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Abstract

It has recently been shown that both high-frequency and low-frequency cardiac and respiratory 

noise sources exist throughout the entire brain and can cause significant signal changes in fMRI 

data. It is also known that the brainstem, basal forebrain and spinal cord area are problematic for 

fMRI because of the magnitude of cardiac-induced pulsations at these locations. In this study, the 

physiological noise contributions in the lower brain areas (covering the brainstem and adjacent 

regions) are investigated and a novel method is presented for computing both low-frequency and 

high-frequency physiological regressors accurately for each subject. In particular, using a novel 

optimization algorithm that penalizes curvature (i.e. the second derivative) of the physiological 

hemodynamic response functions, the cardiac -and respiratory-related response functions are 

computed. The physiological noise variance is determined for each voxel and the frequency-

aliasing property of the high-frequency cardiac waveform as a function of the repetition time (TR) 

is investigated. It is shown that for the brainstem and other brain areas associated with large 

pulsations of the cardiac rate, the temporal SNR associated with the low-frequency range of the 

BOLD response has maxima at subject-specific TRs. At these values, the high-frequency aliased 

cardiac rate can be eliminated by digital filtering without affecting the BOLD-related signal.
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INTRODUCTION

Cardiac induced pulsations are a common nuisance in fMRI data analysis and confound 

accurate detection of activation, especially in resting-state data where the temporal 
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fluctuations of the signal associated with neuronal activation is weak (Biswal et. al., 1996; 

Dagli et. al., 1998; Hu et. al., 1995; Le and Hu, 1996; Lowe, 1998). In the past, there has 

been many post-processing methods suggested to decrease the influence of cardiac noise in 

fMRI time-series analysis. These methods can be classified as retrospective correction 

techniques using external physiological recording of the cardiac pulse (Hu et. al., 1995;. 

Glover et. al., 2000; Lund et. al., 2005) or data-driven techniques (Greve and Dale, 2002; 

Beckmann et. al., 2005; Perlbarg et. al., 2007; Beall and Lowe, 2007). The former class of 

methods assumes that the temporal profile of the cardiac process at all voxels can be 

determined by a measurement of the cardiac pulse using a pulse-oximeter with sensor 

attached to one finger of the subject. More data-driven methods use Independent Component 

Analysis (ICA) to separate physiological noise sources from the data (Beckmann et. al., 

2005). It has been reported that spatial ICA can provide several components that are likely 

related to the cardiac cycle (Perlbarg et. al., 2007). In another study, it has been shown that 

temporal ICA may be better suited to extract cardiac-related components (Beall and Lowe, 

2007). However, temporal ICA may be difficult to use for fMRI data due to the enormous 

size of the number of voxels present requiring a rather drastic reduction of the voxel space 

by PCA or other dimensionality reduction techniques.

Characterization of cardiac-related noise is complicated. The cerebral fMRI signal has been 

shown to vary considerably across the cardiac cycle due to sharp increases of blood pressure 

in the cerebral vasculature during the systolic phase causing an intracranial pressure wave 

(Dagli et. al., 1999). The associated force leads to bulk motion of large brain regions such as 

the diencephalon and brainstem (Enzmann et. al., 1992). Movement of CSF is also caused 

by the increase and cranial pressure, affecting ventricles and nearby regions (Piche et. al., 

2009). Furthermore, due to the high vascularization of grey matter, global blood volume 

changes have also been reported at the capillary level during systole (Greitz, 1993). Thus, 

cardiac-induced noise at the capillary level may exist contributing to significant fluctuations 

of the BOLD response in fMRI. Since the blood pressure is a periodic function of time, the 

induced BOLD response will have major frequency components at the cardiac rate. 

