters for blood flow are 

calibrated by a Bayesian updating algorithm and subsequently used to perform 

computational prediction of drug carrier efficiency in the microvasculature. However, such a 

simulation model is not enough to describe the entire microvasculature which, depending on 
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location, has different geometric features and flow conditions. As shown in Fig. 2, we 

propose a procedure of computational drug design that combines experiments, simulations 

of drug carrier dispersion, and statistical models of input and output uncertainty. Because 

simulating the entire microvasculature and the RBCs/NPs contained within is 

computationally intractable, real variations at the microvasculature level can be replaced 

with random models applied to the inputs of local blood vessel simulations. Experimental 

data collected at different points in the microvasculature for shear rates, hematocrit, and 

vessel diameter, for instance, produce the random models for local vessel models. With 

random input statistical distributions defined, uncertainty is propagated through the high 

fidelity fluid-structure interaction model of the blood vessel, which contains both RBCs and 

NPs and their interactions, to outputs that measure drug carrier efficiency such as dispersion 

coefficients or NP ensemble drift velocity.

In this paper, to realize the concept of nanomedicine design, we combine physics-based flow 

simulations with uncertainty quantification (UQ) techniques for the prediction of NP 

transport in the microvasculature. The immersed finite element method (IFEM) (Zhang et al. 

2004; Liu et al. 2006; Lee et al. 2008; Liu et al. 2007a,b; Kopacz et al. 2012; Kopacz and 

Liu 2013) serves as the physics-based, high fidelity model of the blood vessel. Since some 

parameters in this model are unknown and unmeasurable, their true values are elucidated 

with a Bayesian updating method (Kennedy and O’Hagan 2001; Bayarri et al. 2007). The 

updated physics-based model serves as the conduit through which uncertainty is propagated 

using a moment-matching stochastic collocation method (Lee and Chen 2009). The 

uncertainty quantification algorithms perform two tasks: (1) updating IFEM model and (2) 

propagating microvasculature uncertainty through the updated model to make statistical 

predictions about nanoparticle transport phenomena under the uncertainty in the blood 

vessel network. To demonstrate the translational possibility, the nanoparticle dispersion is 

predicted in a tumor microvascular environment which is measured from in vivo image 

(Kamoun et al. 2010).

2 Materials and Methods

2.1 NP transport simulation in blood flow: IFEM approach

A fluid-solid interaction (FSI) system as shown in Fig. 3 is considered to simulate the entire 

domain including blood plasma, RBCs, and NPs in a microvessel. A periodic boundary 

condition for RBCs and NPs is applied that inserts them in the inlet on the left after they 

escape from the outlet on the right. The IFEM (Zhang et al. 2004; Liu et al. 2006; Lee et al. 

2008; Liu et al. 2007a,b; Kopacz et al. 2012; Kopacz and Liu 2013) for simulating both fluid 

(blood plasma) and solid (RBCs and NPs) is constructed on an Eulerian domain (Ω) which 

includes fluid and solid domains. The IFEM on Ω is governed by Navier-Stokes equations 

with FSI force (fFSI) defined as:

(1)
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(2)

where ρf is the density of the blood plasma, u is the velocity, t is the time, p is the pressure, 

μf is the viscosity of the blood plasma, ff is the external force acting on the blood plasma, 

and fFSI is the FSI force for recognizing the solid objects in the whole domain. The Mooney-

Rivlin material model (Liu and Liu 2006) is used for the RBCs to account for hyperelastic 

deformation. The RBC deformability μ0 is the initial in-plane membrane shear modulus. It is 

defined as μ0 = 0.75G0h0 where G0 is the shear modulus and h0 is the membrane thickness 

(Dao et al. 2003). In this computational model, fFSI contains separate contributions from the 

molecular interactions of RBC-RBC, RBC-NP, and NP-NP pairs.

