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Abstract
Positron emission tomography (PET) is a minimally in-
vasive technique which has been well validated for the 
diagnosis, staging, monitoring of response to therapy, 
and disease surveillance of adult oncology patients. Tra-
ditionally the value of PET and PET/computed tomogra-
phy (CT) hybrid imaging has been less clearly defined 
for paediatric oncology. However recent evidence has 
emerged regarding the diagnostic utility of these mo-
dalities, and they are becoming increasingly important 
tools in the evaluation and monitoring of children with 
known or suspected malignant disease. Important indi-
cations for 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET in 
paediatric oncology include lymphoma, brain tumours, 
sarcoma, neuroblastoma, Langerhans cell histiocytosis, 
urogenital tumours and neurofibromatosis type Ⅰ. This 
article aims to review current evidence for the use of 
FDG PET and PET/CT in these indications. Attention 
will also be given to technical and logistical issues, the 
description of common imaging pitfalls, and dosimetric 
concerns as they relate to paediatric oncology.
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Core tip: Positron emission tomography/computed to-
mography has emerged as a powerful and important 
tool in the assessment of a variety of childhood cancers 
and can impact significantly on patient management. 
Further prospective studies will more clearly delineate 
the precise role of this modality in the assessment of 
individual malignancies. Accurate image interpretation 
requires a thorough understanding of the normal vari-
ants of uptake unique to children.
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INTRODUCTION
Although the incidence of  childhood malignancy remains 
relatively stable, survival rates have significantly improved 
over the past 30 years[1]. In addition to improved treat-
ment strategies, survival gains have relied upon continu-
ous improvements in the accurate detection, staging and 
follow-up of  these cancers.

Positron emission tomography (PET) is a minimally 
invasive technique whereby a labelled radiopharmaceuti-
cal is injected into a patient and the resulting distribution 
used to generate molecular information. In practice, 
PET-alone scanners have largely been replaced by the 
hybrid modality of  PET/computed tomography (CT) 
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which combines the functional data of  PET with the 
morphological information of  CT. There has also been 
ongoing interest in the utility of  fusing PET with mag-
netic resonance imaging (PET/MR)[2].

The use of  PET and PET/CT in adult oncology is 
well established for the purpose of  diagnosis, staging, 
monitoring of  response to therapy, and disease surveil-
lance[3,4]. In contrast to this, the value of  these modali-
ties in paediatric oncology has traditionally been much 
less clearly defined. More recently however, evidence 
has emerged regarding the diagnostic utility of  PET and 
an important role has been reported for many paediat-
ric malignancies[5,6]. Hybrid imaging with PET/CT has 
demonstrated superiority to PET alone in characterising 
childhood cancers, primarily by increasing diagnostic con-
fidence and reducing equivocal findings[7-9]. PET/CT has 
become a central component of  paediatric oncological 
practice. 

PET imaging has now superseded 67Ga and 201Tl 
scintigraphy for many oncological applications[10,11]. In ad-
dition to improved accuracy and having broader clinical 
application, advantages of  PET over 67Ga and 201Tl scin-
tigraphy include lower radiation dose, reduced scanning 
time, same day imaging and improved anatomical locali-
sation. Through calculation of  the standardised uptake 
value (SUV), PET is also able to generate quantitative 
data on treatment response.

Although there are a number of  radiopharmaceu-
ticals available, the majority of  clinical PET imaging is 
performed with 2-deoxy-2-(18F)fluoro-D-glucose (FDG). 
FDG has many characteristics that make it ideal for use 
in PET imaging. 18F has a relatively short half-life of  110 
min, provides relatively low radiation exposures for di-
agnostic purposes, and is widely commercially available. 
FDG mimics glucose in its cellular uptake and thereby 
serves as a marker of  glucose utilisation. FDG is there-
fore not a tumour-specific entity and can accumulate in a 
number of  physiological and pathological processes. The 
use of  dual time-point imaging, which exploits unique 
characteristics of  malignant cells, can help improve the 
specificity of  FDG imaging[12].

Common indications for PET in paediatric oncology 
include lymphoma, sarcoma, neuroblastoma and primary 
brain malignancy. Other important indications include 
Langerhans cell histiocytosis, Wilms tumor, and neurofi-
bromatosis type Ⅰ[13]. This article aims to review current 
evidence for the use of  PET and PET/CT in these indi-
cations. Imaging with the radiopharmaceutical FDG will 
be assumed unless noted otherwise. Attention will also 
be given to technical and logistical issues, the description 
of  common imaging pitfalls, and dosimetric concerns as 
they relate to paediatric oncology.

