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Abstract

Background: Multiple abnormal metabolic traits are found together or ‘‘cluster’’ within individuals more often
than is predicted by chance. The individual and combined role of adiposity and insulin resistance (IR) on
metabolic trait clustering is uncertain. We tested the hypothesis that change in trait clustering is a function of
both baseline level and change in these measures.
Methods: In 2616 nondiabetic Framingham Offspring Study participants, body mass index (BMI) and fasting
insulin were related to a within-person 7-year change in a trait score of 0–4 Adult Treatment Panel III metabolic
syndrome traits (hypertension, high triglycerides, low high-density lipoprotein cholesterol, hyperglycemia).
Results: At baseline assessment, mean trait score was 1.4 traits, and 7-year mean (SEM) change in trait score
was + 0.25 (0.02) traits, P < 0.0001. In models with BMI predictors only, for every quintile difference in
baseline BMI, the 7-year trait score increase was 0.14 traits, and for every quintile increase in BMI during
7-year follow-up, the trait score increased by 0.3 traits. Baseline level and change in fasting insulin were
similarly related to trait score change. In models adjusted for age–sex–baseline cluster score, 7-year change
in trait score was significantly related to both a 1-quintile difference in baseline BMI (0.07 traits) and
fasting insulin (0.18 traits), and to both a 1-quintile 7-year increase in BMI (0.21 traits) and fasting insulin
(0.18 traits).
Conclusions: Change in metabolic trait clustering was significantly associated with baseline levels and changes
in both BMI and fasting insulin, highlighting the importance of both obesity and IR in the clustering of
metabolic traits.

Introduction

Multiple abnormal metabolic traits are found to-
gether or ‘‘cluster’’ within individuals more often than

is predicted by chance.1 Three or more abnormal metabolic
traits are found in one-third of the general population.2

People who have this metabolic syndrome have a two- to

four-fold higher risk for diabetes and cardiovascular disease
(CVD) when compared to people without the syndrome.3,4

The underlying causes of metabolic trait clustering are
thought to be adiposity5 and insulin resistance (IR).6,7

Although the impact on trait clustering of baseline mea-
sures of adiposity and IR, and prospective change in these
exposures, has been examined in isolation or as paired
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exposures,1,5,7–30 the independent influence of these four
exposures (baseline adiposity, baseline IR, change in adi-
posity, and change in IR) has not been studied.

In a population-based prospective cohort study, we tested
the hypothesis that change in metabolic trait clustering over
time is a function of baseline levels and prospective changes
in both body mass index (BMI) and fasting insulin.

Methods

The Framingham Offspring Study (FOS) is a community-
based prospective observational study of CVD and its risk
factors.31 Offspring participants are white and of mixed
European ancestry. Between 1991 and 1995, 3799 partici-
pants fasted overnight and had a standardized medical ex-
amination, including a 2-hr oral glucose tolerance test
(OGTT). Seven years later (1998–2001), from 3799 partic-
ipants, we excluded those who did not provide follow-up
data (n = 504), those with prevalent diabetes (n = 259), and
those with missing information on covariates (n = 420),
which left 2616 subjects for analysis. We defined abnormal
levels for individual metabolic risk factors according to the
current international definition.32

Clinical definitions and laboratory methods

We defined diabetes at the baseline exam as a fasting
plasma glucose level ‡ 7.0 mmol/L, a 2-hr OGTT glucose of
‡ 11.1 mmol/L, or current use of hypoglycemic drug therapy.
Over 99% of diabetes among Framingham Offspring is type 2
diabetes mellitus (T2DM).33 Impaired fasting glucose (IFG)
was defined as a fasting plasma glucose level 5.6–6.9 mmol/L.

Adiposity was assessed by BMI34 or waist circumference
(WC). IR was assessed using fasting insulin,35 or homeostasis
model assessment of insulin resistance (HOMA-IR) [fasting
plasma glucose (mmol/L) · fasting insulin (mU/mL)]/22.5,
with higher values indicating IR.36,37 HOMA-IR formula
values36 are highly correlated with computer-derived HOMA-
IR model values38 in Framingham Offspring Study partici-
pants (r = 0.98, P < 0.0001), and therefore only HOMA-IR
formula values are presented.

