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Diabetic cardiomyopathy (DCM), as one of the major cardiac complications in diabetic patients, is known to related with oxida-
tive stress that is due to a severe imbalance between reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) genera-
tion and their clearance by antioxidant defense systems. Transcription factor nuclear factor NF-E2-related factor 2 (Nrf2) plays an 
important role in maintaining the oxidative homeostasis by regulating multiple downstream antioxidants. Diabetes may up-regu-
late several antioxidants in the heart as a compensative mechanism at early stage, but at late stage, diabetes not only generates ex-
tra ROS and/or RNS but also impairs antioxidant capacity in the heart, including Nrf2. In an early study, we have established  that 
Nrf2 protect the cardiac cells and heart from high level of glucose in vitro and hyperglycemia in vivo, and in the following study 
demonstrated the significant down-regulation of cardiac Nrf2 expression in diabetic animals and patients. Using Nrf2-KO mice 
or Nrf2 inducers, blooming evidence has indicated the important protection by Nrf2 from cardiac pathogenesis in the diabetes. 
Therefore, this brief review summarizes the status of studies on Nrf2’s role in preventing DCM and even other complications, the 
need for new and safe Nrf2 inducer screening and the precaution for the undesirable side of Nrf2 under certain conditions.

Keywords: Antioxidant therapy; Diabetic cardiomyopathies; Nrf2; Oxidative stress

Corresponding author:  Lu Cai
Kosair Children’s Hospital Research Institute, the Department of Pediatrics of 
the University of Louisville, Louisville, KY 40292, USA
E-mail: L0cai001@louisville.edu

INTRODUCTION

Diabetic cardiomyopathy (DCM) is one of the major cardiac 
complications in diabetic patients. Several mechanisms re-
sponsible for DCM have been proposed [1-3]: (1) impaired 
regulation of intracellular calcium, leading to impaired cardiac 
contractility; (2) mitochondrial dysfunction, leading to over-
production of reactive oxygen species (ROS), reactive nitrogen 
species (RNS), and eventually cardiac cell death; (3) accumu-
lation of advanced glycated end-products in the heart, leading 
to extracellular matrix accumulation that in turn results in 
cardiac diastolic dysfunction and eventually functional failure; 
(4) abnormal cellular metabolism, leading to accumulation of 
toxic lipids in the heart; and (5) essential trace metal dysho-
meostasis such as zinc and copper. Although these pathogene-

ses may be primarily caused by hyperglycemia, other patho-
genic factors including hyperlipidemia, inflammatory cyto-
kines, and angiotensin system such as angiotensin II also play 
important roles in the initiation or progression of DCM. These 
pathogenic factors cause the pathogenesis of DCM probably 
via different mechanisms, but all these effects are thought re-
lated to oxidative stress [1,3-6], as illustrated in Fig. 1.

ANTIOXIDANT THERAPY AND 
METALLOTHIONEIN

Oxidative stress indicates a severe imbalance between ROS 
and/or RNS generation and their clearance by antioxidant de-
fense systems [3]. Due to low contents of antioxidants in the 
normal heart compared to other organs, the heart is a highly 
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susceptible organ to oxidative stress and damage [7,8]. Diabe-
tes may up-regulate several antioxidants in the heart as a com-
pensative mechanism at early stage, but at late stage, diabetes 
not only generates extra ROS and/or RNS but also impairs an-
tioxidant capacity in the heart [4,9]. Decreased expression of 
heat shock protein 60 and heme oxygenase-1 in the diabetic 
heart made the heart high susceptible to oxidative damage [9-
11]. Therefore, antioxidant therapy for DCM has been attrac-
tive, but its outcomes to prevent cardiac complications in dia-
betic patients by dietary supplementation of antioxidants are 
controversial [12-14]. Several reasons including the difficulty 
in maintaining a consistent circulating antioxidant levels for 
supplied exogenous antioxidants, inadequate tissue distribu-
tion, and lack of suitable exogenous antioxidants have been 
discussed [3,14,15]. This might be one of the reasons that single 
or a few of antioxidants together would remove limited kinds 
of free radicals while diabetes can induce multiple kinds of free 
radicals.

