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Abstract
Alcoholic fatty liver disease (AFLD), a potentially patho-
logic condition, can progress to steatohepatitis, fibrosis, 
and cirrhosis, leading to an increased probability of 
hepatic failure and death. Alcohol induces fatty liver by 
increasing the ratio of reduced form of nicotinamide 
adenine dinucleotide to oxidized form of nicotinamide 
adenine dinucleotide in hepatocytes; increasing hepatic 
sterol regulatory element-binding protein (SREBP)-1, 
plasminogen activator inhibitor (PAI)-1, and early 
growth response-1 activity; and decreasing hepatic per-
oxisome proliferator-activated receptor-α activity. Alco-
hol activates the innate immune system and induces an 
imbalance of the immune response, which is followed 
by activated Kupffer cell-derived tumor necrosis factor 
(TNF)-α overproduction, which is in turn responsible for 
the changes in the hepatic SREBP-1 and PAI-1 activity. 
Alcohol abuse promotes the migration of bone marrow-
derived cells (BMDCs) to the liver and then reprograms 
TNF-α expression from BMDCs. Chronic alcohol intake 
triggers the sympathetic hyperactivity-activated hepatic 
stellate cell (HSC) feedback loop that in turn activates 
the HSCs, resulting in HSC-derived TNF-α overproduc-
tion. Carvedilol may block this feedback loop by sup-
pressing sympathetic activity, which attenuates the 
progression of AFLD. Clinical studies evaluating com-

bination therapy of carvedilol with a TNF-α inhibitor to 
treat patients with AFLD are warranted to prevent the 
development of alcoholic liver disease. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Alcohol induces fatty liver by increasing the 
nicotinamide adenine dinucleotide/nicotinamide ad-
enine dinucleotide ratio; increasing the activity of sterol 
regulatory element-binding protein (SREBP)-1, plas-
minogen activator inhibitor (PAI)-1, and early growth 
response-1; and decreasing peroxisome proliferator-ac-
tivated receptor-α activity in liver. Alcohol activates the 
innate immune system and induces an imbalance in the 
immune response followed by the activation of Kupffer 
cell-derived tumor necrosis factor (TNF)-α overproduc-
tion, which is responsible for the dysregulated SREBP-1 
and PAI-1 activity. Bone marrow-derived cells and sym-
pathetic hyperactivity-activated hepatic stellate cells are 
also responsible for TNF-α overproduction in ethanol-
induced hepatosteatosis. Carvedilol may attenuate the 
progression of ethanol-induced hepatosteatosis by sup-
pressing sympathetic activity. 
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INTRODUCTION
Alcohol consumption is a major risk factor for chronic 
disease. Based on 58 studies from 17 Global Burden of  
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Diseases (GBD) regions, alcohol use disorders accounted 
for 9.6% (7.7%-11.18%) of  age-standardized disability-
adjusted life years (DALYs) worldwide in 2010[1]. Alco-
hol-induced liver cirrhosis was responsible for 0.9% of  
all global deaths and 47.9% of  all liver cirrhosis deaths in 
2010[2]. In addition, alcohol accelerates the progression of  
other liver diseases, such as hepatitis C virus infection[3], 
hepatocellular carcinoma[4], and graft dysfunction in pa-
tients with liver transplantation[5]. Alcoholic liver disease 
(ALD) is a potentially avoidable disease because excess 
alcohol consumption is required for its development. 
However, alcohol consumption is not sufficient to elicit 
ALD because only a minority of  heavy drinkers progress 
from alcoholic fatty liver disease (AFLD) to steatohepati-
tis, fibrosis, and cirrhosis[6-8]. 