As shown in Fig. 4, various interactions occur in the microvessel among blood plasma, 

RBCs, and NPs. In this computational model, we consider RBC-RBC, RBC-NP, and NP-NP 

interactions. The RBC-RBC interaction is described by a Morse-type potential (Zhang et al. 

2008; Liu and Liu 2006) given as:

(3)

where De is the Morse potential amplitude, β is the scaling factor, r0 is the critical length for 

zero-force, and r is the distance between RBC surface nodes. Also, the interaction forces for 

RBC-NP and NP-NP are described by a Lennard-Jones potential as

(4)

where ε is the scaling parameter and rm is the equilibrium length.

Since we seek computation of NP radial dispersion characteristics (described by vector D), 

which arise from the solution of the IFEM model, we can write the dispersion characteristics 

as a function of the IFEM model parameters:

(5)

Two of the above parameters are the RBC deformability (μ0) and RBC-RBC interaction 

potential amplitude (De), which while required by the model are not easily measured by 

experimental techniques and thus have uncertain values. This means they may also be used 

to calibrate the IFEM model to match known experimental results. The general model 

updating framework is presented in the following section.

For the NP transport simulations and experiments with a number of particles N, a quantity of 

interest is the radial dispersion coefficient, which is defined mathematically by (Saadatmand 

et al. 2011)

(6)
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where ri(t) is the distance of the NP from the center of the channel at the time t and ri(0) is 

the initial distance. The angled brackets ⟨0⟩ indicate the expectation with respect to time, 

which is an average of the interior quantity up until time t. t is considered sufficiently long 

so an equilibrium state is reached. Physically, the dispersion coefficient (units are μm2/s) 

averages the variance of a particle position from its initial value over all the particles. Thus, 

a high dispersion coefficient means a large amount of “mixing” occurs of NPs in the blood 

stream, whereas a small value indicates a low probability that NPs deviate in a perpendicular 

direction from the vessel centerline. A high dispersion coefficient, therefore, is desirable 

from a drug delivery standpoint: as NPs are more likely to deviate from their initial positions 

so are they more likely to diffuse through the vessel wall and penetrate (potentially) 

damaged cell tissue.

2.2 Bayesian calibration of the model parameters

In this subsection, the approach for combining experimental and computational results to 

update a computer model that leverages the Bayesian statistical framework is briefly 

presented. The methodology for combining numerical and physical experiments follows that 

described by Bayarri et al. (2007), and here we further adopt the modular Bayesian approach 

as outlined in Kennedy and O’Hagan (2001). This approach recognizes three sources of 

uncertainty in computational predictions: the unknown values of model parameters (θ), lack 

of knowledge due to missing physics in the model, and experimental error. Experimental 

data for a quantity of interest z, here the dispersion coefficient z = DR, may be written as a 

superposition of three terms:

(7)

where superscripts e and m indicate experimental and model observations, δ is a discrepancy 

function accounting for the inadequacy of the model to correctly describe the observations, 

and ε ~ N(0, σe) is the experimental error assumed to be distributed normally with zero mean 

and constant variance. Here, H is the hematocrit, a variable common to experiments and 

model, though in general this portion of the formulation may be multidimensional. θ indicate 

the parameters whose value we aim to update with the Bayesian formalism. Here, θ = [μ0, 

De] contains the RBC deformability and RBC-RBC interaction potential amplitude.