  This concept may be implicated by the action of metallothio-
nein (MT). MT is a cysteine-rich (1/3 of 61 amino acids) and 
binds zinc under physiological condition [16-18]. As a nonspe-
cific antioxidant, MT is able to quench a wide of free radicals, 
including superoxide, hydrogen peroxide, hydroxyl radical, 
and peroxynitrite [16-18]. We have shown that MT as a potent, 
nonspecific antioxidant significantly prevented various diabetic 
complications in animal models and human, suggesting its 
great potential for clinical application to prevent DCM [5, 
15,19-24]. However, MT remains a single antioxidant, which 
promotes us to further look for an approach to up-regulating 
multiple antioxidants, including MT, for efficiently preventing 
diabetic complications.

THE TRANSCRIPTION FACTOR NUCLEAR 
FACTOR Nrf2

Cells contain a number of genes coding many proteins to coun-

Fig. 1. Pathological responses mediated by reactive oxygen species (ROS) in the diabetic cardiomyopathy. ROS are involved in li-
potoxicity, extracellular matrix accumulation, calcium dyshomeostasis, and apoptosis.
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teract ROS-, RNS-, or electrophile-mediated injury. Transcrip-
tional regulation of these protective genes is controlled in part 
through antioxidant response elements (AREs) [25,26]. The 
transcription factor nuclear factor NF-E2-related factor 2 (Nrf2) 
plays an important role in ARE-mediated basal and inducible 
expression of more than 200 genes that can be grouped into sev-
eral categories including antioxidant genes and phase II detoxi-
fying enzymes [25,26], as outlined in Fig. 2. These antioxidant 
components include heme oxygenase-1, thioredoxin reduc-
tase, glutathione-S-transferase, and NAD(P)H:quinone oxido-
reductase (NQO)-1, antioxidant enzymes such as superoxide 
dismutase and catalase, and nonenzymatic scavengers such as 
glutathione. The protein stability and transcriptional activity 
of Nrf2 is principally regulated by a BTB-Kelch protein, Keap1 
that functions as a substrate adaptor for a cullin (Cul)3-depen-
dent E3 ubiquitin ligase complex. Keap1 targets Nrf2 for ubiq-

uitination and subsequent degradation by the 26S proteasome 
[25,26].
  In an early study, we have indicated the important role of 
Nrf2 in preventing high glucose-induced production of ROS 
and apoptotic cell death in both primary neonatal and adult 
cardiomyocytes from the mice with deletion of the Nrf2 gene 
(Nrf2-KO) than those from the Nrf2 wild-type mice [27]. Pri-
mary adult cardiomyocytes from Nrf2-KO diabetic mice showed 
a loss of isoproterenol-stimulated contraction compared to those 
from Nrf2 wild-type diabetic mice. Our finding was the first one 
to establish Nrf2 as a critical regulator of defense against ROS in 
normal and diabetic hearts [27]. We further showed the signifi-
cant down-regulation of cardiac Nrf2 expression in diabetic 
animals and patients [28]. Now it is clear that down-regulation 
of Nrf2 is a significant reason for the initiation of various dia-
betic complications [29,30]. Using Nrf2-KO mice or Nrf2 in-

