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Abstract

Classical rate theories often fail in cases where the observable(s) or order parameter(s) used is a 

poor reaction coordinate or the observed signal is deteriorated by noise, such that no clear 

separation between reactants and products is possible. Here, we present a general spectral two-

state rate theory for ergodic dynamical systems in thermal equilibrium that explicitly takes into 

account how the system is observed. The theory allows the systematic estimation errors made by 

standard rate theories to be understood and quantified. We also elucidate the connection of 

spectral rate theory with the popular Markov state modeling approach for molecular simulation 

studies. An optimal rate estimator is formulated that gives robust and unbiased results even for 

poor reaction coordinates and can be applied to both computer simulations and single-molecule 

experiments. No definition of a dividing surface is required. Another result of the theory is a 

model-free definition of the reaction coordinate quality. The reaction coordinate quality can be 

bounded from below by the directly computable observation quality, thus providing a measure 

allowing the reaction coordinate quality to be optimized by tuning the experimental setup. 

Additionally, the respective partial probability distributions can be obtained for the reactant and 

product states along the observed order parameter, even when these strongly overlap. The effects 

of both filtering (averaging) and uncorrelated noise are also examined. The approach is 

demonstrated on numerical examples and experimental single-molecule force-probe data of the 

p5ab RNA hairpin and the apo-myoglobin protein at low pH, focusing here on the case of two-

state kinetics.

I. INTRODUCTION

The description of complex molecular motion through simple kinetic rate theories has been a 

central concern of statistical physics. A common approach, first-order rate theory, treats the 

relaxation kinetics among distinct regions of configuration space by single-exponential 

relaxation. Recently, there has been interest in estimating such rates from trajectories of 

single molecules, resulting from the recent maturation of measurement techniques able to 

collect extensive traces of single-molecule extensions or fluorescence measurements [1,2]. 

When the available observable is a good reaction coordinate, in that it allows the slowly 
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converting states to be clearly separated [see Fig. 2(I), left], classical rate theories apply and 

the robust estimation of transition rates is straightforward using a variety of means [3]. 

However, in the case in which the slowly converting states overlap in the observed signal 

[see Fig. 2(III), left], either due to the fact that the molecular order parameter used is a 

poorly separates them or there is large noise of the measurement (see the discussion in Refs. 

[4,5]), a satisfactory theoretical description is missing and many estimators break down.

Most two-state rate theories and estimators are based on dividing the observed coordinate 

into a reactant and a product substate and then in some way counting transition events that 

cross the dividing surface. Transition state theory (TST) measures the instantaneous flux 

across this surface, which is known to overestimate the rate due to the counting of 

unproductive recrossings over the dividing surface on short time scales [6].

Reactive flux theory [7] copes with this by counting a transition event only if it has 

succeeded to stay on the product side after a sufficiently long lag time τ. Reactive flux 

theory involves derivatives of autocorrelation functions that are numerically unreliable to 

evaluate [8]. In practice, one therefore typically estimates the relaxation rate via integration 

or by performing an exponential fit to the tail of a suitable correlation function, such as the 

number correlation function of reactants or the autocorrelation function of the 

experimentally measured signal [3,9,10]. In order to split this relaxation rate into a forward 

and backward rate constant, a clear definition of the reactant and product substates is 

needed, which is difficult to achieve when these substates overlap in the observed signal.

Markov state models (MSMs) have recently become a popular approach to producing a 

simplified statistical model of complex molecular dynamics from molecular simulations. 

While applicable only when the discretization of state space succeeds in separating the 

metastable conformations, these models can be regarded as steps towards a multistate rate 

theory. MSMs use a transition matrix describing the probability that a system initially found 

in a substate i is found in substate j a lag time τ later. When the state division allows the 

metastable states of the system to be distinguished [11–14], the transition matrix with a 

sufficiently large choice of τ can be used to derive a phenomenological transition rate matrix 

that accurately describes the interstate dynamics [15]. This is explicitly done for the two-

state case in Ref. [8]. It was shown in Refs. [14,16] that by increasing the number of 

substates used to partition state space, and hence using multiple dividing surfaces instead of 

a single one, these rate estimates become more precise. In the limit of infinitely many 

discretization substates, the eigenfunctions of the dynamical propagator in full phase space 

are exactly recovered, and the rate estimates become exact even for τ → 0+ [17]. In practice, 

however, a finite choice of τ is necessary in order to have a small systematic estimation 

error, especially if “uninteresting” degrees of freedom such as momenta or solvent 

coordinates are discarded. An alternative way of estimating transition rates is by using a 

state definition that is incomplete and treats the transition region implicitly via committor 

functions that may better approximate the eigenfunctions of the dynamical propagator in this 

region [18–20].

The quality of the rate estimates in all of the above approaches relies on the ability to 

separate the slowly converting states in terms of some dividing surface or state definition. 

Prinz et al. Page 2

Phys Rev X. Author manuscript; available in PMC 2014 October 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



These approaches often break down in practice when the available observables do not permit 

such a separation, i.e., when kinetically distinct states overlap in the histogram of the 

observed quantity. However, such a scenario may often arise in single-molecule experiments 

where the available order parameter depends on what is experimentally observable and may 

not necessarily be a good indicator of the slow kinetics. Moreover, consequences of the 

measurement process may increase the overlap between states, for example, by bead 

diffusion in optical tweezer experiments or by shot noise in single-molecule fluorescence 

measurements. In favorable situations, the signal quality can be improved by binning the 

data to a coarser time scale (often simply referred to as “filtering”), thus reducing the 

fluctuations from fast processes and shot noise. However, the usefulness of such filtering is 

limited because the time window used needs to be much shorter than the time scales of 

interest—otherwise the kinetics will be distorted. In general, one has to deal with a situation 

where overlap between the slowly converting states is present, both theoretically and 

practically.

Hidden Markov models (HMMs) [21–23] and related likelihood methods [24] are able to 

estimate transition rates even in such situations, and recently have been successful in 

distinguishing overlapping states in molecules with complex kinetics [25,26]. However, 

HMMs need a probability model of the measurement process to be defined, which can lead 

to biased estimates when this model is not adequate for the data analyzed. A recent 

approach, the signal pair-correlation analysis (PCA) [27], provides rate estimates without an 

explicit probability model, and instead requires the definition of indicator functions on 

which the measured signal can uniquely be assigned to one of the kinetically separated 

states. While this is often easier to achieve than finding an appropriate dividing surface, 

there is a trade-off between using only data that are clearly resolved to be in one state or the 

other (thus minimizing the estimation bias) while avoiding discarding too much data (thus 

minimizing the statistical error). Despite these slight limitations, both HMMs and PCA are 

practically very useful to identify and quantify hidden kinetics in the data. Yet, both are 

algorithmic approaches rather than a rate theory.

The recent success of single-molecule experiments and the desire for a robust rate estimation 

procedure that yields viable rate estimates even when highly overlapping states indicate 

clearly that the observed signal is a poor reaction coordinate highlights the need for a 

general and robust two-state rate theory for observed dynamics. Here, we make an attempt 

towards such a general rate theory for stochastic dynamics that are observed on a possibly 

poor reaction coordinate—often because the probed molecular order parameter is a poor 

choice, or because the measurement device creates overlap by noise broadening the signal.

Our approach requires only mild assumptions to hold for the dynamics of the observed 

system. First, the dynamical law governing the time evolution of the system in its full phase 

space—including all positions and velocities of the entire measured construct and the 

surrounding solvent—is assumed to be a time-stationary Markov process. We also require 

that the system obeys microscopic detailed balance in the full phase space and supports a 

unique stationary distribution. These mild criteria are easily satisfied by a great number of 

physical systems of interest in biophysics and chemistry.
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When projected onto some measured observable, the dynamics of the system are no longer 

Markovian. In addition, the observed dynamics may be contaminated with measurement 

noise. As a result, the resulting signal may not be easily separable into kinetically distinct 

states by a simple dividing surface, something that is often required for existing rate 

estimation procedures to work well.

Our framework allows us to (i) evaluate the quality of existing estimators and propose 

optimal estimators for the slowest relaxation rate, (ii) provide a model-free definition of the 

reaction coordinate quality (RCQ) and the observation quality (OQ) of the signal, and (iii) 

derive an optimal estimator for the transition rates between the slowly converting states, as 

well as their stationary probability densities, even if these strongly overlap in the 

observation.

The present rate theory is exclusively concerned with the systematic error in estimating rates 

and proposes “optimal” methods that minimize this systematic rate estimation error. 

Therefore, all statements are strictly valid only in the data-rich regime. Explicit treatment of 

the statistical error in the data-poor regime is beyond the scope of the present work, but it is 

briefly discussed at the end of the paper and in the Supplemental Material [28].

