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Heterodimeric Bispecific Single-Chain Variable-Fragment
Antibodies Against EpCAM and CD16 Induce

Effective Antibody-Dependent Cellular Cytotoxicity
Against Human Carcinoma Cells
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Abstract

A heterodimeric bispecific biological recombinant drug was synthesized by splicing DNA fragments from two
fully humanized single-chain variable-fragment (scFV) antibody fragments forming a novel drug simultaneously
recognizing the CD16 natural killer (NK) cell marker and the cancer marker epithelial cell adhesion molecule
(EpCAM). The drug precipitously enhanced the killing of human carcinomas of the prostate, breast, colon, head,
and neck even at very low effector:target ratios. The drug EpCAM16 rendered even nonactivated NK cell-
proficient killers and activated them to kill via degranulation and cytokine production. Studies show that
bispecific antibodies can be used to induce proficient killing of the carcinoma targets that ordinarily are resistant
to NK-mediated killing. Apparently, the innate immune system can be effectively recruited to kill cancer cells
using the bispecific antibody platform and EpCAM targeting.
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Introduction

Epithelial cell adhesion molecule (EpCAM), also known as
CD326 or 17-1A antigen, is well known for its expression

on human carcinomas.1 Originally considered a pedestrian
cell surface protein meditating homotypic cell adhesion,2–4 it
is now understood that EpCAM is involved in more complex
pathways that culminate in switching on cancer cells and
cancer stem cells (CSC).5–8 For example, studies show that
EpCAM plays a role in cell proliferation, wnt signal trans-
duction, and as a proto-oncogene.9–11 Its expression correlates
with a poor survival prognosis.1,12 Because it is a high-profile
carcinoma marker, EpCAM has been selected as a target for

various immunotherapeutic approaches.1,13,14 The first
monoclonal antibody tested in cancer patients was a murine
anti-EpCAM antibody, tested mostly in colorectal cancer
cases.15,16 Initial studies showed a significant clinical bene-
fit,17–19 but this could not be confirmed in larger studies in
Europe and the United States.20–22 Thus, studies with fully
human anti-EpCAM monoclonal antibodies (mAbs) with
reduced immunogenicity and improved serum half-life
continue.

Natural killer (NK) cells are a type of cytotoxic lympho-
cytes critical to the innate immune system (reviewed by
Vivier et al.23). NK cells play a different role compared to the
CD3 + cytotoxic T-cells, since they provide a rapid response
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to virally infected cells and tumor formation without antigen
priming. They have the ability to recognize stressed cells in
the absence of MHC, allowing for a much faster killing. NK
cells kill by delivering toxic stores of membrane-penetrating
and apoptosis-inducing granules that contain perforin and
granzymes. They highly express CD16, the FccRIII receptor,
and are not very effective in killing carcinoma cells.

Investigators have shown that it is possible to use cancer
cell markers as targets for the NK immune system, and this
was particularly appealing to our cancer center, which has an
established NK cell therapy program.24,25 Thus, a bispecific
NK cell engager capable of killing EpCAM-expressing car-
cinoma cells was created by splicing a gene encoding an anti-
human CD16 single-chain variable fragment (scFV) to a
human scFV-recognizing human EpCAM. The anti-CD16
was derived from a human phage-display library.26 The
purpose of the hybrid recombinant protein EpCAM16 was to
create a bispecific bridge that would expedite NK-mediated
killing of carcinoma cells. We have found EpCAM16 to be
highly efficient in killing several targets thus far. In this ar-
ticle, we show that EpCAM16 renders NK cell-proficient
carcinoma killers and activates them to kill via degranulation
and cytokine production. Our studies show that this single
agent can be used to engage the innate immune system to kill
multiple types of carcinomas, including cancer of the pros-
tate, breast, colon, head, and neck.