Lieber et al[9] demonstrated that, as in humans, alco-
hol alone can induce hepatosteatosis in rats. Alcohol, as 
a hepatotoxin, causes hepatocellular damage via ethanol 
metabolism-induced oxidative stress and the inflamma-
tory response in the liver[9,10]. Changes in the fibronectin 
levels in both plasma and hepatic cells are an early re-
sponse to liver damage in mice with carbon tetrachloride-
induced liver injury[11]. Our recent study also showed that 
fatty liver is associated with zone 3 (perivenular) fibrino-
genesis in AFLD rats that have mildly elevated serum 
alanine aminotransferase levels, a marker of  liver injury[12] 
(Figure 1). Other studies have illustrated that fatty liver is 
especially susceptible to endotoxins and that it progresses 
to steatohepatitis, fibrosis, cirrhosis and even hepatocel-
lular carcinoma, especially when accompanied with other 
co-morbidity factors[13], such as hepatitis C virus infec-
tion[3,14], diabetes[15], and smoking[16]. This review first 
summarizes the classical concepts on the pathogenesis of  
AFLD and the role of  tumor necrosis factor (TNF)-α, 
the major pro-inflammatory cytokine in ALD, in the in-
duction of  fatty liver, and then focuses on the roles of  
lipid metabolism-associated transcription factors [sterol 
regulatory element-binding protein (SREBP)-1 and per-
oxisome proliferator-activated receptor (PPAR)-α], plas-
minogen activator inhibitor (PAI)-1, and early growth re-
sponse (Egr)-1 in the pathogenesis of  AFLD. This report 
also describes the recent studies that have characterized 
the alcohol-mediated changes in bone marrow-derived 
cell (BMDC) mobilization and recruitment in the liver, 
sympathetic nervous system (SNS) activity, and TNF-α 
overproduction from BMDCs and SNS-activated hepatic 
stellate cells (HSCs). In addition, our recent research sug-
gests that carvedilol, which blocks the SNS via β1, β2, 
and α1 adrenergic receptors, can block the sympathetic 
hyperactivity-activated HSC feedback loop to down-reg-
ulate TNF-α overproduction and, thereby, attenuate the 
progression of  AFLD in rats. Further understanding of  
these underlying mechanisms could generate therapeutic 
interventions to reduce the progression of  ALD from 
the benign condition (fatty liver) to severe forms of  liver 
injury (steatohepatitis, fibrosis, and cirrhosis).

Spectrum and risk factors
Chronic alcohol abuse leads to liver injury, which pres-
ents as a broad spectrum of  disorders. Fatty liver, also 
known as AFLD, is the earliest sign of  alcohol-induced 
liver injury. AFLD occurs in 80% of  unselected heavy 
drinkers who consume an excess of  80 g of  alcohol a 
day[17]. Approximately 20%-40% of  alcohol abusers will 
progress to the next stage, alcoholic steatohepatitis, which 
is characterized by inflammation and hepatocyte death[17]. 
Thirty to 60% of  alcoholic steatohepatitis results in se-
vere complications (liver failure and portal hypertension) 
with high short-term mortality[17,18]. Approximately 40% 
of  alcoholic steatohepatitis develops to necroinflamma-
tion and fibrosis[17]. Approximately 10% of  heavy drink-
ers progress to cirrhosis[17,19,20]. Among alcoholic-related 
cirrhosis cases, 1%-2% of  cases per year develop to he-
patocellular carcinoma[21].

The major ALD risk factors include sex, obesity, 
drinking patterns, co-existing viral infection, and ge-
netic factors[22,23]. Being female is a risk factor for ALD 
due to lower first-pass metabolism and gastric alcohol 
dehydrogenase (ADH) activity[24]. Obesity exacerbates 
the abnormalities in hepatic lipid oxidation[25] and ac-
celerates fibrosis and cirrhosis progression in ALD[26]. 
Experimental studies indicate that ethanol feeding aug-
ments the impairment of  hepatic sirtuin1-adenosine 
monophosphate-activated protein kinase signaling in 
obese mice[25]. Certain patterns of  drinking, such as 
commencing drinking at an early age and frequent drink-
ing, as well as dietary compositions, increase the risk 
that severe forms of  ALD will develop from fatty liver 
disease[19,27]. However, cumulative alcohol consumption 
is the most strongly correlated factor with the progres-
sion of  AFLD[28]. Co-existing viral infection amplifies 
alcohol-related hepatotoxicity and then enhances the 
development of  cirrhosis due to the correlation between 
increased iron deposition in hepatocytes and Kupffer 
cells, resulting in increased oxidative stress, cellular in-
jury, and fibrogenesis in ALD[29,30]. 

Genetic factors are also responsible for the suscep-
tibility to and death rate from ALD[31,32]. The gene for 
patatin-like phospholipase domain-containing protein 3 
(PNPLA3), a genetic risk factor for increased fat accu-
mulation in patients with non-alcoholic fatty liver disease 
(NAFLD)[33], has also been analyzed in patients with 
AFLD[34,35]. The data for AFLD indicate that PNPLA3 
carriers are at a high risk for developing alcoholic liver 
injury[36]. 

Taken together, the previous studies support the pos-
sibility that AFLD is a complex disease where subtle in-
terpatient genetic variations and the environment interact 
to produce the disease phenotype and determine disease 
progression[36]. This may partly explain why some heavy 
drinkers do not progress to alcoholic steatohepatitis, 
while some mild alcoholics develop steatohepatitis. 
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Fatty liver and alcohol 
metabolism
Fatty liver is characterized by the accumulation of  fat 
(mainly triglycerides, phospholipids, and cholesterol es-
ters) in zone 3 (perivenular) hepatocytes; in steatosis, the 
fat is diffused into zone 2 and zone 1 (periportal) hepato-
cytes during the development of  AFLD (Figure 2).