II. FULL-SPACE DYNAMICS

We consider a dynamical system that follows a stationary and time-continuous Markov 

process xt in its full (and generally large and continuous) phase space Ω. xt is assumed to be 

ergodic with a unique stationary density μ(x). In order to be independent of specific 

dynamical models, we use the general transition density pτ(xt, xt+τ); i.e., the conditional 

probability density that, given the system is at point xt ∈ Ω at time t, it will be found at point 

xt+τ ∈ Ω a lag time τ later. At this point, we will also assume that the dynamics obey 

microscopic detailed balance, i.e.,

(1)

which is true for systems that are not driven by external forces. In this case, μ(x) is a 

Boltzmann distribution in terms of the system’s Hamiltonian. In some dynamical models, 

e.g., Langevin dynamics, Eq. (1) does not hold, but rather some generalized form of it does 

hold [29]. In this case, the present theory also applies (see comment below), but in the 

interest of the simplicity of the equations, we assume Eq. (1) subsequently.

For a two-state rate theory, we are interested in the slowest relaxation processes, and hence 

rewrite the transition density as a sum of relaxation processes (each associated with a 

different intrinsic rate) by expanding in terms of the eigenvalues λi and eigenfunctions ψi of 

the corresponding transfer operator [14,16]:

(2)

Here,
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(3)

are eigenvalues of the propagator that decay exponentially with lag time τ. We order 

relaxation rates according to κ1 < κ2 ≤ κ3 ≤ ···, and thus, λ1(τ) > λ2(τ) ≥ λ3(τ) ≥ ···. The first 

term is special in that it is the only stationary process: κ1 = 0, λ1(τ) = 1, ψ1(x) = 1; thus, the 

first term of the sum is identical to μ(x). All other terms can be assigned a finite relaxation 

rate κi or a corresponding relaxation time scale , which are our quantities of interest. 

The eigenfunctions ψi are independent of τ and determine the structure of the relaxation 

process occurring with rate κi. The sign structure of ψi(x) determines between which 

substates the corresponding relaxation process is switching and is thus useful for identifying 

metastable sets, i.e., sets of states that are long lived and interconvert only by rare events 

[30,14]. The eigenfunctions are chosen to obey the normalization conditions

(4)

and integration always runs over the full space of the integrated variable if not indicated 

otherwise. At a given time scale τ of interest, fast processes with κ ≫ τ−1 (and, 

correspondingly, ti ≪ τ) will have effectively vanished, and we are typically left with 

relatively few slowly relaxing processes.

Finally, we define the μ-reweighted eigenfunctions,

(5)

such that the normalization condition of the eigenfunctions can be conveniently written as

(6)

Finally, the correlation density cτ(xt, xt+τ), i.e., the joint probability density of finding the 

system at xt at time t and at xt+τ at time t + τ, is related to the transition density pt by

(7)

III. OBSERVED DYNAMICS AND TWO-STATE SPECTRAL RATE THEORY

Consider the case that we are only interested in a single relaxation process—the slowest. 

Below, we sketch a rate theory for this case. Details of the derivation can be found in the 

Supplemental Material [28]. Based on the definitions above, the correlation density can then 

written as

(8)
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where, if detailed balance (1) holds, the correlation density for the fast decaying processes 

(which are not of interest here) is given by Eq. (2):

(9)

If detailed balance does not hold on the full phase space, but rather some generalized form 

of it, the spectrum may have complex eigenvalues. Even in this case, the fast part of the 

dynamics can be bounded by e−κ3τ, and, therefore, Eq. (8) and the subsequent theory hold. 

See also the discussion in Ref. [16].

A. Exact rate

κ2 is often termed the phenomenological rate because it governs the dominant relaxation rate 

of any observed signal in which the slowest relaxation process is apparent. The exact rate of 

interest κ2 can, theoretically, be recovered as follows: If we know the exact corresponding 

eigenfunction ψ2(x), it follows from Eqs. (2) and (4) that its autocorrelation function 

evaluates to

(10)

where 〈·〉t denotes the time average, which here is identical to the ensemble average due to 

the ergodicity property of the dynamics.

The correlation function 〈ψ2(0)ψ2(τ)〉t yields the exact eigenvalue λ2(τ) and thus also an 

exact rate estimate κ̂
2 = −τ−1 ln λ2(τ) = κ2, independently of the choice of τ.

B. Projected dynamics without measurement noise

Suppose we observe the dynamics of an order parameter y ∈ ℝ that is a function of the 

configuration x. Examples are the distance between two groups of the molecule or a more 

complex observable, such as the Förster resonance transfer efficiency associated with a 

given configuration. See Fig. 1 for an illustration. We first assume that no additional 

measurement noise is present. The analysis of a molecular dynamics simulation where a 

given order parameter is monitored is one example of such a scenario. Now, it is no longer 

possible to compute the rate via Eq. (10) or some direct approximation of Eq. (10), since the 

full configuration space Ω in which the eigenfunction ψ2 exists can no longer be recovered 

once the dynamics has been projected onto an order parameter. Instead, we are forced to 

work with functions of the observable y. While the theory is valid for multidimensional 

observables y, the equations below assume y ∈ ℝ for simplicity.

We have two options for deriving the relevant rate equations for the present scenario. As a 

first option, we note that a projection that is free of noise can be regarded as a function y(x): 

Ω → ℝ. Thus, any function ψ̃
2(y) of elements in observable space ℝ that aims at 

approximating the dominant eigenfunction ψ2 can also be regarded as a function in full 
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space Ω via ψ̃
2(y) = ψ̃

2(y(x)). When following this idea, one can use the variational principle 

of conformation dynamics [31] (see also the discrete-state treatment in Ref. [20]), in order to 

derive the rate equations for the observed space dynamics. See Supplemental Material [28] 

for details.

However, since we aim to include the possibility of stochastic measurement noise in a 

second step, we derive a more general approach (see Supplemental Material [28]), which is 

summarized subsequently. Consider the function χp(y|x) that denotes the output probability 

density with which each configuration of the full state space x ∈ Ω yields a measured value y 

∈ ℝ. In the case of simply projecting x values without noise to specific y values, χ has the 

simple form:

(11)

This allows the correlation density in the observable space to be written as

(12)

where we have used superscript y to indicate the projection of a full configuration space 

function onto the order parameter: μy(y) is the observed stationary density that can be 

estimated from a sufficiently long recorded trajectory by histogramming the values of y. 

Mathematically, the observed stationary density is given by

(13)

 are the projected eigenfunctions:

(14)

In order to arrive at an expression for the rate κ2, we propose a trial function in observation 

space ψ̃
2(y), which we require to be normalized by

(15)

and evaluate its autocorrelation function as

(16)

where
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(17)

In contrast to Eq. (10), both ψ̃
2 and  live on the observable space ℝ. In the special case 

that ψ2(x) is constant in all variables other than y(x), the projection is lossless 

[  and  for all x], and using the choice , we recover 

, and thus the exact rate estimate via Eq. (10). In general, however, the 

eigenfunction ψ2(x) does vary in variables other than y, and, therefore, ψ̃
2 can at best 

approximate the full-space eigenfunction via ψ̃
2(y(x)) ≈ ψ2(x).

C. Observed dynamics with measurement noise

Suppose that an experiment is conducted in which each actual order parameter value y(x) ∈ 

ℝ is measured with additional noise, yielding the observed value o ∈ ℝ. In time-binned 

single-molecule fluorescence experiments, such noise may come from photon-counting shot 

noise for a given binning time interval. In optical tweezer experiments, such noise may 

come from bead diffusion and handle elasticity, assuming that bead and handle dynamics are 

faster than the kinetics of the molecule of interest. See Fig. 1 for an illustration. Note that we 

treat the situation of uncorrelated noise only. In situations where the experimental 

configuration changes the kinetics, e.g., when the optical bead diffusion is slow, thus 

exhibiting transition rates different from the isolated molecule, our analysis always reports 

the rate of the overall observed system. The task of correcting the measured rates so as to 

estimate the rates of the pure molecule is beyond the scope of this work and can, for 

example, be attempted via dynamical deconvolution [32,33] or other approaches [34].

As before, the probability of observing a measurement value o ∈ ℝ given that the true 

configuration was x ∈ Ω can be given by an output probability:

(18)

which convolves the projection from x to the value of the order parameter χp(y|x), with the 

subsequent dispersion of the signal by noise χd(o|y). Despite the fact that dispersion operates 

by a different physical process than projection, the same analysis as above applies. We 

define the projected and dispersed stationary density and eigenfunctions:

(19)

(20)

which are “smeared out” by noise compared to the purely projected density and 

eigenfunctions . As above, the autocorrelation function of a probe function ψ̃
2(o) is given 

by
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(21)

with

(22)

The observation process including noise is a more general process than the observation 

process excluding noise; therefore—unless the distinction is important—we will generally 

refer to the observation as o subsequently, whether or not noise is included in the 

observation.