Plasma glucose was measured in fresh specimens with a
hexokinase reagent kit (A-gent glucose test; Abbott, South
Pasadena, CA). Glucose assays were run in duplicate; the
intra-assay coefficient of variation (CV) was < 3%. Fasting
insulin levels were measured in plasma using different as-
says at baseline and follow-up, and were standardized to
serum levels for reporting purposes. At baseline, the lower
limit of sensitivity of the insulin assay was 8 pmol/L and the
intra- and interassay CVs were 5.0%–10.0% (Coat-A-Count
total immunereactive insulin, Diagnostic Products Cor-
poration, Los Angeles, CA). At follow-up the lower limit of
sensitivity was 12 pmol/L and the interassay CV was 6.1%
(Human-specific insulin RIA, Linco, St Louis, MO).

The Institutional Review Board of Boston University
approved the study protocol, and all subjects gave informed
consent at each examination.

Statistical analysis

Outcome. Risk factor clustering was quantified by a
‘‘trait score’’ by counting (0–4) the number of abnormal
metabolic traits [impaired fasting glucose, low high-density
lipoprotein cholesterol (HDL-C), high triglycerides (TGs),

hypertension] present in each subject. Trait score change
was calculated as follow-up trait score minus baseline trait
score, with a positive value indicating increased clustering
and a negative value indicating decreased clustering.

Predictors. Baseline weight was defined by the baseline
BMI quintile and change in weight by the change in BMI
quintile during 7 years of follow-up. Similarly, baseline IR
level was defined by the baseline fasting insulin quintile,
and change in IR by the change in fasting insulin quintile.
We adopted this method because the absolute change in
insulin level between baseline and follow-up could not be
determined since a different insulin assay had been used at
baseline and follow-up.

Analysis. Because trait score change was approximately
normally distributed (see Fig. S1) (Supplementary Data are
available at www.liebertpub.com/met/), the relationships
between the outcome (change in trait score) and the pre-
dictors (baseline BMI or/and fasting insulin or/and change
in BMI or/and fasting insulin over time) were assessed using
linear regression. Individuals were assigned values for pre-
dictor variables based on quintile values at baseline (values
1–5) and follow-up examinations (values 1–5). The change
in BMI quintile and the change in fasting insulin quintile for
each participant were calculated as [quintile at follow-up]
minus [quintile at baseline] (values - 4 to + 4). The mean
[95% confidence interval (CI)] change in trait score (outcome)
associated with a 1-quintile difference in BMI or fasting in-
sulin (predictor) at baseline was calculated from the slope of
the regression line between outcome and predictor. Similarly,
the mean (95% CI) difference in trait score (outcome) asso-
ciated with a 1-quintile change over 7 years in BMI or fasting
insulin (predictor) was calculated from the slope of the re-
gression line between outcome and predictor. Predictors were
modeled individually, in pairs (baseline and change in BMI or
fasting insulin), and together (baseline and change in BMI and
fasting insulin). All regression models were adjusted for age,
sex, and baseline trait score to account for regression to the
mean effects. We performed supplementary analysis using
WC in place of BMI, and using HOMA-IR in place of fasting
insulin (Table S1). We performed all analyses using SAS
(SAS Institute, Cary, NC).

Results

Baseline data

There were 2616 subjects available for analysis [mean
(standard deviation, SD): age, 54 (10) years; women, 54%;
BMI, 27.1 (4.7) kg/m2; WC, 91.7 (14.0) cm or 36.1 (5.5)
inches; fasting insulin 63 (47) pmol/L]. At baseline, approx-
imately one-third of subjects had high levels of the four in-
dividual metabolic traits from which we derived the trait score
(abnormal trait prevalence: hypertension, 43%; low HDL-C,
40%; high TGs, 32%; and impaired fasting glucose, 28%).

The baseline prevalence of elevated metabolic traits and the
baseline trait score were positively related to the baseline BMI
quintile and to the baseline fasting insulin quintile (Table 1).