Alcohol is absorbed from the jejunum (the major 
site), and small amounts of  fat are also absorbed from 
the mouth, esophageal, gastric, and large intestine muco-
sal membranes. Approximately 2% (at low blood-alcohol 
concentration) and 10% (at high blood-alcohol concen-
tration) of  alcohol is excreted directly through the lungs, 
urine, or sweat. Approximately 90% of  ingested alcohol 
is metabolized in the liver[37]. Alcohol is primarily oxidized 
to acetaldehyde by ADH in the cytosol of  hepatocytes, 
and it is partly metabolized by cytochrome P-450 and 
catalase in the hepatocyte microsomes and hepatocyte 
peroxisomes, respectively. Acetaldehyde dehydrogenase 
converts acetaldehyde to acetate primarily in the hepato-
cyte mitochondria (Figure 3). 

Acetaldehyde is the key toxin in alcohol-induced liver 
injury, causing cellular damage, inflammation, extracellu-

lar matrix remodeling, and fibrogenesis[38]. Acetaldehyde 
increases the ratio of  the reduced form of  nicotinamide 
adenine dinucleotide (NADH) to the oxidized form of  
nicotinamide adenine dinucleotide (NAD+) in the hepa-
tocytes to decrease the β-oxidation of  fatty acids by the 
mitochondria, resulting in fatty liver[39-41]. Acetaldehyde 
also forms an adduct with tubulin that induces microtu-
bule dysfunction, resulting in decreased lipoprotein trans-
portation from the liver[39]. 

Acetate, which is largely present in other tissues, 
can be incorporated into acetyl-CoA, a mitochondrial 
fuel, for use in Krebs cycle oxidation and fatty acid syn-
thesis[42]. This conversion is catalyzed by the acyl-CoA 
synthetase short-chain family member and contributes 
to lipid synthesis and energy generation[43,44]. Acetate can 
affect histone modification to up-regulate acetyl-CoA and 
enhance the inflammatory response in ethanol-exposed 
macrophages by reducing histone deacetylase activity[45]. 
Moreover, a recent study demonstrated that the forma-
tion of  acetate from alcohol is key to the process of  alco-
hol-induced inflammatory gene expression by promoter 
histone acetylation in acute alcoholic steatohepatitis[46]. 
However, the effect of  acetate on the development of  
fatty liver via histone modification is not well understood.
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Figure 1  Fatty liver is associated with perivenular fibrinogenesis in rats. Control: 7-wk control liquid diet-fed rat; Ethanol: 7-wk 5 g/dl ethanol liquid diet-fed rat. T: 
terminal hepatic venule, scale bars = 50 μm. 
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Figure 2  Alcohol-induced hepatosteatosis in rats. Oil red O staining of liver sections; Control: 7-wk control liquid diet-fed rat; Ethanol: 7-wk 5 g/dL ethanol liquid 
diet-fed. T: Terminal hepatic venule. Scale bars = 50 μm.
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liver[58]. TNF-α, the major pro-inflammatory cytokine in 
ALD, is involved in inflammatory responses, steatosis and 
cell death[58,59]. Alcohol abuse increases gut permeability 
and the translocation of  bacteria-derived lipopolysac-
charide (LPS) from the gut to the liver. In the liver, LPS 
activates Kupffer cells through the LPS/Toll-like recep-
tor-4 pathway, leading to TNF-α production after nuclear 
factor-κB activation[59]. Normally, only an occasional par-
ticle of  LPS, derived from Gram-negative bacteria in the 
intestinal microflora, penetrates the mucosa and enters 
the portal circulation, resulting in clearance of  LPS with-
out significant inflammatory cell activation in the liver. 
However, alcoholics have increased circulating endotoxin 
levels, and patients with ALD have a high frequency of  
endotoxemia[60,61]. Studies using macromolecular mark-
ers have demonstrated a correlation between intestinal 
permeability and alcoholic liver damage[61,62]. LPS-binding 
protein and CD14[63,64] are LPS receptors that trigger dif-
ferent downstream signaling pathways and induce nuclear 
factor-κB activation, resulting in TNF-α production and 
liver injury. TNF-α has been shown to increase hepatic 
fatty acid synthesis by increasing hepatic acetyl CoA car-
boxylase (ACC) and fatty acid synthase (FAS) activities[65], 
decreasing lipoprotein lipase activity[66], and inhibiting 
fatty acid oxidation in hepatocytes[67]. Studies of  trans-
genic mice lacking the TNF receptor[57] and studies that 
involve treating mice and rats with antibodies against 
TNF-α during chronic ethanol exposure[55] have shown 
that TNF-α overproduction plays an important role in 
the progression of  ALD. 