D. Filtered dynamics

The effect of measurement noise may be reduced by filtering (averaging) the observed 

signal o(t) → ō(t), for example, by averaging the signal value over a time window of length 

W. Note that this operation will introduce memory of length W into the signal and will 

impair the estimation of all rates which are close to W−1. Figure 1 of the Supplemental 

Material [28] illustrates the effect of filtering on the estimation quality of rates in a simple 

example. To make sure that the filter used does not impair the rate estimates, we recommend 

that the filter length be at least a factor of 10 smaller than the time scales of interest, . 

The filtered signal ō(t) can then be used as input to the various rate estimators discussed in 

this paper, but the theory of systematic errors given in the subsequent section may no longer 

apply because filtering destroys the Markovianity of the original dynamic process in the full 

state space. A more extensive treatment of filtering is given in the Supplemental Material 

[28].

E. Direct rate estimate

In all of the above cases, the autocorrelation function of the trial function ψ̃
2 does not yield 

the exact eigenvalue λ2(τ), but some approximation λ2̃(τ). For , which can readily 

be achieved for clear two-state processes where a time-scale separation exists (κ2 ≪ κ3), the 

terms involving the fast processes disappear:

(23)

This suggests that the true rate κ2, as well as the prefactor αo may serve as a basis to 

measure the observation quality, could be recovered from large τ decay of an appropriately 

good trial function even from the observed signal. We elaborate this concept in subsequent 

sections. Note that in experiments the relaxation rates κ2, κ3, etc, are initially unknown and, 

hence, the validity of Eq. (23) can be checked only a posteriori, e.g., by the fact that 

estimates based on Eq. (23) are independent of the lag time τ.
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IV. EXISTING RATE ESTIMATORS

Many commonly used rate estimators consist of two steps: (1) they (explicitly or implicitly) 

calculate an autocorrelation function λ̃
2(τ) of some function ψ̃

2 and (2) transform λ̃
2(τ) into 

a rate estimate κ̃
2. In order to derive an optimal estimator, it is important to understand how 

the systematic error of the estimated rate depends on each of the two steps. Therefore, we 

now recast existing rate estimators in the formalism of spectral rate theory. The 

Supplemental Material [28] contains a detailed derivation of the subsequent results.

Many rate estimators operate by defining a single dividing surface which splits the state 

space into reactants A and products B. Calling hA(o) the indicator function which is 1 for set 

A and 0 for set B, one may define the normalized fluctuation autocorrelation function of 

state A [35]:

(24)

which can also be interpreted as an autocorrelation function λ̃
2(t) for the step function 

. Here, πA = 〈hA〉μ is the stationary probability of state A, 

and πB = 1 − πA the stationary probability of state B. Other rate estimates choose ψ̃
2 to be 

the signal ot itself or the committor function between two predefined subsets of the o 

coordinate [19]. We show that none of these choices is optimal, and the optimal choice of ψ̃
2 

will be derived in the subsequent section.

Existing rate estimators largely differ in step (2), i.e., how they transform λ̃
2(t) into a rate 

estimate κ̃
2. This procedure then determines the functional form of the systematic estimation 

error. We subsequently list bounds for these errors (see Supplemental Material [28] for the 

derivation). The prefactor α in the equations below refers to either αp (purely projected 

dynamics) or αo (dynamics with noise), whichever is appropriate.

A. Reactive flux rate

Chandler, Montgomery, and Berne [7,36] considered the reactive flux correlation function 

as a rate estimator: . Its error is

(25)

which becomes 0 for the perfect choice of ψ̃
2 = ψ2 that leads to α = 1, but can be very large 

otherwise.

B. Transition state theory rate

The transition state theory rate, which measures the instantaneous flux across the dividing 

surface between A and B, is often estimated by the trajectory length divided by the number 

of crossings of the dividing surface. Its simplicity makes it a widely popular choice for 
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practical use in experiments and theory (despite its tendency to produce biased estimates, as 

we discuss later).

In order to arrive at an expression for the estimation error, the TST rate can be expressed as 

the short-time limit of the reactive flux [7], κ̂
2,TST = limτ→0+ κ̃2,rf(τ), such that the error in 

the rate is given by

(26)

which is always an overestimate of the true rate and of the reactive flux rate.

C. Integrating the correlation function

Another means of estimating the rate is via the integral of the correlation function, 

 [see, e.g., Eq. (3.6) of Ref. [7]], with the error

(27)

in the special case that κ3 ≫ κ2 (time scale separation); the error is approximately given by 

κ2(1 − α)/α. Thus, the error of this estimator becomes zero for α = 1, which is the case only 

for a reaction coordinate with no noise and no further projection (e.g., by using a dividing 

surface). The error may be very large in other cases (α < 1).

D. Single-τ rate estimators

A simple rate estimator takes the value of the autocorrelation function of some function ψ̃
2 

at a single value of τ and transforms it into a rate estimate by virtue of Eq. (23).

We call these estimators single-τ estimators. Ignoring statistical uncertainties, they yield a 

rate estimate of the form

(28)

Quantitatively, the error can be bounded by the expression (see derivation in the 

Supplemental Material [28])

(29)

The error becomes identical to this bound for systems with a strong time-scale separation, κ3 

≫ κ2. Equation (29) decays relatively slowly in time (with τ−1; see Fig. 2 for a two-state 

example). It is shown below that methods that estimate rates from counting the number of 
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transitions across a dividing surface, such as MSMs, are single-τ estimators and are thus 

subject to the error given by Eq. (29).

The systematic error of single-τ estimators results from the fact that Eq. (28) effectively 

attempts to fit the tail of a multiexponential decay λ̃
2(τ) by a single exponential with the 

constraint λ̃
2(0) = 1. Unfortunately, the ability to improve these estimators by simply 

increasing τ is limited because the statistical uncertainty of estimating Eq. (23) quickly 

grows with increasing τ [37].

E. Multi-τ rate estimators

To avoid the error given by Eq. (29), it is advisable to estimate the rate by evaluating the 

autocorrelation function λ̃
2(τ) at multiple values of τ. This can be done, e.g., by performing 

an exponential fit to the tail of the λ̃
2(τ), thus avoiding the constraint λ2̃(0) = 1 [3,10]. The 

corresponding estimation error κ̂2,multi − κ2 is bounded by

(30)

where τ1 is the first lag time from the series (τ1,....., τm) used for fitting, and the constant c 

also depends on the lag times and the fitting algorithm used. The Supplemental Material [28] 

shows that, for several fitting algorithms, such as a least-squares procedure at the time points 

(τ, 2τ,....., mτ), c is such that

(31)

Thus, the multi-τ estimator is never worse (and generally better) than the single-τ estimator 

(see the Supplemental Material [28]). The main advantage of multi-τ estimators is that their 

convergence rate is exponential in τ when the time-scale separation κ3 − κ2 is not vanishing 

[compare to Eq. (29)]. Thus, multi-τ estimators are better when the time-scale separation 

between the slowest and the other relaxation rates in the system is larger.

In the absence of statistical error, all of the above rate estimation methods are seen to yield 

an overestimation of the rate, κ̃2 ≥ κ2.

V. OPTIMAL CHOICE OF ψ̃2
It was shown above that multi-τ estimators are the best choice for converting an 

autocorrelation function into a rate estimate. However, what is the best possible choice ψ̂
2 = 

ψ̃
2,optimal given a specific observed time series ot? In other words, which function should the 

observed dynamics be projected upon in order to obtain an optimal rate estimator? 

Following Eq. (29), the optimal choice ψ̂
2 is the one that maximizes the parameter α, as this 

will minimize the systematic error from a direct rate estimation by virtue of Eq. (29) and 

also minimize the systematic error involved in estimating κ2 from an exponential fit to Eq. 