Methods

Construction of bispecific EpCAM16

Synthesis and assembly of hybrid genes encoding the
single-chain bispecific scFV EpCAM16 were accomplished
using the DNA-shuffling and DNA ligation techniques. The

construct is illustrated in Figure 1A. The fully assembled
gene (from 5¢-end to 3¢-end) consisted of an Nco1 restriction
site, an ATG initiation codon, the VH and VL regions of anti-
human CD16 (NM3E2) derived from a phage display library
produced by McCall et al.,26 a 20-amino-acid segment of
human muscle aldolase (PSGQAGAAASESLFVSNHAY), the
VH and VL regions of humanized anti-EpCAM (MOC31),
and finally, a XhoI restriction site. The resultant 1560-bp
NcoI/XhoI fragment gene was spliced into the pET21d
expression vector under the control of an isopropyl-b-d-
thiogalactopyranoside (IPTG)-inducible T7 promoter (Fig.
1B). DNA sequencing analysis (Biomedical Genomics Center,
University of Minnesota) was used to verify that the gene
was correct in sequence and had been cloned in frame. A
separate hybrid gene encoding DTEpCAM was constructed.
Genes for monospecific anti-CD16 scFV and anti-EpCAM
were created in the same manner.

Inclusion body isolation

For bacterial protein expression, plasmids were trans-
formed into the Escherichia coli strain BL21(DE3) (EMD mil-
lipore). After an overnight culture, bacteria were grown in
800 mL Luria broth containing 50 mg/mL carbenicillin. Gene
expression was induced when the culture medium reached
an OD600 of 0.65 with the addition of IPTG (Fischer Biotech).
Two hours after induction, bacteria were harvested and then
homogenized in a buffer solution (50 mM Tris, 50 mM NaCl,
and 5 mM ethylenediaminetetraacetic acid [EDTA], pH 8.0).
After sonication and centrifugation, the pellets were ex-
tracted with 0.3% sodium deoxycholate, 5% Triton X-100,
10% glycerin, 50 mM Tris, 50 mM NaCl, and 5 mM EDTA
(pH 8.0) and washed.

FIG. 1. EpCAM16 was successfully
purified from bacterial inclusion
bodies. (A) A diagram shows the
plasmid p16xEpCAM.pET21
containing the EpCAM16 construct
consisting of an Nco1 restriction site,
the VH and VL regions of anti-human
CD16 (NM3E2), a segment of human
muscle aldolase, the VH and VL
regions of humanized anti-EpCAM
(MOC31), and a XhoI restriction site.
(B) The absorbance trace of the
refolded protein eluted from the
Q-sepharose ion-exchange column
using a stepwise NaCl gradient. (C)
The gel stained with Coomasie blue
showing a single band of about 54 kDa
eluted from the second column that we
ran (size-exclusion column). Lane 1,
molecular-weight standards; Lane 2,
nonreduced EpCAM16; Lane 3,
nonreduced anti-Ly5.1 monoclonal
antibody control. EpCAM, epithelial
cell adhesion molecule.
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Refolding and purification

For refolding proteins from inclusion bodies (IB), IB were
dissolved at 20:1 (mg wet weight/mL) in a solubilization
buffer (7 M guanidine hydrochloride, 50 mM tris, 50 mM
NaCl, 5 mM EDTA, and 50 mM DTT, pH 8.0). After a 1-hour
incubation at 37�C, the pellets were removed by centrifuga-
tion. The supernatant was diluted 20-fold with a refolding
buffer and incubated at 4�C for 2 days. The refolding
buffer consisted of 50 mM Tris–HCl, 50 mM NaCl, 0.8 mM
l-arginine, 20% glycerin, 5 mM EDTA, and 1 mM GSSG, pH
8.0. The buffer was removed by 10-fold dialysis against
20 mM Tris–HCl, pH 9.0. in 20 mM Tris–HCl, pH 9.0, over
four column volumes (Fig. 1B). Sodium dodecylsulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) analysis
was performed, and the fusion proteins were stained with
Coomasie brilliant blue.

NK cells

PBMCs were isolated from adult blood (Memorial Blood
Center) by centrifugation using a Histopaque gradient
(Sigma-Aldrich). NK cells were enriched by negative selec-
tion using the magnetic activated cell-sorting NK Cell Iso-
lation Kit as per the manufacturer’s protocol (Miltenyi
Biotec). Samples were obtained after informed consent and in
accordance with the University of Minnesota human subjects
Institutional Review Board and the Declaration of Helsinki.