TNF-α overproduction due to ethanol-induced 
sympathetic hyperactivity
Our recent studies have indicated that alcohol-induced 
lipogenesis triggers sympathetic hyperactivity, activating 

Under chronic and heavy alcohol intake conditions, al-
cohol oxidation also occurs via cytochrome P450s, result-
ing in increased levels of  cytochrome P450 2E1, which in 
turn causes oxidative stress through the generation of  re-
active oxygen species (ROS)[47,48]. ROS are responsible for 
lipid peroxidation and alcoholic liver injury[49]. The non-
oxidative metabolism of  alcohol, mediated by catalase, 
is responsible for AFLD via the production of  fatty acid 
ethyl ester[50]. Increased blood alcohol concentrations in-
crease the levels of  fatty acid ethyl esterase, which can be 
used as a marker for chronic alcohol consumption[51,52]. 

Changes in the degree of  fatty liver do not parallel 
the changes due to the chronic consumption of  alcohol 
in animal models[53], and antioxidant treatment was not 
as successful as expected for treating ALD[54]. Other as-
pects of  ethanol-induced liver injury besides the alcohol-
metabolism-related mechanism underlying ALD should 
be examined. 

Fatty liver and TNF-a 
overproduction 
The production of  TNF-α is one of  the earliest liver re-
sponses to injury[55]. TNF-α, a mediator of  the mamma-
lian inflammatory response, transduces differential signals 
to regulate cellular activation and proliferation, cytotoxic-
ity, and apoptosis[56]. 

TNF-α overproduction due to the ethanol-induced 
imbalance of immune responses
ALD is associated with the imbalanced immune responses 
that result in the increased production of  pro-inflam-
matory cytokines[57,58]. Cytokines, the low-molecular-
weight polypeptide mediators of  cellular communication, 
are produced and released by different cell types in the 
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HSCs in AFLD rats and leading to TNF-α overproduc-
tion[12] (Figure 4). Using the same rat model of  AFLD, 
carvedilol, which can block the SNS via β1, β2, and α1 
adrenergic receptors, blocked the SNS-activated HSC 
feedback loop and attenuated the development of  fatty 
liver in rats[12] (Figure 5). The high fatty acids levels in 
the peripheral circulation enhance reflex vasoconstric-
tor responses[68] and activate the SNS indirectly through 
pathways originating in the liver[69]. Chronic alcohol ad-
ministration is associated with observable sympathetic 
hyperactivity, as evidenced by a high level of  3-methoxy-
4-hydroxyphenylglycol (noradrenalin metabolite) in the 
peripheral circulation[70] and a high level of  tyrosine 
hydroxylase (the rate-limiting enzyme in the synthesis of  
catecholamine) in the liver[12]. Spontaneously hypertensive 
rats, which possess high sympathetic tone[71], develop 
severe liver injury when given hepatoxins[72]. Epinephrine 
pre-exposure enhances LPS treatment-induced liver dam-
age[73]. Chronic alcohol exposure up-regulates the Kupffer 
cell α2A-adrenoreceptor to release TNF-α, resulting in 
liver injury[74]. 

TNF-α overproduction from the BMDCs in the liver
BMDCs are known to play important roles in parenchy-

mal regeneration and liver injury[75-78]. Our recent study 
showed that BMDCs in the liver increase in a time-
dependent manner after ethanol treatment in a mouse 
model of  AFLD[79] (Figure 6). Furthermore, the BMDCs 
produce TNF-α in the same AFLD mouse model[79] 
(Figure 7), indicating that alcohol abuse may promote 
the migration of  BMDCs to the liver and then repro-
gram TNF-α expression from the BMDCs to promote 
the development of  AFLD in mice. Our results have 
given new insight into the mechanism of  ALD; however, 
further in vitro studies with cultured cells are essential 
to understanding the changes in bone marrow cells and 
endogenous cells during ethanol exposure as well as to 
understand the recruitment of  BMDCs from the bone 
marrow during the ALD progression.

TNF-α overproduction and lipid metabolism-associated 
regulators
Administering TNF-α to mice increased the rates of  fatty 
acid synthesis and the activation of  SREBP-1, resulting 
in fatty liver development[80-82]. TNF-α up-regulates the 
expression of  SREBP-1 mRNA in the livers of  rats[12] 
and stimulates the maturation of  the SREBP-1 protein 
in human hepatocytes[80]. An endotoxin-induced systemic 
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TNF-α                                                        α-SMA                                                TNF-α/α-SMA

Figure 4  Ethanol-activated hepatic stellate cells, which can product tumor necrosis factor-α in rats fed with a 7-wk 5 g/dl ethanol liquid diet. The white 
arrows indicate tumor necrosis factor (TNF)-α positive cells; yellow arrows indicate cells positive for α-smooth muscle actin (α-SMA), a marker of activated hepatic 
stellate cells; white arrowheads indicate TNF-α positive cells that did not overlap with α-SMA positive cells; yellow arrowheads indicate cells that are both TNF-α- and 
α-SMA-positive; scale bar = 10 μm.