However, it is known that the heart rate is not stationary across a typical time interval for 

fMRI scanning and shows small rate variations. These heart rate fluctuations can induce 

low-frequency contributions (< 0.1 Hz) affecting resting-state networks (Shmueli et. al., 

2007). In addition, it was observed that the cardiac rate and BOLD signal time courses in the 

resting-state were negatively correlated in grey matter at time shifts of 6–12s and positively 

correlated at time shifts of 30–42s. Recently, this complex behavior of cardiac response 

function and BOLD signal was studied by estimating a cardiac-related hemodynamic 

response function consisting of the difference of a gamma and a Gaussian function (Chang 

et. al., 2009). This response function is characterized by a peak at 4s and a dip at 12s. 

Modeling the cardiac-related BOLD response by a convolution of the cardiac-related 

hemodynamic response function and the cardiac rate could explain about 4% of the variance 

in resting-state grey matter voxels (Chang et. al., 2009). The study by Chang et. al. provides 

evidence that cardiac-induced BOLD signal contributions are more global and not only 

related to the vicinity of larger blood vessels.

A further component of the cardiac noise arises from the coupling of the respiratory and the 

cardiac cycle leading to major frequency contributions at the sum and difference of the 
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fundamental cardiac frequency and respiratory frequency (Brooks et. al., 2008). However, it 

has been reported that the coupling between cardiac and respiratory components in grey 

matter is not very strong and, if present, only located to a small number of voxels (Beall, 

2010).

The heart-rate during fMRI has been shown to be quasi stationary during most studies 

(Shmueli et. al., 2007). Standard deviations of the heart-rate were in general less than 0.1 Hz 

for the majority of their subjects. To reduce cardiac-induced noise, digital filtering has been 

used previously in rapid acquisition fMRI where the fundamental cardiac frequency did not 

alias (Biswal et. al., 1996). In most fMRI studies, however, TR = 2s is used leading to 

aliased frequency components of the cardiac rate which may overlap with task frequencies 

or low-frequency components of intrinsic neuronal networks (as in resting-state). To our 

knowledge it has never been studied if, after aliasing of the cardiac rate, band-pass filtering 

could be used to significantly reduce the effects attributed to the cardiac rate in fMRI. This 

raises the question, if certain sampling rates (TRs) of the EPI acquisition are more favorable 

than others to eliminate or at least reduce the effect of cardiac noise.

The goal of this study is to shed more light on solutions to the problem of physiological 

noise contamination in fMRI. In particular, we would like to answer the following questions: 

Which TRs are favorable and do not lead to aliasing of cardiac pulsations into the low-

frequency BOLD range? How much of the physiological noise can be eliminated?

To answer these questions, we performed a detailed analysis of the physiological noise 

sources and computed the aliasing properties of cardiac and respiratory noise at different 

sampling rates.

METHODOLOGY

Effect of aliasing

Alias means “false identity”. In signal processing aliasing refers to the fact that high 

frequency components larger than the Nyquist frequency, fNQ, are mapped into low 

frequency components (below the Nyquist frequency). Aliasing will always be present for 

any finite function f(t), because a finite function will contain an infinite frequency spectrum 

due to Fourier space properties. Thus, aliasing is always present in real data acquisition.

The relationship between the Nyquist frequency and the TR is given by

(1)

According to signal processing (see Appendix), the Fourier transform of sampled functions 

is obtained by

(2)
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where F(μ) is the Fourier transform of the continuous function, f(t), which is then sampled 

by (ΔTTR in fMRI), and  is the Fourier transform of the sampled function.

The cardiac frequency spectrum in the normal population during 5 minute resting intervals 

has a small standard deviation σc of the order of 0.06Hz (Malik 1996) and mean resting 

frequency typically in the range of 1Hz to 1.3Hz (http://en.wikipedia.org/wiki/Heart_rate). 