Cell lines

The following human cancer cell lines (and cancer types)
were obtained from American Type Culture Collection:
BT-474 (breast), SK-BR-3 (breast), MDA-MB-231 (breast),
MDA- MB-468 (breast), PC-3 (prostate), DU-145 (prostate),
UMSCC-11B (head and neck), NA (head and neck), HT-29
(colorectal), CaCo-2 (colorectal), Daudi (B-cell lymphoma),
Raji (B-cell lymphoma), and U-87MG (glioma). Table 1 de-
scribes the species and tissue of origin for all cell lines. All
carcinoma and glioblastoma cell lines were grown as
monolayers in tissue culture flasks, and the Daudi cells were
grown in suspension. Cells were maintained in either RPMI-
1640 (HT-29, CaCo-2, SK-BR-3, BT-474, DU-145, Daudi, Raji,
MDA-MB-231, MDA- MB-468, UMSCC-11B, or NA) or
DMEM (U-87MG) supplemented with 10% fetal bovine
serum, 2 mM l-glutamine, 100 U/mL penicillin, and 100 lg/
mL streptomycin. In addition to the preceding supplements,
the BT-474 medium contained 10 lg/mL insulin. Cell cul-
tures were incubated in a humidified 37�C atmosphere
containing 5% CO2. When cells were 80%–90% confluent,
they were passaged using trypsin–EDTA for detachment. All
cells were counted using a standard hemocytometer, and
only cells with a viability > 95%, as determined by trypan
blue exclusion, were used for experiments.

Flow cytometry

For NK cell analysis, single-cell suspensions were stained
with the following mAbs: PE/Cy7-conjugated CD56
(HCD56; BioLegend), ECD-conjugated CD3 (UCHT1; Beck-
man Coulter), PerCP/Cy5.5-conjugated anti-human CD107a
(LAMP-1) (H4A3; BioLegend), and Pacific Blue-conjugated
anti-human interferon-c (IFN-c) (4S.B3; BioLegend). The cells
were phenotypically acquired on the LSRII (BD Biosciences)

and analyzed with FlowJo software (Tree Star, Inc.). For
cancer cell analysis in Table 1, the cells were stained with
EpCAM scFV–fluorescein isothiocyanate (FITC) or control
anti-CD19-FITC. To determine the dissociation constant (Kd)
and the maximum number of binding sites (Bmax), the
mean fluorescence intensity was plotted versus the drug
concentration and analyzed with Prism software (GraphPad
Software).

Cytokine production and CD107a degranulation assay

Our use of this assay has been reported.27 Purified pe-
ripheral blood NK cells were incubated overnight at 37�C,
5% CO2, in a basal medium (RPMI supplemented with 10%
fetal calf serum and 1% penicillin/streptomycin). Cells were
washed in 1· phosphate-buffered saline, treated with 10 lg/
mL of EpCAM16 or anti-CD16 scFv (negative control) or
anti-EpCAM Fc (negative control), and incubated for 15
minutes at 37�C. The anti-human CD107a mAb was added
and further incubated for 1 hour, after which target cells
(SKBR3; effector:target [E:T] ratio 2:1), BD GolgiStop
(1:1500), and BD GolgiPlug (1:1000; both from BD Bios-
ciences) were added, and the cells were further incubated
for 5 hours. The cells were then harvested and stained with
mAb CD56 and CD3 before fixation and permeabilization.
The permeabilized cells were then stained for intracellular
IFN-c using anti-human IFN-c mAb. IFN-c and CD107a
expression was evaluated by fluorescence-activated cell-
sorting analysis.

Recombinant interleukin (IL)-12 (Peprotech) was used at
10 ng/mL for NK cells. IL-18 (R&D Systems) was used at
100 ng/mL.

Table 1. Epithelial Cell Adhesion Molecule

Expression on Various Cell Lines Determined

by Flow Cytometry

% Positive cells

Cell line Cancer type EpCAM CD19

SK-BR-3 Human breast cancer 97 3
BT-474 Human breast cancer 93 1
MDA-MB-231 Human breast cancer 14 2
MDA-MB-468 Human breast cancer 89 5
PC-3 Human prostate cancer 98 3
DU-145 Human prostate cancer 63 2
UMSCC-11B Human head neck cancer 97 1
NA Human head neck cancer 92 0
Daudi Human B cell lymphoma 2 97
Raji Human B cell lymphoma 1 96
U87 Human glioma 3 2
HT-29 Human colorectal cancer 95 1
CaCo-2 Human colorectal cancer 92 —