Control                                                                Ethanol                                                  Ethanol + carvedilol

Figure 5  Carvedilol attenuates the development of ethanol-induced hepatosteatosis. Oil red O staining of liver sections; Control: 7-wk control liquid diet-fed 
rat; Ethanol: 7-wk 5 g/dL ethanol liquid diet-fed rat; Ethanol + carvedilol: 7-wk 5 g/dL ethanol liquid diet-fed rat with one-week carvedilol pretreatment (10 mg/kg body 
weight/d) before the end of the study. Scale bars = 200 μm.
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inflammatory state can reduce PPAR-α expression[83]. 
The effects of  ethanol on SREBP-1 and PPAR-α are me-
diated by increased portal endotoxin and hepatic TNF-α 
overproduction. Moreover, recent studies suggest that 
Egr-1[84,85] and PAI-1[86-88] are also responsible for AFLD 
via TNF-α overproduction. 

Collectively, the previous studies have shown that 
TNF-α overproduction is closely coupled with alco-
holic liver injury. However, the role of  TNF-α in AFLD 
induction remains uncertain. It seems more likely that 
ethanol-induced TNF-α overproduction regulates lipid 
metabolism-associated transcription factor gene expres-
sion (SREBP and PPAR-α) as well as induces PAI-1 and 
Egr-1 gene expression, promoting the AFLD progres-
sion.

Fatty liver and lipid metabolism-
associated transcription 
factors
Fatty liver and SREBP
SREBP is a family of  transcription factors that regulates 
the enzymes responsible for the synthesis of  cholesterol, 
fatty acids, and triglycerides in the liver and other tis-
sues. The following are 3 isoforms of  SREBP: SREBP-
1a, SREBP-1c, and SREBP-2. SREBP-1a is the major 
form in most cultured cell lines[89], while SREBP-1c is the 

predominant form in most animal tissues including the 
liver[90]. SREBP-1 plays an important role in regulating 
the transcription of  genes involved in hepatic triglycer-
ide synthesis (such as fatty acid synthase, stearoyl-CoA 
desaturase, and ATP citrate lyase)[91]. However, SREBP-2 
is responsible for regulating genes related to cholesterol 
metabolism[92]. 

Alcohol consumption directly up-regulates SREBP-1c 
gene expression via its metabolite acetaldehyde[91] and in-
directly up-regulates SREBP-1c expression by activating 
the endoplasmic reticulum response to cell stress[93,94], gut-
derived LPS[59], and SREBP downstream proteins, such 
as Egr-1[84,85] and TNF-α[80]. Acetaldehyde treatment in-
creases the levels of  SREBP-1 in HepG2 cells in a dose-
dependent manner[94]. Elevation of  the hepatic SREBP-1 
level is associated with increased gene expression of  fatty 
acid synthase and the accumulation of  triglycerides in 
the mouse liver after liquid ethanol consumption[91]. The 
connection between SREBP and fatty liver has also been 
recognized in transgenic mice[95,96]. These results suggest 
that alcohol and the acetaldehyde produced from alcohol 
metabolism increase the synthesis of  the SREBP-1 pro-
tein and enhance hepatic lipogenesis, resulting in ALD 
progression. 

Alcohol can also modify SREBP expression via down-
regulation of  AMP-activated protein kinase (AMPK), 
promoting the AFLD progression[97,98]. AMPK, a lipid 
regulator, regulates the hepatic triglyceride and cholester-
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Figure 6  Bone marrow-derived cells increase in a time-dependent manner in the alcoholic fatty liver disease mouse liver. Control: 4 wk after the bone mar-
row transplantation [from male transgenic mice expressing green fluorescence protein (GFP) to female wild-type mice]. The mice were fed water and standard mouse 
pellet chow for 8 or 16 wk; Ethanol: 4 wk after the bone marrow transplantation (from male transgenic mice expressing GFP to female wild-type mice), the mice were 
fed 10 g/dl ethanol and standard mouse pellet chow for 8 or 16 wk; scale bar = 20 μm. 
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ol synthesis pathways by phosphorylating and inhibiting 
enzymes related to lipid metabolism, such as 3-hydroxy-
3-methyl glutamate-CoA reductase and ACC[99]. ACC, a 
rate-limiting enzyme in hepatic fatty acid biosynthesis, 
catalyzes the conversion of  acetyl-CoA to malonyl-CoA. 
Malonyl-CoA is known as a precursor for the synthesis 
of  fatty acids and an inhibitor of  carnitine palmitoyl-
transferase-1 (CPT-1). AMPK can also activate malonyl-
CoA decarboxylase (MCD) to reduce the malonyl-CoA 
levels, increasing fatty acid oxidation[99]. Fatty acids are 
transported from the cytoplasm into the mitochondria via 
CPT-1 and are metabolized through the mitochondrial 
β-oxidation pathway. Thus, the AMPK-related inhibition 
of  ACC and activation of  MCD can lead to decreased 
synthesis and increased degradation of  malonyl-CoA and 
can then reduce the inhibition of  mitochondrial CPT-1, 
resulting in increased fatty acid transportation into the 
mitochondria for oxidization. 