(23). We are thus seeking the solution of
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(32)

for some τ > 0, subject to the normalization in Eq. (15). Here, arg maxψ̃2 α denotes the 

function that maximizes α over the space of functions ψ̃
2(o). If the system has two-state 

kinetics, i.e., only ψ1(x) = 1 and ψ2(x) are present as dominant eigenfunctions, the problem 

(32) s solved by the projected eigenfunction:

(33)

How can the best possible ψ̂
2 be determined from the observed time series? For a 

sufficiently large set of n basis functions, γ = {γ1(o),....., γn(o)}, the optimal eigenfunction 

ψ̂
2 is approximated by a linear combination , with coefficients c = 

{c1,....., cn}. When γ is chosen to be an orthogonal basis set, ψ̂
2 = arg maxψ̃2 α can be 

approximated by the Ritz method [31,38]. An easy way to do this approximation in practice 

is to perform a fine discretization of the observable o by histogram windows. Using a 

binning with bin boundaries b1,....., bn+1, and the corresponding indicator functions

(34)

the above optimization problem is solved by estimating the transition probability matrix 

with elements

(35)

and calculating c as the second eigenvector

(36)

where λ2 < 1 is the second-largest eigenvalue of T. If the system has two-state kinetics, i.e., 

only ψ1(x) = 1 and ψ2(x) are present as dominant eigenfunctions, the estimate ψ̂
2 is 

independent of the choice of τ in Eq. (35). Thus, in real systems, τ should be chosen to be at 

least a multiple of  [e.g., , as indicated by a constant rate κ2 estimate using a 

multi-τ estimator (Eq. (30)]. Note that a given optimal ψ̂
2(o) can still be used with single-τ 

and multi-τ rate estimators that would produce different estimates for κ2.

Note that ψ̂
2, according to the procedure described here, is optimal only for the case when 

the observed signal is obtained by projecting the high-dimensional data onto the observable, 

but is no longer optimal in the presence of noise, and especially large noise. In order to 

choose ψ̂
2 optimal when noise is present, a generalized Hermitian eigenvalue problem must 

be solved instead of Eq. (36), which includes a mixing matrix whose elements quantify how 

much the observable bins are mixed due to measurement noise. Since this approach is not 
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very straightforward and in most practical cases leads only to small improvements, we do 

not pursue this approach further here. Rather, we note that it is often practical to reduce the 

noise level by carefully filtering the recorded data, provided that the filter length is much 

shorter than the time scales of interest.

VI. REACTION COORDINATE QUALITY, ESTIMATION QUALITY, AND 

OBSERVATION QUALITY

Evaluating the suitability of a given observable for capturing the slow kinetics is of great 

general interest. Although there is not a unique way of quantifying this suitability of the 

observable, the term reaction coordinate quality (RCQ) is often used. Previous studies have 

proposed ways to measure the RCQ that are based on comparing the observed dynamics to 

specific dynamical models or testing the ability of the observable to model the committor or 

splitting probability between two chosen end states A and B [4,5,39]. These metrics are 

either valid only for specific models of dynamics or themselves require a sufficiently good 

separation of A and B by definition, restricting their applicability to observables with rather 

good RCQs.

The prefactor α̂y (see also Fig. 1) is a measure between 0 and 1, quantifying the relative 

amplitude of the slowest relaxation in the autocorrelation function after projection of the 

full-space dynamics onto the molecular observable employed. The value α̂y depends only on 

the observable itself and is free of modeling choices and of the way rates are estimated from 

the signal. Therefore, we propose that αy is the RCQ.

However, αy is not directly measurable: for a given observation, both the projection of the 

full-space dynamics and the measurement noise compromise the quality of the signal, and 

these effects cannot be easily separated. In addition, the actual prefactor that is obtained in a 

given estimate of the signal autocorrelation function αo depends on the way the data are 

analyzed, namely, the functional form ψ2̃(o) used to compute the autocorrelation function 

λ̃
2(τ). Therefore, αo is just an estimation quality.

Fortunately, the ambiguity of the estimation quality is eliminated for the optimal choice ψ̃
2 = 

ψ̂
2 [Eq. (32)], which maximizes αo. In this case, we denote this prefactor αô, where α̂

o = 

αo(ψ2̂) ≥ αo(ψ̃
2). Since α̂

o depends only on the observed signal, and not on the method of 

analyzing it, we term it observation quality (OQ). The OQ is a very important quantity 

because, by virtue of Eqs. (29) and (30), α̂
o quantifies how large the error in our rate 

estimate can be for the optimal choice ψ̃
2 = ψ̂

2.

Our definitions of RCQ and OQ are very general, as they make no assumptions about the 

class of dynamics in the observed coordinate and do not depend on any subjective choices, 

such as the choice of two reaction end states A and B in terms of the observable o. Through 

the derivation above, it has also been shown that α̂
o measures the fraction of amplitude by 

which the slowest process is observable, which is exactly the property one would expect 

from a measure of the RCQ: α̂
0 is 1 for a perfect reaction coordinate with no noise and 0 if 

the slowest process is exactly orthogonal to the observable, or has been completely 

obfuscated by noise.
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While the OQ is the quantity that can be computed from the signal, an analyst is typically 

interested in the RCQ α̂
y that is due to the choice of the molecular order parameter. Unless a 

quantitative model of the dispersion function χd(o|y) is known, the RCQ α̂y before adding 

noise cannot be recovered (see also Fig. 1 for an illustration). However, we can still 

quantitatively relate α̂y and α̂
o, and thereby show that even the OQ is very useful. For this, 

we derive a theory of observation quality. While the detailed derivation is found in the 

Supplemental Material [28], we summarize the most important results here.

1. When observing the order parameter y without noise and projecting the observation 

onto the optimal indicator function  , the RCQ can be expressed as the 

weighted norm of the projected eigenfunction, expressed by the scalar product:

(37)

2. Unless the projection perfectly preserves the structure of the full-space 

eigenfunction ψ2, we have α̂
y < 1. Thus, almost every observable attains a 

suboptimal RCQ.

3. When additional noise is present, the OQ can be expressed as the weighted norm of 

the projected and noise-distorted eigenfunction:

(38)

4. The RCQ α̂
y is determined by the projection onto the selected molecular order 

parameter alone, and the OQ α̂o including measurement noise are related by

(39)

i.e., adding noise means that the OQ is smaller than the RCQ.

The inequality (39) implies that we can use the OQ α̂
o in order to optimize both the 

experimental setup and the order parameter used. For example, in an optical tweezer 

measurement, we can change laser power and handle length so as to maximize α̂
o, thus 

making α̂
o and α̂y more similar and reducing the effect of noise on the measurement quality. 

On the other hand, since α̂o is a lower bound for α̂y, we can also use it to ensure a minimal 

projection quality: When the measurement setup itself is kept constant, we can compare the 

measurements of different constructs (e.g., different FRET labeling positions or different 

attachment sites in a tweezer experiment). The best value α̂o corresponds to the provably 

best construct.

Finally, α̂
o can be determined by fitting the autocorrelation function of ψ̂

2, as described in 

the spectral-estimation procedure described below. Figures 2–5 show estimates of the OQ of 

different observed dynamics (via spectral estimation) and of the estimation quality using 

other rate estimators.
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VII. MARKOV (STATE) MODELS

MSMs have recently gained popularity in the modeling of stochastic dynamics from 

molecular simulations [40,14,41,15,12]. MSMs can be understood as a way of implicitly 

performing rate estimates via discretizing state space into small substates. Let us consider 

aMSM obtained by finely discretizing the observed space y into bins and estimating a 

transition matrix T(τ) among these bins. We have seen that this procedure approximately 

solves the optimization problem of Eq. (32), and the leading eigenvector of T(τ) 

approximates the projection of the true second eigenfunction  available for the given 

observable o. Reference [15] has suggested to use the implied time scale t̂2 = −τ/ln[λ̂
2(τ)] as 

an estimate for the system’s slowest relaxation time scale, and at the same time for a test of 

which choice of τ leads to a MSM with a small approximation error. These implied time 

scales correspond to the inverse relaxation rates, and therefore, the MSM rate estimate is 

described by Eq. (28) with the choice ψ̃
2 = ψ̂

2. A sufficiently finely-discretized MSM thus 

serves as an optimal single-τ rate estimator as its estimation quality approaches the true OQ 

α̂
o for the observed signal that is being discretized. However, when this signal has a poor 

OQ α̂
o since it is poorly separating the slowly converting states, there is a substantial rate 

estimator error according to Eq. (29) that decays slowly with τ−1. This likely explains the 

slow convergence of implied time scales shown in recent MSM simulation studies [12–

15,42].

VIII. ESTIMATING STATE DENSITIES AND MICROSCOPIC TRANSITION 

RATES

When the rate κ2 is exactly known, the microscopic transition rates between the two 

interchanging states, kAB and kBA, could be calculated from the equations

(40)

(41)

and B:

(42)

(43)

with  and  being the partial densities of states A and B in the observable o, 

respectively.

Here, we attempt to estimate both the partial densities  and  and from these the 

microscopic transition rates via Eqs. (40) and (41). The difficulty is that the projections of A 

and B can significantly overlap in o, due to both the way the order parameter used projects 

the molecular configurations onto the observable and the noise broadening of the 
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measurement device. This reveals a fundamental weakness of dividing-surface approaches. 