In this and the ensuing subsection, random variables will be given in uppercase (e.g. V) with 

a realization in lower case (e.g. v) unless otherwise noted. In the Bayesian calibration 

process, the model parameters are assumed to be a multivariate random vector Θ with 

posterior probability distribution function

(8)

where fZ(z|θ) is the likelihood distribution, the probability of observing z given a parameter 

set θ, fΘ (θ) is a prior distribution on the calibration parameters typically specified by field 

experts, literature, or low-fidelity simulations, and C is a normalization constant to ensure 

the posterior integrates to one over its domain. The computation of the posterior distribution 

involves the following key steps (shown in Fig. 5).
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1. Gaussian process modeling for the computer model. A Gaussian process is a 

spatial random process that can be used to replace any function. It is capable of 

capturing the trend and roughness of the function by properly setting a few key 

parameters, which are called hyperparameters of the Gaussian process. In this step 

the computer model is replaced by a Gaussian process provided the model 

observations; its hyperparameters are determined by maximum likelihood 

estimation (MLE) which maximizes the probability of obtaining the current model 

observations given a possible hyperparameter set. The determination of 

hyperparameters is conducted with readily available stochastic or gradient-based 

optimization methods.

2. Gaussian process modeling for the discrepancy function. Another Gaussian process 

model is fitted to infer the discrepancy function δ(H) by combining the 

experimental and model observations, the prior distribution of the calibration 

parameters, and the hyperparameters of the computer model obtained in the 

previous step. Independence is assumed between zm(H, θ), δ(H), and ε, and a 

similar MLE scheme determines the hyperparameters of the Gaussian process for 

the discrepancy function.

3. Calculating the posterior of the calibration parameters. The value of the likelihood 

function fZ(z|θ) is determined by the two Gaussian processes for the computer 

model and the discrepancy function; the posterior fΘ(θ|z) of the parameters is 

subsequently calculated by eq. (8).

After the computation of the posterior distribution, the full prediction of ze(H) considering 

both model discrepancy and parameter uncertainty can be determined by its prediction mean 

and prediction variance:

(9)

(10)

In the above μ(q) and σ2(q) are the mean and variance of the quantity q. The notation ⟨q⟩V is 

the expectation (mean) of the quantity q with respect to random variable V. By this notation, 

σ2(q) = ⟨(q − μ(q))2⟩ by the definition of statistical variance. In eq. (9), T is the support of the 

random vector of calibration parameters Θ assumed to follow the posterior distribution. In 

this implementation, the calibration parameters are assumed to follow an independent 

multivariate normal distribution so that T = ℝM, with M the number of calibration 

parameters.

The prediction mean expression in eq. (9) says that the predicted value of the experimental 

observation ze at value H, given the observations z, equals overall expectation of ze(H), 

given z and any possible value of θ from its posterior distribution. The prediction variance 

expression in eq. (10) says that the true value of ze(H) may vary from the prediction mean 
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because of two variation sources, one being the variation due to different possible values of 

θ, the other being the variation due to the random quantity ze itself even when θ is fixed.

3 Results

3.1 Simulation of NP transport in a microvessel

The blood flow and NP dispersion in a microvessel are simulated to compare with 

experimental data measuring the dispersion coefficient of particles by inserting RBCs 

(Saadatmand et al. 2011). To model the given experimental conditions, the density and 

viscosity of the plasma are 1.046 g/cm3 and 3.8 × 10−3 Pa-s, respectively. The tube diameter 

is 50 μm and the flow rate is 0.033 mL/min. The volume fraction of RBCs (hematocrit) is 

0-20%, a domain consistent with experimental data used for Bayesian updating. The RBC 

density is the same as the plasma and its surface is treated as a hyperelastic, the RBC 

deformability (μ0) is 6.0 μN/m. The cytoplasm (Park et al. 2011) in the RBCs is described 

by a fluid with the same density as the outside of the cells and a viscosity of 6.0 × 10−3 Pa-s. 

Recalling Sec. 2.1, the RBC-RBC intracellular interaction (Zhang et al. 2008; Liu and Liu 

2006) is estimated by a Morse-type potential with De = 1.0 μJ/m2, r0 = 0.49 μm, and β = 

3.84μm−1. Also, a total of 90 NPs with diameters of 1 μm are added in the computational 

microvessel, which serve as the ensemble by which the dispersion coefficient in eq. (6) is 

calculated. Each NP is described as a rigid body whose density is the same as that of the 

plasma. The RBC-NP and NP-NP interactions, to numerically avoid overlapping among 

them, are described by a Lennard-Jones potential with ε = 1.0 × 10−12 J and rm = 1.0 nm.