Alcohol can reduce the blood level of  adiponectin, 
which is a hormone produced from the adipose tissue 
that activates PPAR-α and AMPK as well as inhibits 
SREBP-1[100]. AMPK activation can decrease the stability 
of  mature SREBP-1 protein in hepatocytes by accelerat-
ing its proteasomal degradation[101]. The alcohol-mediated 
reduction in AMPK activity is responsible for the de-
creased activity of  MCD and the increased ACC activity 
by change the phosphorylation state of  these enzymes, 
and then reduces the fatty acid oxidation via the increased 
malonyl-CoA levels and the decreased CPT-1 activity, all 
of  which contribute to the induction of  AFLD[98,102,103]. 
These results suggest that AMPK may become a thera-
peutic target for AFLD.

Fatty liver and PPAR-α
PPAR-α, a member of  the nuclear hormone receptor 
superfamily, can be activated by binding free fatty acids 
to regulate the transcription of  the genes involved in the 
oxidation, transport, and export of  free fatty acids[104]. A 
PPAR-α agonist can negatively regulate ACC[105]; how-

ever, PPAR-α positively controls MCD[106]. PPAR-α-null 
mice that chronically receive a high-fat diet have severe 
fatty liver with elevated plasma free fatty acid levels even 
after a 24-h fast[107].

Alcohol consumption can inhibit fatty acid oxidation 
via suppression of  PPAR-α in hepatocytes[108]. Acetalde-
hyde directly inhibits the gene transcription activity and 
DNA-binding ability of  PPAR-α in hepatocytes[109]. Eth-
anol can also indirectly inhibit PPAR-α via up-regulation 
of  cytochrome P450 2E1-mediated oxidative stress[110]. 
Wy14643 and clofibrate, the PPAR-α activator, reverse 
the ethanol-induced PPAR-α dysfunction and abnor-
malities in hepatic lipid metabolism in mice[111]. PPAR-α 
agonist treatment prevents alcohol-induced fatty liver, he-
patic inflammation, and hepatic insulin resistance in mice 
with AFLD[111,112]. These results confirm the critical role 
of  PPAR-α in lipid homeostasis and the progression of  
AFLD. 

Fatty liver and PAI-1
PAI-1 plays an important role in the development of  
ALD[86,113]. Increased fibrinolysis is common in ALD, 
and PAI-1 is the major factor influencing fibrinolysis via 
inhibiting plasminogen activators[86]. PAI-1 is normally 
expressed in adipocytes and endothelial cells. However, 
PAI-1 can be induced to high levels in multiple cell types 
under injury and/or inflammation conditions[113,114]. PAI-1 
is a major inhibitor of  both the tissue-type plasminogen 
activator and urokinase-type plasminogen activator, regu-
lating fibrinolysis by inhibiting plasminogen activation. 

Alcohol up-regulates PAI-1[115,116], and its level can 
be used as an index for the severity of  the disease[116]. 
Recently, a human study showed that even patients with 
simple NAFLD have increased PAI-1 levels, and the in-
crease in hepatic PAI-1 mRNA expression is related to 
the histological severity of  the steatosis and the steato-
hepatitis[117]. Furthermore, the increased levels of  PAI-1 
are accompanied with increased grades of  inflammation 
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TNF-α                                                            GFP                                                      TNF-α/GFP 

Figure 7  tumor necrosis factor-α is produced by the bone marrow derived-cells in the alcoholic fatty liver disease mice. The white arrows indicate tumor 
necrosis factor (TNF)-α-positive cells; yellow arrows indicate cells positive for green fluorescence protein (GFP), a marker of bone marrow-derived cells; white arrow-
heads indicate TNF-α positive cells that did not overlap GFP positive cells; yellow arrowheads indicate cells that are both TNF-α- and GFP-positive cells; scale bar = 
10 μm. 
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or severity of  steatohepatitis, which is expressed by the 
non-alcoholic steatohepatitis (NASH) activity score[117]. 
This effect is most likely not restricted to NAFLD and 
NASH because PAI-1, as an acute-phase reactant, is 
increased in different types of  both acute and chronic 
hepatic inflammation[118]. Acute ethanol treatment rapidly 
induces hepatic PAI-1 expression, and the development 
of  a fatty liver was prevented under these conditions by 
genetic (PAI-1-/- mice) or pharmacologic inhibition of  
hepatic PAI-1 expression in mice[88]. Taken together, these 
data indicate that PAI-1 plays an important role in AFLD, 
which is similar to the previous findings in experimental 
NAFLD[119].