EpCAM expression was measured on various human carcinoma
lines by flow cytometry. The anti-EpCAM scFV was tagged with
FITC and then reacted with various human carcinoma, lymphoma,
and glioma cell lines. Gates established from viable untreated cells
were used to establish percentages of EpCAM- and CD19 FITC-
positive cells. The percentage of FITC-positive cells was determined
from analysis of 10,000 events. As a further negative control, CD19
expression was measured, since CD19 is mostly restricted to normal
and malignant hematopoietic B-cells.

EpCAM, epithelial cell adhesion molecule; scFV, single-chain
variable fragment; FITC, fluorescein isothiocyanate.
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51-Chromium-release cytotoxicity assay

UMSCC head and neck cancer cells and HT-29 colorectal
cancer cells were labeled for 1 hour with 1 lCi of 51Cr per
1 · 105 target cells at 37�C, 5% CO2. The target cells were
washed to remove excess 51Cr, and 5 · 103 labeled target cells
were added to the wells of 96-well round-bottom plates.
Resting effector NK cells or resting effector NK cells coated
with anti-CD16/anti-EpCAM or negative controls were ad-
ded to the plates at E:T cell ratios ranging between 20:1 and
0.08:1. Effector target cells were incubated for 4 hours in a
37�C–5% CO2 incubator. The amount of 51Cr released, which
corresponds to target cell death, was measured by a gamma-
scintillation counter, and the percent target cell lysis was
calculated as follows: [(experimental lysis - spontaneous ly-
sis)/(maximal lysis - spontaneous lysis)] · 100.

To determine maximal lysis, 51Cr-labeled target cells were
treated with 3% Triton-X for 4 hours.

Results

The construct EpCAM16

The purity of all purified hybrid proteins was between
80% and 95% when analyzed by SDS-PAGE (Fig. 1). The
various drug constructs used in this manuscript were iden-
tity-tested by first verifying that the construct was the ap-
propriate molecular weight and then employing blocking
assays to prove that both scFV components of the bispecific
were indeed operational. Figure 2 shows that EpCAM16 was
able to block the activity of a targeted toxin DTEpCAM
constructed of the same anti-EpCAM scFV bound to trun-
cated diphtheria toxin against the EpCAM + target HT-29.
Control bispecific scFV 16 · 19 was not able to block killing.

Both EpCAM16 and monospecific anti-CD16 scFV were
tested for their ability to bind human NK cells using flow
cytometry (Fig. 3). Figure 3 shows that the anti-CD16scFV
construct binds well to the purified human NK cells. When
the Kd was determined against enriched NK cells, anti-CD16
scFV had the lower Kd value of 175, while EpCAM16 mea-
sured 227. Thus, the monospecific form of anti-CD16 binds
more intensely than the bispecific anti-CD16 construct. The
same anti-EpCAM scFV used in the bispecific drug did not
bind human NK cells at all as expected, since EpCAM is an
epithelial marker not found on hematopoietic cells.

EpCAM16 kills carcinoma cell lines

Carcinoma cell lines are known for their resistance to NK
cell-mediated killing. Therefore, to determine the ability of
EpCAM16 to facilitate the killing of EpCAM-expressing
carcinoma cells, it was tested against several EpCAM-
positive carcinoma cells. EpCAM is an epithelial marker and
on all carcinomas derived from epithelial tissue origins by
definition. Most, but not all, carcinoma cell lines that we have
tested in our laboratory express EpCAM with a very high
frequency. Table 1 shows that SK-BR-3, BT-474, and MDA-
MB-468 breast cancer cell lines, prostate DU-145 and PC-3
prostate cancer cell lines, UMSCC-11B and NA head and
neck cancer cell lines, and the HT-29 head and neck colo-
rectal cancer cell lines all express EpCAM at high levels. The
lymphomas and gliomas did not.