Metabolic changes during follow-up

Adiposity was higher at follow-up than at baseline [mean
(SD) BMI change 0.9 (0.0) kg/m2, and WC change 7.6 (0.3)
cm (3.0 (0.1) inches), both P < 0.0001]. The mean (SD)
change in weight was 1.9 (6.3) kg, and the proportion of
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people losing weight in the whole cohort was 35%. After 7
years, a higher proportion of subjects was hypertensive
(change, 11%, P < 0.001) or had impaired fasting glucose
(13%, P < 0.001) when compared to baseline. The preva-
lence of hypertriglyceridemia was unchanged (change, - 1%,
P = 0.24) and the prevalence of low HDL-C was lower after 7
years (change, - 7%, P < 0.001).

At follow-up, 25% of individuals gained ‡ 1 metabolic
traits and 10% lost ‡ 1 metabolic traits. At follow-up, the
proportion of individuals possessing < 1 of the metabolic
traits from which we derived the trait score was lower than
at baseline, and the proportion with two or more of the four
or traits was higher than at baseline (Fig. S2).

Trait score change was approximately normally distrib-
uted (Fig. S1). Unadjusted mean [standard error of the mean
(SEM)] trait score change was 0.25 (0.02) units, and was
unchanged after adjustment for age, sex, and trait score at
baseline (both P < 0.0001).

Individual predictors of trait score
change over 7 years

Trait score change was negatively related to baseline
age (b = - 0.006, P = 0.005) and baseline cluster score (b =
- 0.319, P < 0.0001), and there was a weak nonsignificant
relationship with male sex (b = 0.054, P = 0.16). All ana-
lyses of trait score change were adjusted for baseline age,
sex and trait score.

Adjusted trait score changes were associated with baseline
BMI and the baseline fasting insulin quintile (Fig. 1A). Ad-
justed trait score changes appeared to be more strongly related
to change in the BMI quintile than to change in the fasting
insulin quintile (Fig. 1B). The individuals who experienced a
2–3 quintile reduction in fasting insulin or BMI during follow-
up were also more likely to experience declustering—in other
words have a reduction in trait score (Fig. 1B).

Adjusted mean trait score change was positively related to
a 1-quintile difference in baseline BMI or fasting insulin, or
a 1-quintile change in BMI or fasting insulin in models that
included these variables individually (Table 2, see data

columns 1–4). Multivariable-adjusted trait score changes
appeared to be more strongly related to quintile changes in
BMI than to fasting insulin [Table 2, see comparison of
mean (95% CI) data in columns 2 and 4].

Influence of baseline level and follow-up changes
in BMI or fasting insulin on cluster score change

The adjusted trait score change was positively associated
with baseline and follow-up BMI quintiles (Fig. 2A). Ad-
justed trait score change appeared to be more strongly related
to quintile changes in BMI during follow-up than to quintile
differences in BMI at baseline (Table 2, see data column 5).

The adjusted trait score change was positively related to
the baseline fasting insulin quintile and to the follow-up
insulin quintile (Fig. 2B). Quintile changes in fasting insulin
and quintile differences in baseline fasting insulin were in-
dependently and equally related to the adjusted trait score
change (Table 2, see data column 6).

Influence of baseline level or/and follow-up changes
in BMI and fasting insulin on cluster score change

The adjusted trait score change was positively related to
quintile differences in BMI and fasting insulin at baseline
(Fig. 3A) and to quintile changes in BMI and fasting insulin
in an analysis that also adjusted for the baseline BMI and
fasting insulin quintile (Fig. 3B).

The adjusted trait score change was independently related
to quintile differences and quintile changes in BMI and
fasting insulin [Table 2, see mean (95% CI) data column 7].
Of the four predictor variables in this analysis, the baseline
BMI quintile appeared to be least strongly associated with
the adjusted trait score change.

Influence of WC or/and HOMA-IR on cluster
score change

Results were virtually identical when WC replaced BMI
and HOMA-IR replaced fasting insulin in the analyses (see
Table S1).