Fig. 2. Schematic presentation of NF-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway activation by reac-
tive oxygen species (ROS). In the cytoplasm, under normal conditions, Nrf2 is constitutively bound to Keap1 protein. Keap1 in-
hibits Nrf2 signaling pathway by promoting Nrf2 ubiquitination and subsequent degradation through proteasomal pathway. 
Mild oxidative stress and Nrf2 activators cause dissociation of Nrf2-Keap1 complex, phosphorylation of Nrf2, and the nuclear 
translocation. In the nucleus, Nrf2 promotes transcriptional activation of antioxidants (heme oxygenase-1 [HO-1], NAD(P)
H:quinone oxidoreductase 1 [NQO1], catalase, and superoxide dismutase [SOD]) and detoxifying enzymes by binding to the 
ARE in the promoter regions of the target genes. 
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ducers blooming evidence has indicated the protection by 
Nrf2 from diabetes [31,32] and from various diabetic compli-
cations [33-37]. We have worked on the prevention of DCM 
and other diabetic complications with several Nrf2 inducers 
[33,35,38-42], as summarized in Table 1 [32,35-37,39,42-60]. 
  The effective protection from diabetic complications by up-
regulating Nrf2 function in animal models promoted clinical 
trials with Nrf2 inducer to prevent diabetic nephropathy. In 
2011, the phase II clinical trial by following-up 52 weeks for the 
treatment of participants with moderate-to-severe diabetic kid-
ney disease with bardoxolone methyl (BM) [61] reported the 
improvement of renal function compared to non-BM-treated 
diabetic patients. But the phase 3 clinical trial for the patients 
with advanced diabetic kidney disease [62] was prematurely 
terminated due to the strong adverse effects associated with 
BM treatment, including increased rates of heart failure and 
cardiovascular events. The failure of BM clinical trial suggests 
that more detail study in preclinical animal models is urgently 
needed before new clinical trials. Given the efficient prevention 
of diabetic complications with Nrf2 inducers in various animal 
models and the escalating human and societal costs of diabetic 

complications, efforts to find new safe and effective drugs via 
up-regulating Nrf2 remain vital [63-66].
  Monascus-fermented metabolite monascin acts as a novel 
natural peroxisome proliferator-activated receptor-γ (PPARγ) 
agonist that improves insulin sensitivity, but dislike rosigli-
tazone, monascin was also able to activate Nrf2 to further ele-
vate glyoxalase-1 expression. Monascin may be a novel natural 
Nrf2 activator with PPARγ-agonist activity. Therefore, monas-
cin acts as an antidiabetic and antioxidative stress agent to a 
greater degree than rosiglitazone and thus may have therapeu-
tic potential for the prevention of diabetes [67].

UNDESIRABLE SIDE OF Nrf2

It should be mentioned that everything has both sides; Nrf2 
also has its undesirable side. It is well-known that ROS derived 
from multiple sources plays a causal role in multiple types of 
insulin resistance and contributes to β-cell dysfunction, lead-
ing to enhance the development and progression of type 2 dia-
betes, in another word: the detrimental ROS also plays a sub-
stantial role in the normal insulin signal transduction and glu-

Table 1. The effect of Nrf2 activators on diabetes and diabetic complications

Nrf2 activator Animal models and cell lines Effects Reference

Sulforaphane Type 2 diabetic mice
Type 1 diabetic mice
Type 1 diabetic mice
Type 1 diabetic mice

Protect aortic damage
Protect aortic damage
Type 1 diabetic rats
Protect diabetic neuropathy

[44]
[39]
[42]

[37,45]

MG132 Type 1 diabetic mice
Type 1 diabetic rats
Type 1 diabetic mice

Protect aortic damage
Protect diabetic cardiomyopathy
Protect diabetic cardiomyopathy

[35]
[46]
[36]

CDDO
 

Type 2 diabetic mice
High fat diet induced-obese mice
Type 1 diabetic mice
Type 1 diabetic rats

Protect islets β-cells and increase insulin sensitivity
Prevent obesity
Protect diabetes-associated atherosclerosis and neuropathy
Protect diabetic neuropathy and liver function

[32]
[47]
[48]
[43]

Curcumin Type 1 diabetic mice
Type 1 diabetic rats
Type 1 diabetic mice
Type 1 diabetic mice
Type 2 diabetes patients
Type 1 diabetic rats

Protect aortic damage
Protect diabetic cardiomyopathy
Protect diabetic cardiomyopathy
Protect islets β-cells
Decrease insulin resistance
Protect diabetic neuropathy

[49]
[50]
[51]
[52]
[53]
[54]