Although a dividing-surface estimator can estimate the rate κ2 for sufficiently large τ 

without bias via Eq. (30), it cannot distinguish between substates on one side of the barrier, 

and thus assumes the partial densities  and  to be given by cutting the full density 

μo(o) at the dividing surface. When the true partial densities overlap, this estimate can be far 

off [compare the curves in Figs. 2(II5) and 2(III5)]. Consequently, incorrect estimates for 

the microscopic rates kAB and kBA are obtained when Eqs. (40) and (41) are used with πA 

and πB computed from the total densities “left” and “right” of the dividing surface.

Hidden Markov models approach this problem by proposing a specific functional form of 

 and  for example, a Gaussian distribution, and then estimating the parameters of 

this distribution with an optimization algorithm [21,23]. This approach is very powerful 

when the true functional form of the partial densities is known, but will give biased 

estimates when the wrong functional form is used.

Here, we propose a nonparametric solution that can estimate the form of the partial densities 

 and  and the microscopic transition rates k̂
AB and k̂

BA in most cases without bias. 

For this, we employ the theory of Perron cluster cluster analysis (PCCA+) [17,30]—which is 

based on PCCA theory [30,44]—which allows for a way to split the state space into 

substates and at the same time maintain optimal approximations to the exact eigenfunctions 

(here, ψ2): The state assignment must be fuzzy; i.e., instead of choosing a dividing surface 

that uniquely assigns points o to either A or B, we have fuzzy membership functions χA(o) 

and χB(o) with the property χA(o) + χB(o) = 1. These membership functions can be 

calculated after ψ2 is known.

In order to compute the membership χA and χB, the memberships of two points of the 

observable o must be fixed. The simplest choice is to propose two observable values that are 

pure, i.e., that have a membership of 1 to A and B each. Such an approach is also proposed 

by the signal-pair correlation analysis approach [27] where the pure values need to be 

defined by the user. However, at this point of our analysis, an optimal choice can be made, 

because the eigenfunction  has been approximated. Thus, we propose to follow the 

approach of Ref [43] and choose the o values, where  achieves a minimum and a 

maximum, respectively, as purely belonging to A and B. Typically, these are the states that 

are on the left and right boundaries of the histogram in o. This approach will start to give a 

biased estimate only when the overlap of the A and B densities is so large that not even these 

extreme points are pure [see Fig. 2(III), last row, for such an example].

Let ψ̂
2 be the second eigenvector of the Markov model T(τ) of the finely binned observable 

[Eq. (36)]. Then, ψ̂
2 is a discrete approximation to the projected eigenfunction . Following 

the derivation given in the Supplemental Material [28], the fuzzy membership functions on 

the discretized observable space are given by
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(44)

(45)

where the subscripts i and j denote the discrete state index. Note that the extreme values 

maxjψ̂
2,j and minjψ̂

2,j may have large statistical uncertainties when a fine and regular 

binning is used to discretize the observation. In order to avoid the situation in which our 

estimates are dominated by statistical fluctuations, we choose the outermost discretization 

bins such that at least 0.05% of the total collected data are in each of them. The exact choice 

of this value appears to be irrelevant; as shown in the Supplemental Material [28], any 

choice between 0.005% and 5% of the data yields similar results. Since we are restricted to 

the projected eigenfunction ψ̂
2, we can determine the optimal choice χÂ(o) and χ̂

B(o) from 

ψ̂2(o).

Together with the estimated stationary density μo(o), which can, e.g., be obtained by 

computing a histogram from sufficiently long equilibrium trajectories, the probability of 

being in A and B is thus given by

(46)

(47)

These probabilities can be used to split κ̂
2 into microscopic transition rates kAB and kBA:

(48)

(49)

Note that the assignment of labels A and B to parts of state space is arbitrary. Equation (48) 

is the transition rate from A to B as defined by Eqs. (44) and (45), and Eq. (49) is the 

corresponding transition rate from B to A.

IX. SPECTRAL-ESTIMATION PROCEDURE

The optimal estimator for κ2 is thus one that fits the exponential decay of λ̂
2(τ) while 

minimizing the fitting error Eq. (30). As analyzed above, the systematic fitting error is 

minimized by any multi-τ estimator. In order to obtain a numerically robust fit, especially in 

the case when statistical noise is present, it is optimal to fit to an autocorrelation function 

λ̃
2(τ), where the relevant slowest decay has maximum amplitude α̂0. This is approximately 
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achieved by constructing a fine-discretization MSM on the observed coordinate (see Sec. 

V). Thus, the optimal estimator of κ2 proceeds as outlined in points (1)–(4) below. The full 

spectral-estimation algorithm (1)–(6) additionally provides estimates for the microscopic 

rates kAB, kBA, and for the partial densities μA and μB.

1. Obtain a fine discretization of the observed coordinate o into n bins, say, [oi, oi+1], 

for i ∈ 1,....., n. When using an equidistant binning, make sure to increase the 

outermost states to a size to cover a significant part (e.g., 0.05%) of the total 

population.

2. Construct a row-stochastic transition matrix T(τ) for different values of τ. The 

estimation of transition matrices from data has been described in detail Ref. [14]. A 

simple way of estimating T(τ) is the following: (i) for all pairs i, j of bins, let cij(τ) 

be the number of times the trajectory has been in bin i at time t and in bin j at time t 

+ τ, summed over all time origins t, and (ii) estimate the elements of T(τ) by Tij(τ) 

= cij(τ)/Σkcik(τ). A numerically superior approach is to use a reversible transition 

matrix estimator [14].

3. Calculate the discrete stationary probability μ and the discrete eigenvector ψ2̂ by 

solving the eigenvalue equations:

(50)

(51)

denotes the transpose of the transition matrix. The ith element of the vectors μ and 

ψ̂
2 approximates the stationary density μ(o) and ψ̂

2 on the respective point 

. Functions μo(o) and  can be obtained by some interpolation 

method.

4. Estimate the relaxation rate κ̂
2 and the OQ α̂ via an exponential fit of αe−κ2τ to the 

tail of λ̂
2(τ) = 〈ψ̂

2(t)ψ2̂(t + τ)〉t.

5. Calculate the partial densities μA and μB from Eqs. (46) and (47) using transition 

matrix eigenvectors estimated at a lag time τmin at which the rate estimate κ̂2 is 

converged.

6. Calculate the microscopic transition rates kAB and kBA from Eqs. (48) and (49).

Note that this estimator is optimal in terms of minimizing the systematic error. When 

dealing with real data, the finite quantity of data may set restrictions of how fine a 

discretization is suitable and how large a lag time τ will yield reasonable signal to noise. For 

a discussion of this issue, refer to, e.g., Ref. [37].

X. ILLUSTRATIVE TWO-STATE EXAMPLE

To illustrate the theory and the concepts of this paper, we compare the behavior of different 

order parameters, measurement noise, and different estimators in Fig. 2. The full-space 
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model here is a two-dimensional model system using overdamped Langevin dynamics in a 

bistable potential. This choice was made because the exact properties of this system are 

known and the quality of different estimates can thus be assessed. The potential is chosen 

such that the eigenfunction associated with the slow process ψ2(x) varies in x1 and is 

constant in x2, such that the choice o = x1 represents a perfect projection and the choice o = 

x2 represents the worst situation in which the slow process is invisible.

Figure 2 shows three scenarios using

I. y = x1 (perfect order parameter—projection angle 0°),

II.  (average order parameter— projection angle 45°),

III.  (poor order parameter—projection angle 72°).

Additionally, we compare the results when the order parameter y is traced without noise [left 

half of panels (3)–(5)] and when measurement noise is added [right half of panels (3)–(5)]. 

Here, noise consists of adding a uniformly distributed random number from the interval [−1, 

1] to the signal, such that the noise amplitude is roughly 25% of the signal amplitude.

Figure 2, panels (2), show the apparent stationary density in the observable y, μy(y), or in the 

noisy observable o, μo(o), as a black solid line. The partial densities of substates A (orange) 

and B (gray), which comprise the total stationary density, are shown as well. The lower part 

of the figure shows the observed eigenfunction associated with the two-state transition 

process ( or ) as a black solid line with gray background. For comparison, the results in 

the case of noise are shown in the background with lighter colors. It is apparent that when 

the quality of the observation is reduced, either by choosing a poor order parameter or by 

adding experimental noise, the overlap of the partial densities increases and the continuous 

projected eigenfunction  becomes smoother and, thus, increasingly deviates from the 

dividing surface model, which is a step function switching at the dividing surface (dashed 

line).

Figure 2, panels (3), show the estimation qualities or observation qualities in these different 

scenarios. The fact that the green and red lines are approximately constant after τ = 5 (when 

the fast processes have relaxed) shows that the OQ can be reliably estimated at these lag 

time ranges using either the dividing-surface or the spectral-estimation approach. The red 

line (spectral estimation) corresponds to the OQ, which varies between 1 (perfect order 

parameter I) and 0.15 (poor order parameter III with additional measurement noise). It is 

seen that the OQ given by the spectral estimator can be much larger than the suboptimal 

estimation quality of the dividing-surface estimator that uses a fit to the number correlation 

function Eq. (24) (green line). This is especially apparent in the case of an intermediate-

quality order parameter [Fig. 2(II3)].