The 51Cr release assay is typically used to measure the
killing of target cells by NK cells, since the assay measures
the release of 51Cr from the isotope-pulsed targets upon their
lysis. If EpCAM16 was able to facilitate NK killing, then it
would also be able to facilitate the release of 51Cr from var-
ious carcinoma target cells. Indeed, this was the case for all
the carcinoma lines tested that were treated with 20 lg/mL
EpCAM16. EpCAM16 facilitated the killing of PC-3,
UMSCC-11B, MDA-MB-231, and HT-29 (Fig. 4). In some
cases, killing exceeded 90%. In all instances, high levels of
killing were observed even at low E:T ratios, indicating that
addition of the bispecific antibody efficiently enhances NK
cell cytotoxicity against targets. The same levels of kill were
obtained using EpCAM16 at 2 lg/mL (not shown). EpCAM-
negative Daudi cells did not show enhanced killing, further
demonstrating that killing was specific and correlated with
the presence of EpCAM on the cell surface (Fig. 5).

EpCAM16 and NK cells

To determine if EpCAM16 caused the degranulation of
NK cells, a surrogate marker for NK cell killing, human NK
cells were treated with 20 lg/mL EpCAM16 and then tested
for CD107a expression by flow cytometry. Figure 6A shows
that only EpCAM16, but not any of the controls, including
monospecific anti-CD16 and anti-EpCAM scFV, caused a
significant increase in CD107a expression. Figure 6B shows
that only EpCAM16 caused a simultaneous elevation in
IFN-c production, demonstrating the ability of EpCAM16 to
induce both target-specific cytotoxicity and cytokine pro-
duction. Figure 7A and B show that an EpCAM16-induced
effector function occurs at a concentration of 5 lg/mL, but
the response drops off at 1 lg/mL, indicating dose depen-
dency. Interestingly, Figure 7C shows that when cells are
treated at 5 lg/mL, high levels of activity still occur at E:T

FIG. 2. The EpCAM scFV of EpCAM16 binds EpCAM-
expressing HT-29 colorectal cancer cells. HT-29 cells were
incubated with a targeted toxin DTEpCAM consisting of
anti-EpCAM scFV spliced to diphtheria toxin. The addition
of 100 or 300 nM EpCAM16-bispecific antibody blocked 1 nM
DTEpCAM killing, but the addition of 100 or 300 nM of
16 · 19 bispecific antibody did not. Killing was measured as
inhibition of thymidine uptake. scFV, single-chain variable
fragment.
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ratios as low as 1:1, indicating that even one NK effector cell
can respond against one NK target in the presence of the
bispecific antibody. Thus, the response is quite potent. Figure
7D shows that resting NK cells treated with 20 lg/mL of
EpCAM16 and cocultured with EpCAM-positive CaCo-2
targets efficiently induced target cell lysis.

EpCAM16 and IFN-c production

Since it is not possible to assess cytokine storm in vivo, we
checked for the ability of EpCAM16 to induce the supra-
physiologic IFN-c in vitro. Others have shown that high
levels of IL-12/1L-18 precipitously enhance NK-cell IFN-c
production.28 Thus, CD56-enriched NK cells were stimulated
in the presence of CaCo-2 cells with high-dose IL-12/IL-18 or
5 lg (high dose) EpCAM16 (Table 2). High-dose IL-12/IL-18
showed supraphysiologic stimulation of IFN-c. EpCAM16
treatment revealed IFN-c increases, but they were lower than
those obtained with IL-12/IL-18. Measurement of CD107a in
the same cells indicated NK cell degranulation and killing in
the EpCAM16-treated cells, but not in the IL-12-/IL-18-
treated cells. Together, these findings suggest that EpCAM16
does not induce release of an NK cell cytokine storm while
NK cells kill their EpCAM + targets.

Discussion

Clinical studies have verified the value of BiTE technology
and have resulted in complete responses in carcinoma ther-
apy.29,30 BiTEs are single-chain bispecific scFV antibodies
that simultaneously recognize T-cells via the T-cell receptor
and a cancer cell marker. Although engaging T-cells show

promise, past successes have taught us that the populations
of NK cells also can readily be expanded in patients, and NK
cells can be powerful killers of tumor cells.31 By themselves,
NK cells are marginally effective against carcinomas. How-
ever, using the bispecific scFV platform that we call BiKEs,
NK cells can be effectively recruited to kill even those car-
cinomas that have shed class 1 histocompatibility markers to
avoid T-cell killing.32 The purpose of these studies was to
develop a BiKE platform that would permit the development
of new BiKEs for the use in our program at the University of
Minnesota, currently providing cellular NK cell therapy to 20
patients/year.