LYMPHOMA
Non-Hodgkin’s and Hodgkin’s lymphoma collectively ac-
count for between 10% and 15% of  paediatric malignan-
cies. Evaluation of  lymphoma remains the most frequent 

indication of  PET/CT imaging in children. Its use in this 
context has recently been reviewed[14]. 

Whilst there is a large body of  evidence supporting 
the use of  PET/CT in adults, data remains more limited 
in relation to paediatric lymphoma. Nevertheless, avail-
able studies in children suggest that PET/CT is both 
diagnostically accurate and of  significant clinical impor-
tance in these children[15-17].

In two large retrospective studies PET/CT demon-
strated superiority over conventional imaging modalities 
[CT, ultrasound, magnetic resonance imaging (MRI) or 
bone scintigraphy] in the primary staging of  lesions due 
to both Hodgkin’s and non-Hodgkin’s disease (Figures 
1A and 2A)[18,19]. Calculated sensitivities and specificities 
for initial disease staging was greater than 95% and 99% 
respectively[18,19]. Furthermore, PET/CT modified staging 
in 27% of  cases, with approximately equal instances of  
upstaging and down-staging[19]. 

PET has been shown to demonstrate superior sensi-
tivity in the detection of  bone marrow involvement due 
to Hodgkin’s disease when compared with bone marrow 
biopsy[20-23]. Marrow involvement in Hodgkin’s disease 
is generally unifocal or multifocal and thus can easily be 
missed on biopsy. PET should therefore be employed as 
a first-line study in the detection of  marrow involvement 
prior to directed bone marrow biopsy. There is accumu-
lating evidence that a negative PET may replace the need 
for bone marrow biopsy in patients with Hodgkin’s lym-
phoma[20,21].

PET/CT has also demonstrated efficacy in the evalu-
ation of  treatment response, and performs significantly 
better than conventional imaging modalities in the evalu-
ation of  both early and post-completion chemotherapy 
responses (Figures 1B and 2B)[18]. Multiple studies have 
demonstrated that a complete metabolic response early 
in the course of  chemotherapy is associated with an ex-
cellent prognosis in children with Hodgkin’s disease[24-26]. 
Ongoing trials are aiming to utilise this information to 
enable distinct treatment protocols for these patients and 
therefore minimise treatment-related toxicity[14].

Finally, PET/CT may be a useful modality for the 
follow-up of  children with lymphoma, and a negative 
study during routine follow-up has a high negative pre-
dictive value[16,27,28]. PET/CT was found to be superior 
to conventional imaging during long-term follow-up of  
children with lymphoma[19]. Therefore although conven-
tional imaging continues to be used as part of  the follow-
up assessment in these patients, PET/CT may eventually 
replace this and come to be used as a single imaging 
modality for routine surveillance (Figure 1C). It should 
be noted that the use of  PET/CT for this indication is 
yet to be fully elucidated in paediatric patients. Although 
most Hodgkin’s disease recurrence is FDG-avid, surveil-
lance PET/CT can have high false-positive rates[29]. Fur-
thermore, because prognosis is often favourable among 
children with lymphoma, radiation exposure secondary 
to diagnostic procedures has significant relevance in chil-
dren. Current evidence for follow-up PET/CT studies 
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in paediatric lymphoma is best when relapse is clinically 
suspected or demonstrated by other imaging modalities.

BRAIN TUMOURS
Brain tumours represent the most common solid neo-
plasms in childhood and are a leading cause of  cancer-re-
lated death in children[30]. As a group they represent 25% 
of  all childhood cancers[31]. Common paediatric brain tu-
mours include medulloblastoma, cerebellar astrocytoma, 
ependymoma and brain stem glioma[32]. Management of  
these tumours is challenging and diverse, and requires 
extensive multidisciplinary collaboration. Survivors of  
childhood brain tumours often have severe neurological, 
neurocognitive and psychosocial sequelae[33].

Conventional modalities for the anatomic assessment 
of  brain tumours are CT and MRI. A major disadvantage 
of  these modalities is that interpretation is often con-
founded by brain changes secondary to surgery, chemo-
therapy and radiotherapy. In these circumstances normal 
post-treatment change may be incorrectly identified as vi-
able tumour. Functional imaging techniques are therefore 
of  particular importance for monitoring treatment effects 
and recurrence.

PET has shown increasing application in paediatric 
neuro-oncology. Both FDG and L-methyl-(11C)methionine 
(CMET) radiotracers have shown utility in brain tumour 
grading, profiling, and for detecting residual, recurrent or 
progressive disease in children[34-36]. The fusion of  PET data 
with MR images has been shown to assist with stereotactic 
biopsy and navigation-based resection among children in 
whom MR images alone were considered insufficient[37].