Table 1. Baseline Prevalence of Abnormal Metabolic Syndrome Traits by Baseline BMI
or Fasting Insulin Quintile

Predictors: BMI or
fasting insulin

Outcome: baseline prevelence
of metabolic syndrome trait Baseline BMI or fasting insulin qunitile

Baseline BMI quintile 1 2 3 4 5 P value

Hypertension (%) 29 34 40 49 65 < 0.0001
High triglycerides (%) 15 23 30 43 47 < 0.0001
Low HDL-cholesterol (%) 22 33 41 47 55 < 0.0001
High fasting glucose (%) 18 20 24 34 43 < 0.0001
Baseline trait score 0.9 (1.0) 1.1 (1.1) 1.4 (1.1) 1.7 (1.2) 2.1 (1.2) < 0.0001

Baseline fasting
insulin quintile

1 2 3 4 5 P value

Hypertension (%) 31 34 41 49 64 < 0.0001
High triglycerides (%) 14 20 28 38 58 < 0.0001
Low HDL-cholesterol (%) 20 29 36 48 67 < 0.0001
High fasting glucose (%) 14 23 24 32 46 < 0.0001
Baseline trait score 0.8 (0.9) 1.1 (1.0) 1.3 (1.1) 1.7 (1.2) 2.3 (1.2) < 0.0001

Date are % or mean [standard deviation (SD)]. Trait score is calculated as the sum of abnormal metabolic syndrome traits.
BMI, body mass index; HDL, high-density lipoprotein.
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Discussion

Main findings

Our novel findings are that change in the clustering of
metabolic traits is related to both BMI and IR at baseline
and also to changes in BMI and IR over time. IR appears to
account for some of the effect of BMI on changes in trait
clustering, but BMI accounts for little of the effect of IR.
We have shown for the first time that declustering is related
to both a decrease in BMI quintile and to a decrease over
time in the IR quintile (Fig. 1B).

Prior studies

Cross-sectional studies. Our cross-sectional data confirm
the results of several cross-sectional studies that have shown
consistent positive relationships between metabolic traits
and measures of adiposity8–14 or IR.7–10,12–16 Our data are
also in keeping with the studies that assessed both adiposity

and IR and showed positive independent relationships with
prevalent metabolic traits8–10,12–14 or prevalent metabolic
trait clustering,8–10,13,14 including a study that assessed IR
by hyperinsulinemic euglycemic clamp.13

Baseline BMI and IR in relation to metabolic trait change over

time. A smaller number of studies have assessed how ad-
iposity5,17–23 or IR5,17,19–21,23,24,30 or both5,17,19–21,23 mea-
sured at baseline are related to the development of abnormal
metabolic traits18,20–23,30 or metabolic trait clustering17,19

over time.
We showed that BMI and IR assessed at baseline were each

related to prospective changes in metabolic trait clustering.
Our prospective data is in keeping with the results of two
large population-based studies,5,17 but most studies have in-
dicated that baseline IR is less important than baseline adi-
posity.19–21,23 The most important of these was a large study
from Mauritius and Australia in which insulin sensitivity,
assessed by homeostatic model assessment of insulin sensi-
tivity (HOMA-S), was related to progression of individual

FIG. 1. (A) Trait score change shows positive relationships with baseline fasting insulin and baseline body mass index
(BMI). (B) Trait score change shows positive relationships with change in fasting insulin and change in BMI. Mean (SE)
values are adjusted for age, sex, and baseline trait score.
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metabolic traits in a univariate analysis, but not in a mul-
tivariate analysis that adjusted for all other features of the
metabolic syndrome. Although the authors took precautions
to avoid co-linearity in their multivariable statistical mod-
els, it is possible that the direct effects of IR on changes in
metabolic traits were negated by their multivariable mod-
eling procedure.

Change in BMI and IR in relation to metabolic trait change

over time. Although there have been several studies that
have assessed how a change in BMI is related to prospective
changes in metabolic traits,1,25–28 only one study has as-
sessed the relationship of a change in IR, with or without a
change in BMI, to metabolic trait clustering.29

Previously, we showed in the Framingham Heart Study
that baseline weight in women and weight gain in men and
women was related to increased metabolic trait clustering
over time.1 In that study, we showed that weight loss was
associated with declustering. Our current study adds to these
observations by showing the additional relationship of IR
with clustering and declustering of metabolic traits.

A dominant influence of change in BMI on changes on
metabolic traits was shown in a community-based study of
937 individuals.29 In this study, principal component anal-
ysis revealed that prospective change in BMI was the vari-
able most strongly related to prospective change in other
metabolic risk factors, including IR. Our study extends this
work by showing that changes in risk factor clustering are
independently related both to baseline levels and to change
in BMI or/and IR.