Figure 2, panels (4), show the estimate of the relaxation rate κ2 obtained for the three 

scenarios where each panel compares five different rate estimators with the exact result 

(black solid line). (1) Direct counting of transitions from time-filtered data (TST estimate, 

blue line). For this estimator, the x axis denotes the length of the averaging window W, 

ranging from 1 to 100 frames. (2),(3) The dividing-surface estimates using either a single-τ 
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estimator (28) (dashed green line) or the multi-τ estimator (solid green line). (4),(5) The 

single-τ MSM estimate (dashed red line) and the multi-τ MSM estimate (spectral estimation, 

solid red line). For the single-τ and the exact estimators. the x axis indicates the used lag 

time τ in the estimation where, for the multi-τ estimators (i.e., dividing surface and spectral 

estimation), the x axis specifies τ, which is the start of the time range [τ, τ + 10] used for an 

exponential fit.

In the case of a perfect order parameter (I), all estimators yield the correct rate at lag times τ 

> 5 time steps (where the fast processes with rates κ3 or greater have disappeared). Only in 

the case of TST (blue line), with increasing size W of the filtering window, the estimated 

rate tends to be too slow because an increased number of short forward-and-backward 

transition events become smeared out by the filtering window, therefore systematically 

underestimating the rate. For the perfect order parameter I, the noise has little effect on the 

estimate because the partial densities of states A and B are still well separated.

For the average-quality and poor order parameters, the MSM estimate breaks down 

dramatically, providing a strongly overestimated rate for 0 < τ < 100 time steps. Figures 

2(II4) and 2(III4) show the typical behavior of the τ−1 convergence of the MSM estimate 

predicted by the theory [Eq. (29)]. Clearly, the MSM estimate will converge to the true 

value for very large values of τ, but, especially for the situation of a poor order parameter, 

the minimal τ required to obtain a small estimation error is larger than the time scale  of 

the slowest process, thus rendering a reliable estimation impossible.

It is seen that the magnitude of the error for a given value of τ increases when either adding 

noise [left half of panels (4) of Fig. 2 versus right half] or decreasing the quality of the order 

parameter [Figs. 2(II4) versus Figs. 2(III4)]. This is because, in this sequence, the OQ 

deteriorates, as predicted by the theory of reaction coordinate qualities (see above), and, 

hence, the prefactor of the MSM error increases [see Eq. (29)].

As predicted by Eq. (31), the multi-τ estimators (dividing-surface and spectral estimates, red 

and green solid lines) are always better than the single-τ estimates (red and green dashed 

lines). As predicted by Eq. (30), both the dividing-surface and spectral estimates of κ̂
2 

converge when the fast processes have died out (here, at approximately τ > 5 time steps). 

Also, Figs. 2(II4) and 2(III4) show that the spectral estimate is more stable than the 

dividing-surface estimate; i.e., it exhibits weaker fluctuations around the true value κ2. This 

is because the spectral estimate uses the OQ α̂
o as the estimation quality, which is larger 

than the estimation quality of other estimators, and thus the exponential tail of the 

autocorrelation function can be fitted using a larger amplitude of the process relaxation with 

rate κ2, achieving a better signal-to-noise ratio.

Figure 2, panels (5), show the microscopic rate kAB that quantifies the rate at which rare 

transition events between the large (orange) state A and the smaller (gray) state B occur. The 

solid lines indicate the estimates from Eq. (48), using either the partial densities from the 

dividing surface (green) or PCCA+ (spectral estimate, red). Corresponding rates computed 

from a MSM using the different projections are shown in dashed lines. As expected, the 

partial densities from the dividing-surface estimate are significantly biased as soon as the 
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states overlap in the observable, due to either choosing a poor order parameter or 

experimental noise. As a result, the dividing-surface estimates for the microscopic rates kAB 

and kBA are biased for all of these cases [Figs. 2(II5) and 2(III5)]. The spectral estimate 

gives an unbiased estimate for average overlap [Fig. 2(II5)]. For strong overlap, even the 

spectral estimator has a small bias because no pair of observable states can be found that is 

uniquely assignable to states A and B. Still, the spectral estimator yields good results even in 

the poor order parameter case [Fig. 2(III5)]. As it is for the relaxation rate (κ2) estimate, the 

spectral estimator exhibits less fluctuations here because the larger estimation quality yields 

a better signal-to-noise ratio.

XI. APPLICATIONS TO OPTICAL TWEEZER DATA

In order to illustrate the performance of spectral estimation on real data, it is applied to 

optical tweezer measurements of the extension fluctuations of two biomolecules examined 

in a recent optical force spectroscopy study: the p5ab RNA hairpin [45] and the H36Q 

mutant of sperm whale apo-myoglobin at low pH [46]. The p5ab hairpin forms a stem-loop 

structure with a bulge under native conditions [Fig. 3(1)] and zips and unzips repeatedly 

under the conditions used to collect data [Fig. 3(2a)], while apo-myoglobin [crystal structure 

shown in Fig. 3(4)] hops between unfolded and molten globule states at the experimental pH 

of 5 [Fig. 3(5a)] [46].

Experimental force trajectory data were generously provided by the authors of Refs. [45,46]. 

Experimental details are given therein, but we briefly summarize aspects of the apparatus 

and experimental data collection procedure relevant to our analysis.

The instrument used to collect both data sets was a dual-beam counterpropagating optical 

trap [47]. The molecule of interest was tethered to polystyrene beads by means of dsDNA 

handles, with one bead suctioned onto a pipette and the other held in the optical trap. A 

piezoactuator controlled the position of the trap and allowed position resolution to within 0.5 

nm, with the instrument operated in passive (equilibrium) mode such that the trap was 

stationary relative to the pipette during data collection. The force on the bead held in the 

optical trap was recorded at 50 kHz, with each recorded force trajectory 60 s in duration.

It is common practice to estimate rates in such data by directly counting the number of 

transitions across some user-defined dividing surface and dividing by the total trajectory 

length. Often, this procedure is applied after filtering the data with a time-running average. 

The results of this common procedure (effectively a TST estimate or a MSM estimate with τ 

= 1) are shown in Figs. 3(3) and 3(6) (blue line) using various averaging window sizes W 

and compared to the optimal estimator (spectral estimation) for a range of estimation lag 

times τ. Although the TST estimate shows less fluctuations, the spectral-estimation result 

converges much faster and provides a more stable result in terms of the varying parameter 

(lag time τ/window size W). TST also tends to underestimate the true rate for large window 

sizes W. Moreover, the TST estimate never shows any plateau, thereby making it impossible 

to decide which rate estimate should be used.
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XII. RNA HAIRPIN ANALYSIS

Figure 4 compares the results of several rate estimators for optical tweezer measurement of 

the p5ab RNA hairpin extension fluctuations. A sketch of the RNA molecule and the 

experimental trajectory analyzed can be found in Figs. 3(1) and 3(2), top. The trajectory 

exhibits a two-state-like behavior with state lifetimes on the order of tens of milliseconds. 

Figure 4(1a) shows the stationary probability density of measured pulling forces, exhibiting 

two nearly separated peaks. Figure 4(2a) shows the estimation quality αo (OQ α̂
o for the 

spectral estimator), which is approximately constant at lag times τ > 5 ms, indicating a 

reliable estimate for this quantity at lag times greater than 5 ms. An optimum value of α̂
o ≈ 

0.96 (spectral estimator) is found while the best possible dividing surface results in αo ≈ 

0.94. These values indicate that the present reaction coordinate is well suited to separate the 

slowly interconverting states and that different approaches, including a Markov model, a 

dividing-surface estimate, and a spectral estimate, should yield good results.

Figure 4(3a) compares the estimates of the relaxation rate κ2 using the direct MSM estimate 

(black), a fit to the fluctuation autocorrelation function using a dividing surface at the 

histogram minimum o = 12.80 pN (green), and spectral estimation (red). For the multi-τ 

estimators (dividing-surface and spectral estimations), the lag time τ specifies the start of the 

time range [τ, τ + 2.5 ms] that was used for an exponential fit. All estimators agree on a 

relaxation rate of about κ̂
2 ≈ 58 s−1, corresponding to a time scale of about 17 ms. The 

MSM estimate is strongly biased for short lag times, exhibiting the slow τ−1 convergence 

predicted by the theory for single-τ estimators [Eq. (29)]. It converges to an estimate within 

10% of the value from multi-τ estimates after a lag time of about 10 ms. The dividing-

surface and spectral estimators behave almost identically and converge after about τ = 5 ms. 