In this study, we show that a completely humanized bis-
pecific scFV simultaneously targeting the carcinoma marker
EpCAM and CD16 expressed on the surface of human NK
cells powerfully boosts the killing of various human carci-
noma cell lines, including cancers of the prostate, breast,
colon, and head and neck. The original contribution is the
data showing that the drug is capable of NK activation and
the induction of an IFN-c response, which facilitates the
antitumor response. Our data indicates that although very
effective, binding of the EpCAM moiety of EpCAM16 was
decreased in the bispecific drug as compared to the mono-
specific construct made with the same anti-EpCAM scFV.
The decrease in the ability of bispecific EpCAM16 to bind
NK cells as compared to monospecific anti-CD16 scFV may
indicate that our bispecific framework may be putting an
undo stress on the scFV causing mispairing. Alternatively,
the same number of FITC molecules was conjugated to both
the bispecific and monospecific molecules. Since the bispe-
cific is twice the size of the monospecific, fewer molecules

FIG. 3. Enriched NK cells from 2
normal human donors express CD16.
Enriched NK cells from donors NK1
and NK2 were treated with 10 lg/mL
EpCAM16-FITC or anti-CD16-FITC in
a direct immunofluorescence assay
using flow cytometry. Cells were
highly positive compared to the
untreated cell (no stain) or anti-B-cell
control DT2219ARL-FITC. In every
panel, the histogram from the
experimental sample is compared to
the untreated blank control. NK,
natural killer; FITC, fluorescein
isothiocyanate.
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might bind to the cell, reducing its signal. Future studies will
be necessary to determine this. Regardless, the bispecific
EpCAM16 molecule is impressive in its ability to enhance the
NK cell activity.

A more recent study of EpCAM targeting BiTEs indicate
that anti-EpCAM targets CSC.33 The BiTE was affectively
redirected to destroy the tumor initiating CSC in a pancreatic
cancer model in vivo. Increasing evidence indicates that CSC
may play a decisive role in the development and progression
of different human tumors.34,35 The current consensus defi-
nition is that a CSC is a minority population within a tumor
that is able to self-renew and produce the heterogeneous
lineages of cancer cells that comprise the majority of the tu-

mor mass.35 Since tumorigenic CSC are highly resistant to
standard chemotherapy, such cells may be the source of the
inevitable relapse of carcinomas. Thus, directing NK cells
using this drug may be a powerful method of directing
nonselective NK cells to specifically kill CSC.

How do these bispecific drugs work? The mechanism is
not fully understood, but clearly the drug functions to bring
NK cells into close proximity with EpCAM + carcinoma
cells. In a second stage of interaction, an immune lytic syn-
apse forms between the NK effector cells and tumor targets,
resulting in the LFA-1/ICAM interactions that accelerate
tumor cell killing. Findings in this article showed that
CD107a was precipitously elevated. Others have shown that

FIG. 4. EpCAM16 engages enriched
human NK cells to kill various
carcinoma cells in vitro. EpCAM-
expressing HT-29 colorectal, MDA-
MD-468 breast, PC-3 prostate, and
UMSCC-11B head and neck cancer
cells were tested in different
experiments. Cancer cells were mixed
with enriched NK cells from 2 different
normal donors (NK donor 1 and NK
donor 2) and EpCAM16 in plastic
plates. After 4 hours, the cells were
pulsed with 51Cr, and the NK activity
was calculated based on the isotope
release from lysed target cells. In all
instances, EpCAM16 showed vastly
enhanced NK-killing activity. Control
wells where cells were incubated with
anti-CD16 alone, anti-EpCAM alone,
control anti-EpCAM · Her2/Neu
(EpCAM23), or no drug at all did not
enhance NK activity.
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CD107a expression is an indicator of NK cell functional ac-
tivity identifying a large fraction of activated NK cells.36

CD107a is expressed on degranulating NK cells that secrete
cytokines as well as a large subset of NK cells that do not
secrete cytokine after stimulation. Thus, we also tested for

IFN-c release, which requires a higher threshold to induce,
and this was increased as well.