We approximate the cardiac frequency spectrum by a Gaussian distribution with a mean μ0c 

and standard deviation of σc, yielding

(3)

Using Eq.(2), we then obtain the distribution of the sampled frequencies by

(4)

Since all frequencies will map to the interval [−fNQ, fNQ, and positive frequencies are non-

distinguishable from negative frequencies in the real world, we augment the positive 

frequencies with equivalent negative frequencies. Also, the zero frequency need to be 

counted twice. This will give the following distribution:

(5)

Low frequency-contributions of the cardiac rate

Cardiac fluctuations of the heart rate have been shown to cause more complicated changes 

in cerebral blood flow, indicating a signal low-pass filtering relationship between heart rate 

and the corresponding BOLD response (Shmueli et. al., 2007). This relationship was 

determined recently using a deconvolution approach according to linear system theory. It 

was found that the cardiac-induced BOLD response can be described in general by a 

convolution of the low-frequency cardiac rate time series (obtained from physiological 

measurements) and a cardiac response function, hC(t). In a recent publication, Chang et. al. 

(2009) approximated hC(t) by a difference of a gamma and a Gaussian function according to

(6)

where a1 = 0.6/1.0167, a2 = 2.7, a3 = 1.6, a4 = 2.128/1.0167, a5 = 18, a6 = 12 (Chang et. al., 

2009). The denominator in the expression for a1 and a4 arise from the normalization 

condition var(hc(t)) = 1 that we impose in this research. Aliasing of hc(t), however, will not 

occur at typical TRs used in fMRI because the frequency range of the low-frequency cardiac 

response function is less than 0.1 Hz.
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Frequency range of the neuronal BOLD response

The BOLD response is characterized by the neuronal hemodynamic response function and 

can be written as a difference of two gamma functions, according to

(7)

where the units t of are in seconds, similar to Glover (1999). The corresponding frequency 

distribution is given by  and has a maximum at about μ = 0.033Hz and a range 

of approximately 0.1Hz where the power spectrum has the value of 10% of the maximum at 

f = 0.1Hz. Thus, the induced frequency range of the BOLD response is approximately 

limited to the interval (0,0.1) Hz (Cordes et. al., 2001). Removing low-frequency drift less 

than 0.01Hz of the fMRI signal time course will produce an effective frequency range of 

[0.01,0.1]Hz of the BOLD response.

Respiratory-induced frequencies

Typically, in the normal population the respiratory rate at rest during 7 minute intervals has 

a mean μ0R of the order of 0.2Hz to 0.3Hz (http://en.wikipedia.org/wiki/Respiratory_rate) 

and standard deviation σR (of the order of 0.07HZ (Guijt et. al., 2007)). We approximate the 

respiratory frequency spectrum by a Gaussian distribution. The corresponding range of 

frequencies will not yield any mayor aliasing of the respiratory rate at common TRs used in 

fMRI. However, in some studies higher respiratory frequencies up to 0.4Hz have been 

observed (Tong and Frederick, 2010), which will lead to some aliasing at common TRS in 

MRI.

It is known that the change of the respiratory amplitude can induce low-frequency signal 

variations (less than 0.1Hz) that can be described by a convolution of a function related to a 

change of the respiration volume per time, RVT(t) (Birn et. al., 2008), with a respiratory-

related response function parameterized by a two-gamma function hr(t) of the form

(8)

where b1 = 0.6, b2 = 2.1, b3 = 1.6, b4 = 0.0023, b5 = 3.54, b6 = 4.25. In a more recent 

publication, Chang et. al. (2009) used a respiration variation function RV(t) instead of 

RVT(t), defined by

(9)

where R(t) is the respiratory waveform acquired by the respiratory belt with its standard 

deviation evaluated using a sliding window approach (window width w. In this study we use 

a slightly increased w = 10s for extra smoothness, whereas in Chang et. al. w = 6s was used.