Various mechanisms could be responsible for the 
link between fatty liver and increased PAI-1 levels. One 
mechanism by which TNF-α could cause fatty liver is 
through the induction of  PAI-1 expression. The ethanol-
induced up-regulation of  PAI-1 expression was blunted 
in TNFR1-/- mice[88], suggesting that TNF-α is a potent 
inducer of  PAI-1 expression, most likely via the mitogen-
activated protein kinases pathway[87]. Additionally, pre-
venting the induction of  PAI-1 expression blunts AFLD, 
which is likely mediated by an increase in very low-density 
lipoprotein synthesis in the genetic absence of  this acute-
phase protein[86,88]. Another possible mechanism is that 
increased liver fat could directly stimulate hepatocytes to 
secrete PAI-1, as evidenced by the fact that higher circu-
lating levels of  PAI-1 are associated with higher hepatic 
PAI-1 mRNA expression in patients with NAFLD[120]. 

Fatty liver and Egr-1
Egr-1, known as nerve growth factor, is a zinc-finger 
transcription factor discovered to have a role in the regu-
lation of  cell growth and proliferation[121]. Egr-1 expres-
sion is rapidly and transiently induced in response to a 
variety of  stimuli, such as cytokines, growth factors, envi-
ronmental stress, ischemic injury, and tissue damage[121,122]. 

Egr-1 is an important contributor to increased LPS-
stimulated TNF-α secretion from Kupffer cells after 
chronic ethanol exposure[123]. Enhanced sensitivity to LPS 
after chronic ethanol exposure is caused by enhanced ex-
pression and DNA-binding activity of  the transcription 
factor Egr-1 in Kupffer and RAW 264.7 cells (a macro-
phage-like cell line)[124]. Overexpression of  a dominant-
negative form of  Egr-1 in RAW 264.7 macrophages pre-
vents the LPS-induced up-regulation of  hepatic TNF-α 
mRNA expression after chronic ethanol treatment[124]. 
Collectively, these data suggest that Egr-1 may contribute 
to the increased sensitivity of  macrophages to LPS-stim-
ulated TNF-α production after chronic ethanol exposure.

ROLE OF OTHER REGULATORY FACTORS
The present review has summarized a few key factors 
responsible for the development of  AFLD. However, the 
following factors may also contribute to the progression 
of  AFLD. Adipocytes, which can secrete leptin and re-

sistin, may be responsible for the development of  AFLD 
by modulating insulin sensitivity and insulin resistance[125]. 
Mitochondria are a primary source of  ROS production, 
and subsequently become a primary target of  ethanol-
induced oxidative stress. Mitochondrial functions are 
suppressed after exposure to toxic compounds (including 
ethanol)[126]. Alcohol abuse increases oxidative stress[10], 
which then leads to the modification and degradation of  
mitochondrial proteins, resulting in inhibition of  their 
functions and/or down-regulation of  their protein ex-
pression[127]. Alcohol-induced oxidative stress may activate 
the AMPK signaling system, which controls mitochon-
drial function[128]. Ethanol-induced ROS overproduction 
results in the phosphorylation of  stress-activated protein 
kinases, including c-Jun N-terminal protein kinase, and 
inhibits insulin receptor-1[129]. Activation of  the insulin 
signaling pathway by endogenous substances, such as the 
fat-derived hormone adiponectin[103], may contribute to 
decreased fat accumulation in AFLD livers. In addition 
to activating pro-inflammatory cytokines, the activation 
of  the innate immune system also stimulates Kupffer 
cells to produce the hepatoprotective cytokine interleukin 
(IL)-6 and the anti-inflammatory cytokine IL-10 dur-
ing the development of  ALD[130,131]. IL-6-deficient mice 
are more susceptible to AFLD and liver injury[132,133]. 
IL-6 treatment ameliorates AFLD and prevents mortal-
ity associated with fatty liver transplants in rats[134]. The 
hepatoprotective function of  IL-6 is mediated via signal 
transducer and activator of  transcription (STAT) 3 ac-
tivation[130,133,135]. Studies on cell-type-specific STAT3-
knockout mice suggest that STAT3 in hepatocytes plays 
an important role in inhibiting fatty acid synthesis while 
promoting inflammation; on the other hand, STAT3 in 
macrophages/neutrophils inhibits inflammation during 
alcoholic liver injury[133,136]. In the liver, IL-10 inhibits the 
release of  pro-inflammatory cytokines, such as TNF-α 
and IL-6, from macrophages/monocytes to attenuate the 
progression of  fatty liver disease and liver injury[137]; how-
ever, IL-10 also inhibits hepatoprotective cytokines, such 
as IL-6, and promotes fatty liver disease[138]. The overall 
effect of  IL-10 on fatty liver and liver injury depends on 
the balance of  the pro- and anti-inflammatory factors in 
the system[59,130]. 