FDG PET has traditionally been used to distinguish 
low-grade from high-grade tumours, and FDG avidity 
is a demonstrated predictor of  outcome in adults with 

high-grade astrocytoma[38]. Furthermore, FDG hyper-
metabolism has been shown to predict higher risk for 
disease progression among children with low-grade astro-
cytoma[39]. FDG PET is an established technique for the 
differentiation of  viable tumour and surgical change in 
the postoperative milieu[40,41].

CMET is a marker of  amino acid uptake and protein 
synthesis. It has been found useful in the differentiation 
of  low-grade tumours (astrocytomas, oligodendrogliomas 
and dysembryoplastic neuroepithelial tumours), measure-
ment of  tumour boundaries, elucidation of  treatment 
response, and prediction of  patient outcome[36,42-45].

SARCOMA
Ewing’s sarcoma and osteosarcoma are the two primary 
bone malignancies of  childhood, with osteosarcoma be-
ing more common[46]. Rhabdomyosarcoma is the most 
common soft tissue malignancy of  childhood[47]. Collec-
tively, bone and soft tissue sarcomas account for around 
13% of  childhood malignancies with soft tissue disease 
being slightly more prevalent[46,47]. Treatment is multi-
modal and may involve chemotherapy, radiotherapy or 
surgery.

There is a growing body of  literature related to 
the use of  PET/CT in paediatric sarcoma, although 
standard use of  the modality has not been extensively 
validated[48,49]. Nevertheless, PET/CT does appear to 
demonstrate utility in the staging, monitoring of  disease 
response to therapy, and detection of  recurrent disease 
among these children (Figure 3)[50,51]. North American 
consensus guidelines have recommended whole-body 
PET at the initial diagnosis of  osteosarcoma and Ewing 
sarcoma in children[52]. A previous survey has shown that 
PET is considered a helpful study by referrers of  paedi-
atric sarcoma patients in the vast majority of  instances[5]. 
The diagnostic accuracy of  PET/CT has been found to 
be greater than either PET alone or conventional imag-
ing in the detection of  distant sarcomatous metastases in 
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Figure 1  A 13 year-old male with nodular sclerosing Hodgkin’s disease. 
PET/CT at staging (A) demonstrated disease in the left external iliac region. Af-
ter completion of chemotherapy 4 mo later (B) there was a complete metabolic 
response with no activity in the residual lymph node mass. PET/CT performed 
6 mo later (C) for surveillance demonstrated a recurrence at the same site. 
PET/CT: Positron emission tomography/computed tomography.

A B

Figure 2  A 5-year-old male patient with relapsed T-cell lymphoblastic lym-
phoma. Restaging PET at the time of relapse 1 year after initial therapy demon-
strated an FDG-avid mediastinal mass (A, arrow). Repeat PET performed follow-
ing 1 cycle of FLAG-Ida chemotherapy demonstrated no response to treatment 
and progression of disease to stage IV with extensive bone marrow involvement 
(B). PET: Positron emission tomography; FDG: 2-deoxy-2-(18F)fluoro-D-glucose.
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avid volumes and reduced apparent tracer uptake[61]. It is 
particularly seen in lung tissue closest to the diaphragm. 
Respiratory gating is a technique whereby the respiratory 
cycle is divided into multiple phases and the acquired 
events sorted into temporal bins. It aims to improve the 
spatial resolution of  thoracic PET images at the expense 
of  increased image noise. Respiratory gating has been 
shown to result in more accurate SUV and volume mea-
surements of  pulmonary nodules[62]. It remains an ongo-
ing area of  research but may have future applications, 
particularly in the area of  radiation therapy treatment 
planning[63].

Aside from those technical limitations which affect 
small pulmonary metastases, PET sensitivity is reduced 
compared with conventional imaging even for pulmo-
nary metastases greater than 1 cm in size, including those 
where the primary tumour is intensely avid. The reason 
for this finding is poorly understood but may relate to 
reduced perfusion of  lesions, down-regulation of  glucose 
receptors or altered glucose metabolism[58].

Fused PET/CT improves detection of  pulmonary 
metastases above PET alone[64]. However, because PET/
CT is generally undertaken with a reduced dose CT 
protocol, image quality may still not be sufficient to de-
tect small pulmonary metastases. It is known that small 
pulmonary nodules are no more likely to be benign than 
larger ones among paediatric oncology patients[65]. A 
diagnostic quality CT of  the chest therefore remains an 
essential part of  the staging and follow-up of  paediatric 
sarcoma[50].