Studies have addressed the temporal aspects of cytokine
secretion and show that CD16 NK cell receptor engagement
releases proinflammatory cytokines and chemokines, and
that IFN-c release occurs later in the process.37 Thus, IFN-c
secretion is indicative of a cascade that functions to activate
signal transducers and activators of transcription complexes
that regulate the expression of the immune system genes and
enhance the anticancer response. Together, the data suggest
that bispecific scFV interactions activated NK cells to kill
both directly and indirectly, explaining the impressive anti-
cancer effects that have been observed clinically.

Overproduction of cytokine or cytokine storm can lead to
unwanted toxicity. The following points suggest that cy-
tokine storm may not be a problem with EpCAM16. (1)
High-dose IL12/IL-18 was used in this article to induce su-
praphysiologic IFN-c responses in enriched NK cells mim-
icking cytokine storm in vitro. In comparison, treatment with
EpCAM-16 did not. (2) The lack of the Fc domain in Ep-
CAM16 may limit formation of multiple cell bridging, a
requisite for cytokine storm.26 (3) Schmitt et al. studied a
trifunctional hybrid recognizing EpCAM, CD3, and CD16
in vivo.38 ELISPOT analysis indicated that the construct did
not induce cytokine storm.

One advantage of EpCAM16 is that it is entirely hu-
manized, so an HAMA response will be unlikely. Anti-
human EpCAM and anti-human CD16 do not cross-react
with rodent EpCAM or rodent CD16. Thus, safety testing
and establishing maximum tolerated dose are options in
primate models. In fact, an anti-EpCAM/anti-CD3 hybrid
protein (Catumaxomab) was developed and tested for
toxicity in standard animal models, including mouse, rat,
rabbit, guinea pig, and cynomolgus monkey.39 Adminis-
tration of drug at doses exceeding the human therapeutic
dose range did not result in abnormal or substance-related
acute toxicity or local intolerability at the administration
site. In a multicenter clinical study, 24 patients with Ep-
CAM-positive GI cancer received an MTD of catumaxomab,
and 11 of 17 evaluable patients (65%) were progression-free
at the final examination. One patient had a CR, and 3
patients had a PR (discussed by Seimetz et al.39). Regarding
side effects, in a different phase I/II clinical trial of catu-
maxomab for malignant pleural effusion, the most common
side effects in 24 patients were pyrexia, elevated liver en-
zymes, nausea, and decreased lymphocytes.40 Acceptable
safety profiles may result because BiTEs are not as toxic as
drug or toxin conjugates, and therefore some normal cell
damage occurs, but is reversible.

FIG. 5. EpCAM16 does not engage
enriched human NK cells to kill
EpCAM-negative Daudi B-cell
lymphoma cells. Daudi cells were
mixed with enriched NK cells from
2 different normal donors (NK donor
1 and NK donor 2) and EpCAM16 in
plastic plates. Killing was calculated
from 51Cr release. EpCAM16 did not
enhance the NK-killing activity.

FIG. 6. EpCAM16 markedly enhances the expression of
CD107a, considered a marker of NK cell activity and
expression of interferon-c (IFN-c). SKBR3 human breast
cancer cells were incubated with enriched resting NK cells
in the presence of 20 lg/mL EpCAM16. (A) Cells were
studied by flow cytometry to determine the expression of
CD107a, also called lysosomal-associated membrane pro-
tein. Levels were elevated, but not in cells treated with
control anti-EpCAM, anti-CD16 scFV, or untreated cells. (B)
Cells were studied by flow cytometry to determine the
expression of IFN-c. The levels were elevated, but not in
cells treated with control anti-EpCAM, anti-CD16 scFV, or
untreated cells.
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In summary, heterodimeric EpCAM16 is a potent engager
of the innate immune system and may be highly useful in a
clinical NK cell therapy program. Since chemotherapy re-
sistance is the major problem in today’s clinical carcinoma
treatment, this bispecific drug may be very valuable because
of its different mechanism of action. Based on these data,
EpCAM16 could be tested against any EpCAM + carcinoma
and would be particularly valuable in clinical programs in
which the NK cell therapy is currently in use.
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IFN, interferon; NK, natural killer.
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