Figure 6 shows the experimental and simulation results at different hematocrit values. Both 

sets of results show that when hematocrit increases NP dispersion increases as well. The 

relationship appears to be monotonic from the results, and the value of the dispersion 

coefficient in experiment and simulation are similar. However, a noticeable gap between the 

experiments and simulations exists. This error predominantly derives from the absence of a 

rigorous calibration procedure applied to the parameters of the model shown in eq. (5), 

which were chosen in the paragraph above based on experience of the authors or values 

from literature. In next subsection, we will discuss how to update the computational model 

and calibrate the unknown model parameters by the Bayesian calibration procedure 

discussed in previous Section.

3.2 Determination of unknown model parameters

The RBC deformability (μ0) and RBC-RBC morse potential parameter (De) will be used to 

update the IFEM model where θ1 = μ0 and θ2 = De. The parameters are ideal for calibration 

because the RBC deformation and RBC-RBC interaction are affected to the flow pattern of 

blood plasma. The complex flow of blood plasma generated from the RBC dynamics is a 

driving force of NP dispersion. However, the NP interaction is not sensitive to the NP 

dispersion because the NP volume fraction is very low in the microvasculature. Therefore, 

the RBC deformability and RBC-RBC interaction is selected to calibrate the blood flow 

model.
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For the modular Bayesian approach, a Gaussian process model is fit to an optimal, space 

filling design of experiments (DOE) (Jin et al. 2005) on the 3-dimensional space (H, θ) 

shown in Fig. 7 by its 2D orthogonal planes. Each point in the plots represents a simulation 

for which the dispersion coefficient in eq. (6) is calculated; there are 35 total simulations. 

This Gaussian process model acts as an emulator (surrogate, metamodel) of the costly 

computer simulation and constructs the posterior distribution. We have assumed that both 

parameters’ prior distributions are uniform Θ1 ~ U(5.4, 7.9), Θ2 ~ U(0.1, 10.0) and that the 

two are statistically independent, which appears to be a safe assumption as the mechanical 

properties of the bulk RBC material (θ1) do not impact its molecular surface interaction (θ2) 

with NPs as the scales are so disparate.

The results of different components for the modular Bayesian calibration process are shown 

in Fig. 8. The mean of the posterior distribution in Fig. 8(a) of θ is μΘ = [6.34, 1.26], and in 

Fig. 8(c) it is shown that the discrepancy function δ(H) from eq.(7) is approximately zero for 

the domain of H. A small discrepancy function indicates that the model ze(H, θ) can 

adequately capture the observed experiments, as is shown for the prediction in Fig. 8(b), 

which is a prediction assuming the discrepancy function is zero. Consistent with intuition, 

however, the discrepancy function deviates from zero at higher hematocrit, which would 

suggest that the model is inadequate as the number of RBCs increases and interactions 

multiply. This may be due to the limitation of the pairwise interactions considered, the 

simple interactions themselves, or the interpolation scheme of the FSI model that breaks 

down as a higher fraction of the domain Ω becomes solid.

The full prediction combining the calibrated model with parameters θ set to their mean μΘ 

and the discrepancy function is shown in Fig. 9(b) along with a 2 standard deviation 

uncertainty band. The updated model captures the experimental data well, with the 

discrepancy function correctly picking up missing physics at higher hematocrit. The 

Bayesian method in eq. (7) is compared with a nonlinear least squares optimization of 

parameters θ based on a best-fit Kriging response surface (Simpson et al. 2005) applied to 

the same DOE in Fig. 7. In the nonlinear least square approach, the calibrated parameters are 

θ* = [6.80, 1.64], which are close to the mean of the posterior distribution from the Bayesian 

updating process. The similarity of the results provide strong evidence that the true 

parameters of μ0 and De are around the mean of the posterior distribution in Fig. 8(a). In the 

next subsection, we will use μΘ from the posterior distribution in Fig. 8(a) because, as can be 

seen from the prediction in Fig. 9(b), the Bayesian approach captures the experimental 

observations within 2 standard deviations of the mean prediction whereas the nonlinear least 

squares method does not.