PET has additionally been used to identify local and 
distant recurrence of  sarcoma. Reliable follow-up howev-
er requires the use of  other imaging modalities[66]. Addi-
tionally, there has been much interest in the potential use 

children[53].
Conventional staging of  paediatric oncology patients 

includes bone scintigraphy, CT and MRI. PET has been 
found equal or superior to bone scintigraphy in the de-
tection of  osseus metastases from sarcoma[54,55]. Such me-
tastases are detected in Ewing sarcoma with a sensitivity 
ranging from 88%-100%[54,55]. Detection of  nodal metas-
tases may also be improved with PET as compared with 
conventional imaging modalities[56].

Pulmonary metastases are common among children 
with sarcoma, being present in up to one quarter of  pa-
tients at the time of  diagnosis[50]. Prompt identification 
and treatment is crucial to effective management. PET 
alone has been proven less sensitive than diagnostic CT 
in the identification of  sarcomatous pulmonary metasta-
ses[56,57]. The sensitivity of  PET in detecting pulmonary 
metastases has been reported to be as low as 24% for 
lesions smaller than 1 cm[56,58]. This reduced sensitivity is 
multifactorial and can be attributed to technical limita-
tions such as the finite spatial resolution of  the scanner, 
which dictates that a lesion smaller than 3-4 mm may not 
be identified; as well as the partial volume effect (PVE) 
and respiratory movement during emission acquisition.

PVE can result in significant qualitative and quantita-
tive changes to PET studies. In practical terms it results 
in the signals of  small avid lesions being spread over larg-
er volumes. It typically occurs whenever the avid lesion is 
smaller than 3 times the full width at half  maximum, and 
is exacerbated when surrounding tissue uptake is particu-
larly low (as is seen in lung tissue). PVE results in small 
lesions appearing larger in size but much less avid[59].

Respiratory movements affect PET images due to the 
long acquisition times involved[60]. The movement of  lung 
lesions during respiration results in overestimated tracer-
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Figure 3  A 17-year-old female with Ewing’s sarcoma involving the left superior pubic ramus. Staging PET/CT showed extensive disease (A, arrow) with bone 
destruction and a large FDG-avid pelvic mass. Following chemotherapy, at 5 mo after diagnosis, there was an excellent metabolic response with minimal residual 
FDG uptake (B, arrow). Patient underwent surgical resection and extracorporeal radiotherapy to the bone. Sixteen months after completion of treatment, surveillance 
PET/CT demonstrated recurrence in a left external iliac lymph node (C) which was not detectable on the CT or MRI due to marked metal artefact. PET/CT: Positron 
emission tomography/computed tomography; FDG: 2-deoxy-2-(18F)fluoro-D-glucose; MRI: Magnetic resonance imaging.
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of  PET as a prognostic tool. A correlation between the 
FDG SUV as measured prior to treatment, and clinically 
important indices such as disease progression and surviv-
al has been described[67]. Furthermore, PET/CT demon-
strates potential in the prediction of  treatment response. 
Because tumour bulk may not significantly change in re-
sponse to neoadjuvant chemotherapy, CT and MRI have 
limited value for such assessment. A number of  studies 
have demonstrated that changes in FDG avidity in high-
grade sarcoma following neoadjuvant therapy can identify 
patients at risk of  relapse and therefore has potential as 
a non-invasive surrogate marker in the prediction of  pa-
tient response[68-70].

It should be noted that the degree of  FDG avidity 
in sarcoma depends greatly on individual pathology and 
can range from low grade to markedly avid. This is par-
ticularly the case for soft tissue sarcomas including rhab-
domyosarcoma, and needs to be appreciated when FDG 
is used for this indication[71]. Furthermore, there may be 
heterogeneity of  disease-related FDG uptake even within 
the same patient. Being able to identify the most aggres-
sive area within a heterogenous tumour, and direct biopsy 
accordingly may be of  clinical benefit[71].

The use of  PET and PET/CT among children with 
sarcoma continues to increase. As discussed above, these 
modalities appear to be useful in the evaluation and stag-
ing, monitoring of  therapeutic response, and detection 
of  tumour recurrence. However the exact role of  this 
modality in the routine care of  children with sarcoma re-
mains unclear. Ongoing prospective studies are required 
to delineate the precise role of  PET and PET/CT in 
their management.