According to the error theory of multi-τ estimators [Eq. (30)], this indicates that there are 

additional, faster kinetics in the data, the slowest of which have time scales of 2–3 ms. In 

agreement with the theory [Eq. (31)], the multi-τ estimators (dividing-surface and spectral 

estimates) converge faster than the single-τ estimate (MSM).

As indicated in Fig. 4(1a), the substates estimated from PCCA+ are almost perfectly 

separated and can be well distinguished by a dividing surface at the histogram minimum o = 

12.80 pN. Consequently, both the dividing-surface estimate and the spectral estimate yield 

almost identical estimates of the microscopic transition rates— the folding rate being kAB ≈ 

45 s−1 and the unfolding rate being kBA ≈ 15 s−1 [Fig. 4(4)]. In summary, the two-state 

kinetics of p5ab can be well estimated by various different rate estimators because the 

slowly converting states are well separated in the experimental observable.

Figure 4, panels (1b)–(4b), show estimation results for data that have been filtered by 

averaging over 50 frames (1 ms). This averaging further reduces the already small overlap 

between substates A and B, while the filter length is much below the time scale of A–B 

interconversion. Therefore, filtering has a positive result on the analysis: The effective OQ 

α̂
o increases and is now approximately equal to 1 according to spectral estimation. The 

estimation results are largely identical to the case with noise. In Fig. 4(3b), the error made 

by the Markov model estimate has become smaller because the error prefactor reported in 

Eq. (29), ln αo, has become smaller. Note that, in contrast to the unfiltered data analysis, 
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some of the rate estimates (MSM and spectral estimate) underestimate the rate for small lag 

times τ. This is not in contradiction with our theory, which predicts an overestimation of the 

rate for Markovian processes. By using the filter, one has effectively introduced memory 

into the signal, and the present theory will apply only at a lag time τ that is a sufficiently 

large multiple of the filter length, such that the introduced memory effects have vanished.

XIII. APO-MYOGLOBIN ANALYSIS

Figure 5 shows estimation results for an optical tweezer experiment that probes the 

extension fluctuations of apomyoglobin [46]. Figure 3(4) shows a sketch of the experimental 

pulling coordinate (green arrows) depicted at the crystal structure of apo-myoglobin. Figure 

3(5) shows the trajectory that was analyzed. Out of the trajectories reported in [46], here we 

have chosen one where the two slowest-converting states have a large overlap. While the 

trajectory indicates that there are at least two kinetically separated states, the stationary 

probability density of measured pulling forces [Fig. 5(1a)] does not exhibit a clear 

separation between these states in the measured pulling force. This is also indicated by Fig. 

5(2a), which shows that the optimal OQ has a value of α̂
o ≈ 0.5 (spectral estimator) at τ = 

15 ms while the best possible dividing-surface results yield only an estimation quality of αo 

≈ 0.4 at τ = 15 ms. Thus, the quality of the apo-myoglobin data is similar to that of the two-

state model with intermediate-quality order parameter and noise [Fig. 2(IIb)]. These data 

thus represent a harder test for rate estimators than the p5ab hairpin and should show 

differences between different rate estimators.

Figures 5(3a), 5(3b), 5(4a), and 5(4b) compare the estimates of κ2 from the direct MSM 

estimate (black), a fit to the fluctuation autocorrelation function using a dividing surface at 

the local histogram maximum (minimum between two maxima with filtering) of the binned 

data at o = 4.6 pN (green), and spectral estimation (red). For the multi-τ estimators 

(dividing-surface and spectral estimations), the lag time τ specifies the start of a time range 

[τ, τ + 2.5 ms] that was used for an exponential fit.

Figure 5(3a) shows again that the MSM estimate of κ2 exhibits the slow τ−1 convergence 

predicted by the theory [Eq. (29)] and does not yield a converged estimate using lag times of 

up to 20 ms. Since the MSM estimate still significantly overestimates the rate at τ = 50 ms 

when the relaxation process itself has almost entirely decayed, this estimator is not useful to 

analyze the apo-myoglobin data. In contrast, both the dividing-surface multi-τ approach and 

the spectral estimator do yield a converged estimate of κ̂
2 ≈ 26 s−1, corresponding to a time 

scale of about 38 ms [Fig. 5(3a)]. In Ref. [46], a hidden Markov model with Gaussian output 

functions was used and the rate was estimated to be κ̂
2 ≈ 46 s−1, corresponding to a time 

scale of approximately 21 ms. These differences are consistent with our theory, which shows 

that rate estimation errors lead to a systematic overestimation of the rate (and 

underestimation of the time scale). Figure 5(1a) shows the possible reason why the Gaussian 

HMM in Ref. [46] yields a rate overestimate: the partial probabilities are clearly not 

Gaussians. Following our theory, the smallest rate estimates the best estimates, which here 

are provided by the multi-τ estimators using either dividing-surface or spectral-estimation 

approaches.
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In agreement with the theory [Eq. (31)], the multi-τ estimators (dividing-surface and spectral 

estimates) converge faster than the single-τ estimate (MSM). A double-exponential fit to the 

spectral estimation autocorrelation function yields an estimate of κ3 ≈ 100 s−1, 

corresponding to a time scale of 10 ms. Thus, there is a time-scale separation of a factor of 

about 4 between the slowest and the next-slowest process, indicating that, when viewed at 

sufficiently large time scales (> 20 ms), the dynamics can be considered to be effectively 

two state. However, since the presence of faster processes is clearly visible in the data, it 

may be worthwhile to investigate further substates of the A and B states with multistate 

approaches, such as hidden Markov models [23] or pair correlation analysis [27]. Such an 

analysis is beyond the scope of the present paper on two-state rate theory.

As indicated in Fig. 5(1a), the substates A and B estimated from PCCA+ do strongly 

overlap. Thus, even though the dividing-surface estimator can recover the true relaxation 

rate κ2, the estimated microscopic rates kAB and kBA depend on the choice of the position of 

the dividing surface. Figure 5(4a) shows the estimates of the dividing-surface multi-τ 

estimator, evaluated to kAB ≈ 12 s−1 and kBA ≈ 15 s−1. In contrast, the spectral estimator 

yields estimates of kAB ≈ 16 s−1 and kBA ≈ 10 s−1. Even though it is not strongly different, 

the dividing-surface approach suggests a reversed dominant direction of the process.

As for the two-state model results shown in Fig. 2, the spectral estimate is numerically more 

stable in τ compared to the dividing-surface estimate as a result of achieving a better signal-

to-noise ratio. Clearly, in the dividing-surface approach, it is possible to pick a dividing-

surface position that yields the same estimates for kAB and kBA, as for the spectral estimator. 

However, the dividing-surface estimator itself does not provide any information that is the 

correct choice, and, therefore, this theoretical possibility is of no practical use. Figure 2 in 

the Supplemental Material [28] compares the estimation results of κ2, kAB, and kBA for 

different choices of the dividing surface. In contrast to the dividing-surface approach, the 

spectral estimator assumes only that the extreme values of o are pure, which is a much 

weaker requirement than assuming that an appropriate dividing surface exists (see theory), 

and hence provides more reliable rate estimates.

Figures 5(1b)–5(4b) show the effect of filtering the data on the estimation results. Here, the 

data were averaged over a window length of 1 ms, corresponding to an averaging of 50 data 

points of the original 50 kHz data. Figure 5(1b) indicates that this filtering enhances the 

separation of states, and the apparent OQ increases to about α̂
0 ≈ 0.7 (spectral estimate) 

while the dividing-surface estimation quality is α0 ≈ 0.6. The relaxation rate κ2 is still 

estimated to have κ̂
2 ≈ 26 s−1, and the estimate becomes more robust for both the dividing-

surface and the spectral estimates [Fig. 5(3b)]. The MSM estimate slightly improves but is 

still significantly too high. Figure 5(4b) shows that the dividing-surface derived-rate 

estimates kAB and kBA have improved and are now similar to the spectral-estimation results, 

while the spectral estimate itself remains at kAB ≈ 16 s−1 and kBA ≈ 10 s−1, independent of 

the filtering, which is in support of the reliability of the spectral estimate.
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XIV. SUMMARY

We have described a rate theory for observed two-state dynamical systems. The underlying 

system is assumed to be ergodic, reversible, and Markovian in full phase space, as fulfilled 

by most physical systems in thermal equilibrium. The observation process takes into account 

that the system is not fully observed, but rather one order parameter is traced (the extension 

to multiple or multidimensional order parameters is straightforward). During the observation 

process, the observed order parameter may be additionally distorted or dispersed, for 

example, by experimental noise. Such observed dynamical systems occur frequently in the 

molecular sciences and appear in both the analysis of molecular simulations as well as of 

single-molecule experiments.