CONCLUSION
AFLD, a frequently observed and potentially pathologi-
cal condition, plays an important role in the development 
of  advanced liver disease. AFLD is induced through the 
complex interactions between alcohol doses, alcoholic 
metabolites, cytokines, transcriptional factors, SNS activ-
ity, BMDC mobilization, oxidative stress, and mitochon-
drial dysfunction. In addition to the major mechanism 
indicated in this review, ethanol consumption can also 
promote fat transport from peripheral adipose tissues 
into the liver and inhibit fat export from the liver[139]. 
Most studies in this review were conducted in cultured 
hepatocytes or animal models. The mechanisms sum-
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marized in this review could be used to understand the 
etiologic mechanisms of  AFLD in humans. However, 
caution should always be taken in extrapolating data 
obtained from in vitro and in vivo animal studies. The 
mechanisms for AFLD and liver injury in humans are 
more complicated due to differences in food intake, 
genetic makeup, race, gender, age, and environmental 
factors. Lipid metabolism-associated regulators, such as 
SREBR-1, PPAR-α, PAI-1, and Egr-1, potentiate AFLD, 
and TNF-α is responsible for the changes in these lipid 
metabolism-associated regulators. Thus, inhibition of  
TNF-α overproduction by Kupffer cells, HSCs, and BM-
DCs has therapeutic potential in the treatment of  AFLD. 
Furthermore, alcohol metabolism triggers the sympa-
thetic hyperactivity-activated HSC feedback loop, leading 
to TNF-α production. Carvedilol can block this feedback 
loop and attenuate the development of  fatty liver in rats. 
Clinical studies evaluating combination therapy of  carve-
dilol with a TNF-α inhibitor to treat AFLD patients are 
warranted.

Other therapy targets, such as CXC chemokines[140]; 
pentoxifylline, a phosphodiesterase inhibitor[141]; oxida-
tive stress[141]; and TNF-α[141], for alcoholic hepatitis were 
reviewed by Orman et al[140] and Dhanda et al[141]. Pent-
oxifylline also reduces the complications in patients with 
advanced cirrhosis[142]. There have been some advances 
in our understanding of  the pathogenesis and clinical 
characteristics of  alcoholic liver disease. However, stan-
dardized nomenclature and histologic classifications are 
lacking; the animal models do not accurately mimic ad-
vanced alcoholic liver disease; and the pathophysiologic 
significance of  the serum levels of  biomarkers is unclear 
(due to impaired liver clearance and ongoing bacterial 
infections). Additional detailed studies on these potential 
targets in humans and animal models are urgently need-
ed.

The pathophysiological significance of  hepatic lipid 
accumulation in the absence of  significant alcohol con-
sumption, defined as NAFLD, is also increasingly recog-
nized and regarded as the hepatic manifestation of  the 
metabolic syndrome (substantially reviewed by Heller-
brand[143] and Miyake et al[144]). Both AFLD and NAFLD 
encompass mild fatty liver to steatohepatitis with sig-
nificant necroinflammation and progressive fibrosis. 
However, the interaction between alcohol and obesity is 
poorly understood, and it is unknown whether the com-
bined effects of  alcohol and obesity on the progression 
of  liver injury progression are additive or synergistic. It is 
important to describe the single individual and combined 
effects of  alcohol and the metabolic syndrome on both 
hepatic steatosis and other organs to understand the dif-
ferences between AFLD and NAFLD. 

TNF-α has also been found to have a crucial role in 
alcoholic hepatitis, and small preliminary studies have 
evaluated the effect of  anti-TNF therapy in this con-
dition[145]. However, the use of  anti-TNF-α drugs in 
alcoholic hepatitis is still controversial and needs to be 
investigated further. TNF-α overproduction also occurs 

in juvenile idiopathic arthritis[146] and ulcerative colitis[147], 
and a TNF-α inhibitor has been used to treat both condi-
tions. However, neither prolonged nor tapering treatment 
seems to influence the risk of  relapse[146].
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