NEUROFIBROMATOSIS TYPE 1
A number of  studies have confirmed the utility of  PET 
and PET/CT in the detection of  malignant transforma-
tion of  neurofibromatosis type 1 (NF1)[72,73]. Patients 
with NF1 have an approximate 10% lifetime risk of  
developing malignant peripheral nerve sheath tumours 
(MPNST)[74,75]. Such transformation is unreliably detected 
via conventional imaging[76-78]. In one prospective study 
patients with symptomatic neurofibromas were assessed 
with early and delayed PET/CT imaging[76]. This modal-
ity was found to be highly sensitive and specific in the 
detection of  MPNSTs. In addition to there being signifi-
cant differences in uptake between malignant and benign 
lesions, delayed imaging demonstrated a continued diver-
gence of  FDG avidity which highlights the value of  dual 
time-point imaging for this indication.

NEUROBLASTOMA
Neuroblastoma is an embryonic tumour arising from 
neural crest cells of  the sympathetic nervous system[79]. 
It is the most common extracranial solid malignancy in 
children and accounts for around 8% of  all childhood 
cancers. The clinical course is highly variable, yet the 
disease accounts for around 15% of  all cancer deaths in 

children[80,81]. Half  of  all patients have distant haematog-
enous spread at diagnosis[82].

The catecholamine analogue 123I-metaiodobenzylgua-
nidine (MIBG) is widely used to image neuroendocrine 
tumours and is well established for use in the staging and 
post-treatment evaluation of  neuroblastoma[83,84]. MIBG 
scintigraphy has a specificity of  nearly 100% for neuro-
blastoma diagnosis and staging[85,86]. Uptake of  MIBG re-
quires the presence of  a type Ⅰ catecholamine transport 
system[87], which is usually but not uniformly present on 
neuroblastoma cells. In around 8% of  patients MIBG 
scanning gives a false-negative result at diagnosis[88]. False 
negative results may also lead to incorrect down-staging 
of  disease. Other disadvantages of  MIBG scintigraphy 
include limited spatial resolution, limited sensitivity in 
small lesions, the need for multiple and prolonged acqui-
sition sessions and a delay between the start of  examina-
tion and result.

In addition to MIBG, neuroblastoma imaging utilises 
the modalities of  bone scintigraphy, sonography, CT and 
MR. There is also interest in the use of  FDG and other 
radiopharmaceuticals for PET imaging. Because FDG 
PET uptake reflects glucose metabolism by cancer cells, 
neuroblastoma which fails to accumulate MIBG due to 
reduced expression of  transporter proteins might be ex-
pected to be more sensitively assessed using this modality. 
Further potential advantages of  PET over MIBG scintig-
raphy include improved spatial resolution, single acquisi-
tion sessions and shorter scanning times which have the 
potential to reduce the need for sedation[89]. 

A number of  studies have compared MIBG scintig-
raphy with PET in neuroblastoma[90-93]. MIBG appears 
overall to be superior to PET in the evaluation of  stage 
4 neuroblastoma, primarily due to improved detection of  
skeletal disease. However PET appears to demonstrate 
superior detection in stage 1 and 2 neuroblastoma and in 
tumours which only weakly accumulate MIBG (Figure 
4)[90,92,93]. These results suggest that PET may be impor-
tant in the context of  discrepant or inconclusive findings 
on MIBG and morphological imaging.

To summarise, compared with PET, MIBG remains 
the optimal modality for the noninvasive staging of  chil-
dren with neuroblastoma. Overall, available evidence sug-
gests that PET is most useful in defining the distribution 
of  disease that either fails to concentrate MIBG or does 
so poorly. In particular, PET should be considered when 
MIBG scintigraphy reveals less disease than suggested by 
clinical symptoms or conventional imaging modalities. Dur-
ing follow-up assessment of  MIBG-negative neuroblas-
toma, PET/CT represents the imaging modality of  choice. 
New radiopharmaceuticals for PET imaging, including 18F-
dihydroxyphenylalanine and 68Ga-octreotate, are currently 
under evaluation[94,95].

WILMS TUMOUR
Renal tumours comprise 6% of  all childhood cancers. 
Of  these, around 95% are Wilms tumours (nephroblas-
tomas)[96]. The molecular genetics of  Wilms tumour is 
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complex and involves multiple loci involved with WNT 
signalling[97]. Mutations in the WT gene are identified in 
10%-15% of  sporadic cases. More than 10% of  children 
with Wilms tumour have associated abnormalities, includ-
ing cryptorchidism, hypospadias, hemihypertrophy and 
aniridia[98]. Synchronous bilateral Wilms tumour is present 
in 5% of  patients[99]. Although prognosis is generally fa-
vourable, higher stage disease carries significant mortality 
and treatment related morbidity.