Resveratrol Type 1 diabetic rats
Type 1 diabetic rats
Type 2 diabetes mice
Type 1 diabetic rats
Type 2 diabetes patients
Type 2 diabetic rats

Neuroprotective and beneficial for the maintenance of cognitive function
Protect liver damage
Protect vascular disease
Protect diabetic cardiomyopathy
promotes foot ulcer size reduction
Protect vascular inflammatory injury

[55]
[56]
[57]
[58]
[59]
[60]

Nrf2, NF-E2-related factor 2; CDDO, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl].
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cose-stimulated insulin secretion in β-cell. Therefore persistent 
activation of Nrf2 gene may cause over-reduction of these re-
quired ROS signaling in the body. Consequently the detrimen-
tal effects of Nrf2 due to its aberrant activation have also been 
highlighted in recent years. A few of such examples include: (1) 
constitutive Nrf2 activation worsens insulin resistance, impairs 
lipid accumulation in adipose tissue, and increases hepatic ste-
atosis in leptin-deficient mice [68]; (2) Nrf2 deficiency improves 
glucose tolerance in mice fed a high-fat diet [69]; and (3) Nrf2 
deficiency prevents reductive stress-induced hypertrophic car-
diomyopathy [70,71]. For instance, the latter cases highlighted 
that certain amount intracellular oxidative modification of pro-
teins is a key event required for proper ubiquitination and pro-
tein degradation [72]. If substantial activation of Nrf2 may cause 
a significant decrease of protein oxidation in association with 
the induction of chronic reducing stress, which in turn causes 
deubiquitination and downstream protein degradation path-
ways, resulting in the development of cardiac hypertrophy and 
remodeling [70,71].
  In addition, although the undesirable side of Nrf2 has been 
extensively mentioned in the cancer research field, Nrf2 has 
been shown to protect normal cells from tumor formation by 
decreasing the oxidative stress and preventing the DNA dam-
age in cells. However, recently the cancer-promoting role of 
Nrf2 has been revealed. Nrf2 was found to be constitutively 
up-regulated in several types of human cancer tissues and can-
cer cell lines, and to protect tumors and cell lines from chemo-
therapeutic drugs [73,74]. 

CONCLUSIONS

In summary, the development and progression of DCM, one of 
the major cardiac complications in diabetic patients, is predom-
inantly related to oxidative stress that is due to a severe imbal-
ance between ROS and/or RNS generation and their clearance 
by antioxidant defense systems. In our body, cells have a well-
established defense system against oxidative stress, such as Nrf2 
that plays an important role in maintaining the oxidative ho-
meostasis by regulating multiple downstream antioxidants. Di-
abetes, at late stage, not only generates extra ROS and/or RNS 
but also impairs antioxidant capacity in the heart, including 
Nrf2. We have demonstrated that Nrf2 protects the cardiac cells 
and heart from high level of glucose in vitro and hyperglycemia 
in vivo, respectively. We also found that diabetes significantly 
down-regulated cardiac Nrf2 expression in diabetic animals 

and patients, which might explain the development and pro-
gression of DCM. By using Nrf2-KO mouse model, the impor-
tant role of Nrf2 in protecting various organs including the 
heart from diabetes has been extensively approved. Therefore 
various Nrf2 inducers have been explored with the objective of 
developing an applicable approach to pharmacologically up-
regulate our systemic levels of Nrf2 in diabetic individuals for a 
prevention of their complications. Although the first candidate, 
bardoxolone methyl, has been failed in the phase II clinical trial 
that showed the potent cardiac toxicity when bardoxolone 
methyl was applied to diabetic patients with renal dysfunction, 
this could not stop searching for an efficient and safe new Nrf2 
inducer. In addition, it also gradually is realized that anything 
can not be too much even though it is beneficial to us at most 
time. Similarly Nrf2 was found to also have its undesirable side 
when it is substantially and overexpressed. Therefore, when we 
continually explore for the approach to enhancing organ’s Nrf2 
expression with the purpose of prevention of cardiovascular 
complications, we also should keep in mind of its undesirable 
side under certain conditions.
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