3.3 Prediction of NP transport in the tumor microvasculature

Here we use the updated IFEM model to perform parametric studies that predict NP 

dispersion in the tumor microvasculature under uncertainty. The complex microvasculture is 

approximated by placing statistical models derived from experiments on the inputs to the 

IFEM simulation, namely the vessel diameter Y1, flow velocity Y2, and hematocrit Y3 ≡ H. 

Each input is treated as random to account for variation among specific locations in the 

human body and among separate patients. The distributions of these random variables are 
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given in Table 1. All random variables Yi are assumed to follow lognormal distributions so 

that Yi = eBi, where Bi are normal random variables. A lognormal random variable has 

parameters (m, s)i = (μBi, σBi), which are also shown in the table. The value of the 

parameters for the lognormal distributions were calculated by the maximum likelihood 

method applied to data in Kamoun et al. (2010) that catalogues these parameters at different 

spatial locations in the microvasculature. In this simulation, we assume the random variables 

are independent in the tumor microvasculature, acknowledging there may be some 

correlation between vessel diameter and flow velocity.

NPs 100 nm in diameter are simulated to estimate NP transport from the center of the vessel 

to the wall in the uncertain tumor microvasculature. Transport is measured by a quantity 

called the drift velocity, the speed with which NPs leave the vessel centerline and travel 

perpendicularly until they reach the vessel wall, averaged over the ensemble of NPs in the 

simulation. The drift velocity of particle i and their ensemble over N particles are

(11)

where ri(t) is the distance of the NP from the center of the channel at the time t and ri(0) is 

the initial value of this distance. To propagate uncertainty from the three dimensional 

random input space to single dimensional random output space Y ∈ (0, ∞)3 → V ∈ ℝ, we 

use tensor product Gauss quadrature (Lee and Chen 2009; Lee et al. 2009) so that 

uncertainty propagation is handled via deterministic evaluation of the drift velocity at a 

predetermined set of collocation points. Following (Lee et al. 2009), the ith order moment of 

V based on a Gauss quadrature approximation is

(12)

where ωnj is the weight of the nth Gauss point of Nj total in the jth dimension of random 

input vector Y; the value ynj is the location of the nth Gauss point in the jth dimension. Here, 

M = 3 as shown in Table 1, and we choose nj = 2 to guarantee the predicted standard 

deviation of V is exact. Note that in tensor product quadrature the required number of 

function evaluations scales exponentially with random space dimension as nM (if n = n1 = n2 

= …). The nodes and weights (y, ω) can be computed based on moment matching formulae 

as described in (Lee et al. 2009). Moment matching equations produce a nonlinear set of 

equations which may be solved numerically by the Newton-Rhapson root finding method. 

Fig. 10 shows the Gauss nodes and weights superimposed on the probability distribution 

functions (PDFs) of the input random variables given in Table 1 for 3 Gauss points.

With nj = 2, j = 1, 2, 3, a total of eight calls to the IFEM simulation are required for 

computing NP transport statistical moments. The drift velocity of individual NPs are 

predicted by the simulations results. Fig. 11(a) shows simulation snapshots for one of the 8 

required input settings. In each simulation, NPs are randomly distributed at the initial time 

step (Fig. 11(b)). The density and the viscosity of the blood plasma are 1.0 g/cm3 and 0.0012 
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Pa-s, respectively. Both RBC deformability μ0 and RBC-RBC interaction potential 

magnitude De are assigned the mean values of the posterior distribution calculated in the 