Imaging at diagnosis typically involves ultrasound, CT 
and MRI. Although FDG uptake has been described in 
Wilms tumour[100-102] the role of  PET/CT has not been 
clearly established. A particular obstacle to accurate FDG 
PET imaging of  the primary lesion is physiological excre-
tion of  tracer via the kidneys. Such physiological activity 
may generate uncertainty when attempting to distinguish 
pathology. The use of  hybrid PET/CT scanners may be 

of  some benefit in this regard. 
In a small series of  12 patients PET/CT was seen 

to be concordant with conventional imaging in primary 
staging and superior to conventional imaging for the de-
tection of  residual and recurrent disease[100]. In another 
small series of  27 patients Wilms tumour appeared to 
concentrate FDG, however small pulmonary metastases 
were not consistently identified on PET scan[101]. There 
is evidence that FDG avidity in Wilms tumour may cor-
relate with higher histological risk[102].

These studies demonstrate that FDG PET/CT may 
be a useful adjunct to conventional imaging modalities in 
Wilms tumour, particularly for the detection of  residual 
and recurrent disease. Further investigation is required to 
confirm this. The use of  functional MRI with diffusion-
weighted imaging is another new technique which shows 
promise in the evaluation of  Wilms tumour.
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Figure 4  Neuroblastoma in a 2-year-old female. 123I-metaiodobenzylguanidine (MIBG) single positron emission tomography/computed tomography (SPECT/CT) 
images (A) demonstrated a large right suprarenal mass displacing the organs which was not MIBG-avid (arrows). FDG PET/CT (B) showed moderate heterogenous 
metabolic activity within the mass. PET/CT: Positron emission tomography/computed tomography; FDG: 2-deoxy-2-(18F)fluoro-D-glucose.
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LANGERHANS CELL HISTIOCYTOSIS
Langerhans cell histiocytosis (LCH) is a rare disease which 
involves the clonal proliferation of  activated dendrocytes 
and macrophages. These clonal cells form infiltrates in a 
variety of  organs along with other inflammatory cells[103]. 
LCH exists as a heterogenous and complex disease with 
a broad spectrum of  clinical manifestations which range 
from spontaneous resolution to rapid progression and 
death[104]. It may occur at any age but generally affects 
children between 1 and 15 years. Skeletal survey and 
bone scintigraphy are established techniques in LCH dis-
ease evaluation. In addition, CT and MRI modalities are 
increasingly used in the detection of  skeletal and visceral 
disease[105].

The use of  PET and PET/CT in the assessment of  
patients with LCH has been reported in a number of  
studies and its use is now well established. PET has been 
shown to be superior to bone scintigraphy and skel-
etal survey for overall lesion detection (Figure 5)[106-108]. 
Furthermore, PET has demonstrated efficacy in post-
treatment lesion assessment and provides information on 
treatment response earlier than plain film radiography or 
CT[106-110].

A recent study has compared the use of  PET with 
MRI in paediatric patients with biopsy-proven histiocyto-
sis[111]. In this study PET was found to be more accurate 
than MRI for post-treatment evaluation due to lower 
false-positive rates. MRI showed a higher sensitivity and 
was important for primary staging and evaluation of  
CNS disease. Interestingly, whilst there was no clear ad-
vantage for combined PET/MRI analysis during follow-
up evaluation, the combination did improve sensitivity 

of  primary staging through a reduced false-negative rate. 
These results suggest that whilst PET alone may be suf-
ficient for post-treatment disease monitoring in LCH, the 
combination of  PET and MRI is preferred for primary 
disease investigation. A potential future role therefore ex-
ists for combined PET/MRI in the primary investigation 
of  paediatric LCH. 

Taken together, these studies suggest that PET is a 
valuable modality in the primary assessment, therapeutic 
monitoring and detection of  reactivation of  patients with 
LCH.

PRACTICAL ASPECTS
PET/CT requires consideration of  particular challenges 
that are common to paediatric nuclear medicine but un-
common to adult imaging. These include consent, fasting, 
intravenous access and the question of  sedation[112,113]. Pa-
tient cooperation is a significant issue. Successful imaging 
can be facilitated by providing a relaxed, child-oriented 
environment, and staff  experienced in paediatric veni-
puncture and the management of  children. Available data 
suggests that PET/CT artefacts due to movement, poor 
co-registration or non-compliance are no more frequent 
among paediatric patients than among adult ones[114].