Pathophysiology

All definitions of the metabolic syndrome include a
measure of adiposity as a core component. There are
compelling reasons to believe that obesity could cause the
other features of the syndrome through mechanisms that
may involve IR. For example, adipose tissue and ectopic
fat in liver and skeletal muscle is a rich source of adipo-
kines such as tumor necrosis factor-a (TNFa), which can
inhibit insulin signaling leading to IR and hyperglyce-
mia.39 There is good evidence that IR can give rise to the
so-called diabetic dyslipidemia by increasing hepatic TG
synthesis and reducing circulating HDL-C levels.40 Obe-
sity can cause hypertension directly through increasing
cardiac output and by inducing a renal-pressure natriure-
sis.41 However, obesity could also cause hypertension by
causing IR and hyperinsulinemia, which could influence
sodium retention,42 the sympathetic nervous system,43 cell
membrane cation transport, and smooth muscle prolifera-
tion.6,44

The idea that IR might mediate some of the metabolic
effects of obesity is relevant because it is entirely consistent
with the results of our analysis, which suggest that IR ac-
counts for some of the effect of obesity on metabolic trait
clustering. Conversely, we showed that BMI accounts for
little of the effect of IR on trait clustering. Gerald Reaven
first popularized the idea that IR has a central role in the
etiology of the syndrome,6 but more recent biological ar-
guments cast doubt on this view.45–47 However, the lack of
stronger arguments in favor of IR may simply reflect our
limited understanding of the relevant pathophysiology. Our
data suggest that IR is related to metabolic syndrome clus-
tering at least as strongly as BMI.
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Strengths and limitations

Our study has several strengths. We assessed changes in
the metabolic trait clustering in relation to baseline levels
and to prospective changes in BMI and IR in a large pop-
ulation-based sample. All models in our analysis adjusted
for baseline cluster score to correct for regression to the
mean effects.

Our study has some limitations. First, we did not use
directly measured IR. Second, we used different insulin
assays at baseline and follow-up assessment, but we ad-
dressed this by using fasting insulin quintiles defined by
subjects without diabetes at each exam. Third, our analysis
may have overestimated the influence of within-person in-
crease in BMI or IR on trait clustering because population
mean values for both BMI and IR may have increased
during follow-up, and our analysis was unable to adjust for
this. Similarly, because of the potential for having a shifting

(rising) BMI and IR baseline, our analysis may underesti-
mate the influence of reducing BMI or reducing IR quintile
on risk factor declustering. Fourth, we cannot exclude the
influence of unmeasured confounders such as inflammation,48

diet, exercise, and medication on the observed relationships.
Fifth, we had limited power to perform sex-stratified analysis,
which might be important because BMI could have a stron-
ger influence on metabolic trait clustering in women than
in men.1,17 Last, our findings may have limited generaliz-
ability to non-white ethnic groups such as blacks, who may
demonstrate less metabolic risk factor clustering than in
whites.17,21

Clinical implications

Our study did not evaluate any intervention but the results
support promotion of dietary and lifestyle interventions that
encourage weight loss and lower IR. Reduction in BMI or

FIG. 2. (A) Subjects moving to a higher body mass index (BMI) quintile or those maintaining the same BMI quintile
experience the greatest increase in trait score. Moving to a lower BMI quintile is associated with a lower trait score at
follow-up. (B) Subjects becoming or remaining insulin resistant experience the greatest increase in trait score. All data are
adjusted for age, sex, and baseline trait score.
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IR could be potential targets to reduce the risk of diabetes
and CVD embodied in trait clustering.

Conclusions

We conclude that trait clustering is independently as-
sociated with baseline levels and changes in BMI and IR,
highlighting the importance of both obesity and IR. We
showed that IR accounts for some of the effect of BMI, but
BMI accounts for little of the effect of IR. These obser-
vations are in keeping with our current understanding of
the molecular mechanisms linking IR and obesity to trait
clustering.

Our results need to be replicated in other cohorts, and, if
confirmed, the mechanisms directly linking IR with change
in metabolic trait clustering should be explored because this
may have important therapeutic implications.
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