previous section: μ0 = 6.34 μN/m and De = 1.26 μJ/m2. Fig. 11(c) shows the predicted drift 

velocity of N = 30 NPs after 100 ms. The positive values mean the NPs are moving from the 

center of the channel to the wall. Most NPs have a tendency to do this. Using the moment 

matching formula in eq. (12), the mean drift velocity is μV = 3.23 μm/s and its standard 

deviation is σV = 0.95 μm/s. The dispersion coefficient was also computed with the moment 

matching formulae as having mean μDR = 0.303 μm2/s and σDR = 0.330 μm2 /s. We note that 

the standard deviation of the drift velocity here is the standard deviation of the average drift 

velocity as computed in eq. (6), not the standard deviation of NP-specific drift velocity 

shown in Fig. 11(c), which was not considered in this study.

4 Discussion

The results for the uncertainty propagation exercise uncover some interesting physical 

features of NP transport in the tumor microvasculature. First, the calculated drift velocity 

standard deviation corresponds to a coefficient of variation of almost 30% of the mean, 

which is quite large. A high coefficient of variation means that large variation of the drift 

velocity can be expected at different locations in the microvasculature so that NP transport 

design should be tailored for specific locations since they produce such different transport 

characteristics. Thought of another way, it is beneficial to design NPs so their dispersion 

characteristics are maximized in that part of the microvasculature that is of interest to their 

intended use such as the presence or absence of a tumor. Futhuremore, it can be used to 

predict the NP dispersion based on the patient-specific microvascular imaging. NP 

dispersion might change from patient to patient. So the optimal design of NP migth be 

changed. In this sense, it is possible to use the simulation method including microvascular 

imaging to design personailzed NPs.

The dispersion coefficient in eq. (6) produces a similar conclusion to the drift velocity 

above. The mean diffusion coefficient was μDR = 0.303 μm2/s for NPs 100 nm in diameter, 

which may be compared to natural diffusion as calculated by the Stokes-Einstein relation DB 

= kBT /3πμdp, where DB is the natural diffusion coefficient by Brownian motion, kB is the 

Boltzmann constant, T is a temperature, μ is the plasma viscosity, and dp is the particle 

diameter. The dispersion coefficient is lower than natural diffusion coefficient of 4.393 

μm2/s at a temperature of 300 K, even considering 3 standard deviations from the mean 

value DR → 1.3 μm2/s. This means that the diffusion process in the tumor microvasculature 

is relatively slower than the natural diffusion process, slowing to almost zero in certain 

areas. The natural diffusion coefficient can be a reference value for a physical sense but not 

sure whether NPs might diffuse to the tissue based on the natural Brownian diffusion. The 

current simulation shows the diffusion of NPs in the microvasculature is much less than the 

natural diffusion because the NP diffusion in the microvasculature has a lot of barriers such 

as RBCs, vessel wall, and extra cellular matrix rather than the natural diffusion in a 

homogeneous fluid. Therefore, the NP dispersion coefficient in the microvessel might be not 

the sum of natural diffusion and NP radial dispersion. Therefore, when we consider the NP 

transport in the tumor microvasculature, we should consider possible ways to enhance the 
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dispersion of the particles or provide better patient-specific information about probabilities 

of treatment success based on locations of interest in the vasculature.

The results also suggest a use of this research for design of NP-based therapeutics. We 

considered predictions of statistical quantities of the average drift velocity and dispersion 

coefficients in the tumor microvasculature by propagating uncertainty in vessel diameter 

(Y1), flow velocity (Y2), and levels of hematocrit (Y3). Although we conducted uncertainty 

propagation analysis with other model inputs fixed to traditional values, we can envision a 

robust design scenario (Chen et al. 1996) where medical personnel aim to design NP shape 

and size under uncertainty that simultaneously maximizes the mean drift velocity and 

minimizes the drift velocity variance in certain regions. This would correspond to 

minimizing the following objective function:

(13)

where ω ∈ [0, 1] defines the weight assigned to the mean term, μV is the mean of the average 

dispersion coefficient, σV is the standard deviation of the average dispersion coefficient, Y 

are the random variables in Table 1, and x = [x1, x2] are the design variables: NP major axis 

size and NP aspect ratio, respectively. The support of random variables Y should be adjusted 

to reflect the random conditions in specific portions of the microvasculature. The robust 

design formulation in eq. (13) recognizes a tradeo between the mean NP drift velocity and 

its variance. In short, we do not aim only to maximize V but also ensure that the value of V 

at the optimum design point will be insensitive to input uncertainties. This ensures that NP 

drug delivery treatments are effective for different patients or tumors located at different 

sites in the human body.

To perform the optimization in eq. (13), which either requires gradient evaluation or random 

sampling of the objective function, we must replace the costly blood flow simulation with a 

response surface (Jin et al. 2001). The same tensor product grid uncertainty propagation 

approach used in previous Section can be applied at a design of experiments on x1, x2. This 

concept is shown in Fig. 12, which may be visualized as a moment-matching stochastic 

collocation sampling space surrounding each discrete point in the design domain. A separate 

response surface for μv and σv would then be built in the x domain in eq. (13) and 

optimization techniques performed to determine the optimum NP shape and size. This 

exercise is left to future work but rests on the foundational concepts promulgated in this 

research: the recognition and mathematical quantification of uncertainty in NP transport 

phenomena in the microvasculature as a pre-requisite to targeted NP-based therapeutics and 

bio-sensing.
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Fig. 1. 
Uncertainty of NP transport in the multiscale vascular system
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Fig. 2. 
Uncertainty quantification of NPs in the microvasculature using experiement and simulation
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Fig. 3. 
Computer simulation model for calculating radial dispersion coefficient of NPs. In the 

microvessel, blood plasma, RBCs, and NPs are simulated by the IFEM computer code.
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Fig. 4. 
Schematic of interaction forces in a microvessel
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Fig. 5. 
Flow diagram explaining the modular Bayesian approach for model updating. GP represents 

Gaussian Process, θ is the calibration parameters and Θ is the bivariate random vector.
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Fig. 6. 
Dispersion coefficient from in vitro experiment Saadatmand et al. (2011) and IFEM 

simulation. For the prediction of the dispersion coefficient described by eq. (6), the particles 

with diameters of 1 μm are simulated in a microtube 50 μm in diameter, which is considered 

as the same condition as the experiment.
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Fig. 7. 
Space filling design of computer experiments on H and θ = [μ0, De] in eq. (7) for Bayesian 

calibration process. Open circles represent the simulation data in Fig. 6. Filled circles 

represent new points used to construct the surrogate model for dispersion coefficient.
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Fig. 8. 
Components of the modular Bayesian model updating process.
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Fig. 9. 
Comparison of Bayesian and nonlinear least squares calibration methods for blood flow 

simulation parameters.
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Fig. 10. 
Gauss point locations and weights superimposed on the PDF of each of the input random 

variables Yi to the IFEM simulation. Weights sum to 1 and the PDF parameters are given in 

Table 1.
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Fig. 11. 
Prediction of NP transport based on the simulation model under uncertainty
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Fig. 12. 
Design of experiments for computational design under uncertainty. The design variables x in 

eq. (13) are treated deterministically while noise parameters y are treated random. The tensor 

product quadrature cube for noise parameter samples is superimposed on one of the design 

points.
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Table 1

Table describing input random variables for computational NP design under uncertainty.

Variable Description Distribution Parameters

Y 1 Vessel diameter Lognormal (m, s)1 = (2:63; 0:087)

Y 2 Flow velocity Lognormal (m, s)2 = (−0:480; 0:189)

Y 3 Hematocrit Lognormal (m, s)3 = (−2:51; 0:269)
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