Paediatric sedation is a complex issue and requires 
case-by-case assessment. Often, the child’s parents will 
be aware of  previous cooperation difficulties and can as-
sist with decision making. When sedation is required, it 
should be limited to the scanning phase of  the study[112]. 
The use of  sedation in paediatrics is not without risk and 
has been associated with a 0.4% incidence of  adverse 
respiratory events[115]. Sedation protocols vary by institu-
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Figure 5  A 7-year-old male with Langerhans cell histiocytosis. Skeletal survey demonstrated an isolated left femoral lesion, confirmed on PET/CT (A, arrow). 
Additional lesions (arrows) in the right 6th rib posteriorly (B) and in the skull (C) were also identified on the PET/CT scan. Top panel: fused PET/CT images, bottom 
panel: low dose CT component of the scan. PET/CT: Positron emission tomography/computed tomography.
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tion, but guidelines are available[116,117].

COMMON PITFALLS
The accuracy of  PET can vary depending on tumour 
type, location and scan timing in relation to treatment. 
Furthermore, variant patterns of  physiologic FDG up-
take often differ in children as compared with adults and 
may be mistakenly interpreted as disease. A thorough un-
derstanding of  normal variant FDG uptake is therefore 
essential for accurate image interpretation, preventing 
unnecessary studies or procedures and improving patient 
care. Image co-registration with hybrid PET/CT systems 
is helpful in distinguishing normal variation from pathol-
ogy through the precise localisation of  functional data.

Sites of  physiologic FDG uptake that can differ in 
children as compared with adults include brown adipose 
tissue[118,119], thymus[120], brain[121] and epiphyseal plates[122]. 
Each of  these potential pitfalls to image interpretation is 
discussed below. Other potential sites of  increased FDG 
uptake in the paediatric patient include the pharyngeal 
lymphatic tissue of  Waldeyer’s ring, salivary glands and 
haematopoietic bone marrow[123]. Additionally, paediatric 
patients suffer from a multitude of  community acquired 
infections which may prompt intense reactive nodal avid-
ity and thus mimic malignancy.

Brown adipose tissue
FDG uptake by brown adipose tissue in paediatric pa-
tients has recently been reviewed[124]. The primary func-
tion of  brown fat is non-shivering thermogenesis[125]. 
This metabolic process involves expression of  mitochon-
drial uncoupling proteins, including UCP-1, which sepa-
rate oxidative phosphorylation from ATP synthesis and 
thereby generate energy dissipated as heat[126].

Brown fat FDG uptake has been reported in up to 
20% of  children and adolescents, but is a rare occurrence 
among adults[119,124]. Uptake is usually distributed symmet-
rically within the neck and supraclavicular regions, axillae, 
paraspinal regions of  the posterior mediastinum, adjacent 
to the adrenal glands and upper abdominal wall (Figure 
6). Such uptake may mimic malignancy or obscure patho-

logical lesions[119,127]. This is particularly true for paediatric 
lymphoma patients, as brown fat is located adjacent to 
regions commonly involved in the disease. 

Significant reductions in brown fat tracer uptake are 
made possible by controlling the environmental tempera-
ture and stress levels of  the patient prior to injection and 
during the tracer uptake phase[128]. Additional blankets are 
often employed to provide further increases in warmth. 
In addition, the administration of  oral diazepam may 
reduce brown fat uptake and is recommended by several 
groups[129]. Beta blockade with propranolol[130] or intrave-
nous fentanyl[131] has also been advocated by some. Image 
co-registration with PET/CT is helpful to distinguish 
brown adipose tissue from pathological causes of  FDG 
uptake[127].

Thymus
FDG-avid thymic tissue has been demonstrated in 34% 
of  healthy young adults on screening PET scans[132]. 
Among paediatric oncology patients thymic uptake is 
observed in around 75% of  cases irrespective of  whether 
chemotherapy has been administered[120]. The increased 
activity among paediatric oncology patients is thought to 
be due to reactive thymic hyperplasia secondary to stress, 
infection or treatment. These changes may appear late 
and can persist for many months following the comple-
tion of  treatment.

Familiarity with normal appearances is essential to 
distinguish between physiologic thymic uptake and active 
disease in the mediastinum. This is particularly important 
in children with potentially curable diseases such as lym-
phoma, as they may often have residual non-malignant 
tissue in the mediastinum following treatment. The nor-
mal pattern of  thymic uptake is a homogenous lambda-
shaped structure in the anterior mediastinum, although 
multiple variants are seen (Figure 7). Very intense or 
heterogenous uptake raises suspicion for thymic or other 
anterior mediastinal disease[133] (Figure 8).