The presented rate theory for observed two-state dynamics is a generalization to classical 

two-state rate theories in two ways. First, most available rate theories assume that the system 

of interest is either fully observable or the relevant indicators of the slowest kinetic process 

can be observed without projection error or noise. Second, most classical rate theories are 

built on specific dynamical models, such as Langevin or Smoluchowski dynamics. The 

present theory explicitly allows the two kinetic states to overlap in the observed signal 

(either due to using a poor order parameter or to noise broadening), and does not require a 

specific dynamical model, but rather works purely based on the spectral properties of a 

reversible ergodic Markov propagator—hence, the name spectral rate theory.

Given the spectral rate theory, the systematic errors of available rate estimators can be 

quantified and compared. For example, the relatively large systematic estimation error in the 

implied time scales or implied rates of Markov state models is explained. Additionally, the 

theory provides a measure for the observation quality α̂
o of the observed signal, which is 

independent of any specific dynamical model and also does not need the definition of an A 

or B state and bounds the error in rates estimated from the observed signal. α̂
o includes 

effects of the order parameter measured as well as the effect of the experimental construct 

on the signal quality, such as experimental noise. It is shown that α̂
o is a lower bound to the 

true reaction coordinate quality due to choosing the order parameter, and can thus be used as 

an indicator to improve both the quality of the experimental setup and the choice of the 

order parameter.

The theory suggests steps to be taken to construct an optimal rate estimator which minimizes 

the systematic error in the estimation of rates from an observed dynamical system. We 

propose such an estimator and refer to it as a spectral estimator. It provides rather direct and 

optimal estimates for the following three types of quantities:

1. The observation quality (OQ) α̂
o of the observed signal.

2. The dominant relaxation rate κ2, as well as the microscopic transition rates kAB and 

kBA, even if A and B strongly overlap in the observable.

3. The partial probability densities, and hence projections of the states A and B in the 

observable,  and , as well as their total probabilities, πA and πB. This 

information is also obtained if A and B strongly overlap in the observable.
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Other rate estimators that rely on fitting the exponential tail of a time-correlation function 

calculated from the experimental recorded trajectories can also estimate κ2 without 

systematic error. However, the spectral estimator is unique in also being able to estimate 

kAB, kBA, , and the OQ in the presence of states that overlap in the observable 

order parameter.

XV. DISCUSSION

The present study concentrates on systematic rate estimation errors that are expected in the 

data-rich regime. We expect that taking the statistical error into consideration will make the 

spectral estimator described here even more preferable over more direct approaches such as 

fitting the number autocorrelation function of a dividing surface. This intuition comes from 

the fact that the spectral estimator maximizes the amplitude α with which the slow 

relaxation of interest is involved in the autocorrelation function. In the presence of statistical 

uncertainty, this will effectively maximize the signal-to-noise ratio in the autocorrelation 

function and thus lead to an advantage over fitting autocorrelation functions that were 

obtained differently.

Consideration of the statistical error will also aid in selecting an appropriate τ that balances 

systematic and statistical error in rate estimates. τ-dependent fluctuations of the sort 

observed in Fig. 2(III5) might also be suppressed by averaging over multiple choices of τ in 

a manner that incorporates the statistical error estimates in weighting.

The presented idea of building an optimal estimator for a single relaxation rate upon the 

transition matrix estimate of the projected slowest eigenfunction ψ̂
2 is extensible to multiple 

relaxation rates, and this will be pursued in future studies.
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FIG. 1. 
Illustration of the observed dynamics for which a rate theory is formulated here. Top row: 

The full-dimensional dynamics x(t) in phase space Ω. These dynamics are assumed to be 

Markovian, ergodic, and reversible as is often found for physical systems in thermal 

equilibrium. Furthermore, the theory here is formulated for two-state kinetics, i.e., the 

system has two metastable states exchanging at rates kAB and kBA, giving rise to a relaxation 

rate of κ2 = kAB + kBA. Middle row: One order parameter y(x) of the system is observed, 

such as the distance between two groups of a molecule, or the Förster Resonance Energy 

Transfer (FRET) efficiency between two fluorescent groups. The projection of the full-space 

dynamics x(t) onto the order parameter y generates a time series y(t) that, however, may not 

be directly observable. The projection also acts on functions of state space, such as the 

stationary distribution of configurations in full state space that is projected onto a density in 

the observable μ(y). The reaction coordinate quality αŷ measures how well the order 

parameter y resolves the slow transition. It is 1 when A and B are perfectly separated and 0 

when they completely overlap. Bottom row: The experimental device used may distort or 

disperse the signal, for example, by adding noise. The resulting observed signal o(t) is 

distorted and the observable density μo(o) is smoothed. α̂
o measures the observation quality 

(OQ) of the observed signal, and it is shown in the Supplemental Material [28] that α̂
o ≤ αŷ 

holds.
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FIG. 2. 
Estimation results using overdamped Langevin dynamics in a two-dimensional two-well 

potential that is projected onto different observables: (I) perfect projection, (II) average-

quality projection, (III) poor projection. Results are compared without noise (left half of 

panels) and with additional measurement noise (right half of panels). (1) Full state space 

with indicated direction of the used order parameter. (2) Top: Stationary density μy(y) in the 

observable of the two partial densities of states A (orange) and B (gray). Results with noise 

are shaded lighter and are more spread out. Bottom: Second eigenvector without noise 
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(solid, blue), with noise (solid, red), and dividing surface (black, dashed line). (3) Estimation 

quality α from spectral estimation (OQ, red line), and from exponential fitting to the number 

correlation function using a diving surface at y = 0 (green line). (4) Estimated relaxation rate 

κ2: TST with averaging window of size W (indicated in the x axis). Dividing surface at o = 0 

with single-τ (dashed green line) and multi-τ (solid green line) estimators. Estimates from a 

MSM-derived second eigenvector ψ̃
2 with a single-τ estimate (normal MSM, dashed red 

line) and multi-τ estimate (spectral estimation, solid red line). The black line is the reference 

solution, obtained from a direct MSM estimate for τ = 50 in row 1. (5) The transition rates 

kAB from state A to B. The coloring is identical to panels (4).
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FIG. 3. 
Probed systems by optical tweezer experiments. Top: RNA hairpin p5ab. Bottom: H36Q 

mutant of sperm whale apomyoglobin. Panels (1) and (4) show schematic views of the 

probed system in its native secondary or tertiary structure including the direction of the 

pulling force (green and black arrows). Panels (2) and (5) show the traces used for analysis. 

Row (a) reports the results when directly analyzing the measured 50 kHz data, while row (b) 

reports the results when analyzing data that has been binned to 1 kHz to reduce the noise 

amplitude. Panels (3) and (6) show the estimated phenomenological rates κ̂2 for TPT (blue 

line) using different averaging window sizes W (x axis) and spectral estimation (red line) for 

different lag times τ (x axis). For apo-myoglobin, the inset displays the behavior of TST at 

large window sizes W, where the rate is systematically underestimated.
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FIG. 4. 
Estimates for rates and estimation qualities from passive-mode single-molecule force-probe 

experiments of the p5ab RNA hairpin. All panels report the estimation results, showing the 

direct MSM estimate (black line), a fit to the fluctuation autocorrelation function using a 

dividing surface at o = 12.80 pN (green line), and spectral estimation (red line). (1a),(1b) 

The stationary probability of observing a given force value (solid black line). The partial 

probabilities of states A (gray) and B (orange) obtained by spectral estimation show that 

there is very little overlap between the states. (2a),(2b) The estimation quality αo, coinciding 

with the OQ α̂
o for spectral estimation. (3a),(3b) Estimated relaxation rate κ2. (4a),(4b) 

Estimated microscopic transition rates: the folding rate kAB (dashed line) and the unfolding 

rate kBA (solid line).
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FIG. 5. 
Estimates for rates and estimation qualities from passive-mode single-molecule force-probe 

experiments of apo-myoglobin. All panels report the estimation results, showing the direct 

Markov model estimate (black line), a fit to the fluctuation autocorrelation function using a 

dividing surface at the histogram maximum (minimum between two maxima for filtering) o 

= 4.6 pN (green line), and spectral estimation (red line). (1a),(1b) The stationary probability 

of observing a given force value (solid black line). The partial probabilities of states A (gray) 

and B (orange) obtained by spectral estimation show that there is very little overlap between 

the states. (2a),(2b) The estimation quality αo, coinciding with the OQ αô, for spectral 

estimation. (3a),(3b) Estimated relaxation rate κ2. (4a),(4b) Estimated microscopic transition 

rates kAB (dashed line) and kBA (solid line).
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