Brain
It is important to recognise maturational changes in 
cerebral glucose metabolism to allow the identification 
of  pathological alterations. A recent study describing 
cerebral FDG uptake in children demonstrated that all 
cerebral regions show increasing avidity with age, with 
rates of  change being regionally specific[121]. The most 
metabolically active areas in early childhood are the pari-
etal and occipital lobes. By age 7 these regions have less 
uptake than the frontal lobes, and by age 10 they have 
less uptake than the thalamus. Changes in the relative pat-
tern of  cortical FDG uptake appear to continue up until 
at least 16 years of  age.

Epiphyseal plate
Skeletally immature paediatric patients exhibit physiologic 
linear uptake in physes and apophyses (Figure 9)[122]. Such 
uptake has the potential to obscure small skeletal lesions, 
or it may be mistaken for pathological activity. In addition, 
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Figure 6  An extreme case of widespread brown fat activity in a 16-year-
old female with treated Hodgkin’s disease.
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loss of  the normal sharp demarcation of  uptake in the 
physes may reflect bone marrow infiltration or activation 
and should be recognised. Avid FDG uptake may occa-
sionally occur in benign skeletal lesions (Figure 10). These 
include fibroosseus defects, which are very common in 
childhood[122], and osteochondromas. An understanding 
that benign skeletal lesions may take up FDG, and knowl-
edge of  the typical appearances seen on the CT compo-
nent of  the scan will reduce false positive findings.

DOSIMETRIC CONCERNS
As with all imaging modalities that utilise ionising ra-
diation, there are special dosimetric considerations for 
children undergoing PET/CT scanning. Particular atten-

tion is required to keep radiation exposure as low as is 
reasonably achievable (ALARA principle) in view of  the 
increased lifetime cancer mortality risk in children com-
pared with adults[134]. The higher risk of  radiation-induced 
malignancy in paediatric patients is a consequence of  
both the longer average post-exposure survival of  chil-
dren as compared with adults, and an intrinsic increase in 
radiosensitivity of  children[135,136].

As risk from radiation exposure is cumulative[137], both 
nuclear medicine and CT components need to be consid-
ered when applying ALARA principles. In this context 
patient exposure may be adjusted through changes to the 
dose of  administered radiopharmaceutical, CT protocol 
employed, anatomic area covered and frequency of  imag-
ing performed[138]. Notably, the end-organ for radiotracer 
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Figure 7  Normal physiological variants: various patterns of thymic uptake (A-F, arrow), tonsillar uptake (B, arrowhead), cardiac uptake (D, arrowhead) and 
laryngeal uptake (F, arrowhead).

Figure 8  Examples of abnormal thymic uptake due to malignant disease (arrows).
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administration is the bladder and therefore the bladder 
wall tends to receive the greatest radiation dose[139]. This 
can be minimised by encouraging fluid intake and fre-
quent voiding following scan completion.

PET and PET/CT radiopharmaceutical dosage 
guidelines have been established by the European As-
sociation of  Nuclear Medicine (EANM) Dosimetry and 
Paediatrics Committees[140,141] and the Pediatric Nuclear 
Medicine Dose Reduction Workgroup (North American 
Consensus Guidelines)[142]. Although there are some dif-
ferences between these guidelines (Figure 11) both make 
recommendations in line with the ALARA principles. 
The EANM guidelines aim for the administration of  
FDG as a weight independent effective dose. Doses are 
calculated using normalisation factors which are derived 
from biological behaviour and patient weight. The aim is 
to deliver the same effective radiopharmaceutical dose to 
paediatric patients regardless of  body weight, provided a 
minimum activity is administered[140]. The North Ameri-
can Consensus Guidelines recommend a standard FDG 
administered activity per kilogram of  body weight[142].

Effective doses to patients from CT images are depen-
dent on tube current (mA), tube potential (kVp), rota-
tion speed, pitch, slice thickness, patient mass and the 

anatomical volume included in the scan. CT exposures 
in hybrid PET/CT scanning may be tailored to meet the 
diagnostic needs of  the patient. Commonly, diagnostic 
quality images are not required and CT exposure factors 
may be reduced significantly, with the production of  im-
ages primarily for localisation and attenuation correction. 
These low dose protocols may reduce CT exposures by 
50%-65% compared with typical diagnostic levels[143].

CONCLUSION
PET and PET/CT have emerged as powerful and im-
portant imaging techniques in the assessment of  a variety 
of  childhood malignancies, with PET/CT being the 
preferred modality. Although a number of  radiopharma-
ceuticals exist, FDG remains the most widely used and 
clinically important. PET/CT scanning should occur in 
the context of  rational and evidence-based imaging deci-
sions, and ongoing large prospective trials will further 
clarify its role in the assessment of  individual malignan-
cies. It is important that a thorough understanding of  
variant childhood uptake patterns is obtained for accurate 
image interpretation.
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