Physiological noise and temporal SNR

Labeling the echoplanar signal as S and its standard deviation (over time) σ, the temporal 

SNR, tSNR, is given by
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(10)

where the signal independent noise (thermal noise) is written as σ0 and the signal-dependent 

physiological noise is σP. The temporal SNR is the important measure that directly predicts 

the success or failure of an fMRI experiment. Since the physiological noise increases with 

field strength (because it is proportional to S), it already becomes the major noise source at 

3T and ultimately limits the magnitude of the tSNR. Therefore, removing physiological 

noise by filtering or physiological modeling to increase the tSNR are promising techniques 

to improve detectability of activation in fMRI.

MATERIALS AND METHODS

Subjects

Subjects were 6 healthy undergraduate students with previous fMRI experience from the 

University of Colorado at Boulder: 1 female, 5 male, mean age 23 years, all right-handed. 

For fMRI, subjects were instructed to rest, keep eyes closed and be as motionless as 

possible.

FMRI Acquisition

FMRI was performed in a 3.0 T Trio Tim Siemens MRI scanner equipped with a 12-channel 

head coil and parallel imaging acquisition using EPI with imaging parameters: GRAPPA=2, 

32 reference lines, TE=25ms, FOV=22 cm×22 cm, 14 slices in oblique axial direction 

covering the prefrontal cortex, brainstem and cerebellum, thickness/gap=3.0 mm/1.0 mm, 

resolution 64×64, BW=2170Hz/pixel (echo spacing=0.55ms), 200 time frames. For each 

subject 20 different data sets corresponding to 20 different sampling rates (TR ∈ {700ms, 

800ms, 900ms, …, 2600ms}) were used. The flip angles were set to the Ernst angle. A 

standard 2D co-planar T2-weighted image and a standard 3D high resolution T1-weighted 

MPRAGE image with 1 mm3 resolution were also collected. During EPI heart rate and 

respiratory rate were recorded using a pulse-oximeter and respiratory belt, respectively. The 

sampling rate of physiological noise sources was 50Hz.

Physiological noise sources

The raw cardiac waveform, as measured by the pulse-oximeter, showed a non-stable signal 

amplification over time, presumably due to finger motion that changed the pressure of the 

finger tip on the pulse-oximeter or due to peripheral vasomotion. To normalize the 

amplitude of the cardiac waveform, the envelope function of the maxima of the cardiac 

peaks and the envelope function of the minima of the cardiac wave form were computed. 

The envelope functions of the minima and maxima were then interpolated at the measured 

time points of the cardiac rate. The amplitude of the raw cardiac waveform (distance of local 

maxima to minima) was then divided by the difference of the two envelope functions at each 

time point. This process normalized the cardiac amplitude to 1. The resulting wave form, 

called CHF(t), represents the high-frequency waveform with average frequency in the 1Hz 

range. The low-frequency cardiac waveform, CLF(t), was determined by using a sliding 
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window approach with a window width w = 10s. To avoid artifacts from the end points of 

the window and to obtain a smoother frequency spectrum, CHF(t) was multiplied with a 

Hanning filter (Welch, 1967). The frequency obtained from the sliding window approach 

was assigned to the midpoint of the window.

The raw respiratory waveform, as collected by the respiratory belt, was easier to process 

because the signal amplification did not change. No normalization of the signal was carried 

out and the high frequency respiratory wave function, RHF(t), was identical to the raw wave 

form. To determine the low-frequency respiratory waveform, RLF(t), we used the approach 

according to Chang et. al. (2009), where the change of the standard deviation of RHF(t) was 

computed using a sliding window approach (the corresponding function is also called RV(t)). 

Also here, we chose a window width of w = 10s and used a Hanning filter. We also 

computed the RRF(t) according to Birn et. al. (2008) and compared RLF(t) and RRF(t).

Data analysis

All fMRI data were corrected for differences in timing of slice acquisitions and realigned in 

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The design matrix X was set up using the four 

regressors for the physiological noise sources. The first regressor X1(t) = CHF(t + t0c) is 

essentially the same as the high-frequency cardiac function CHF(t), except that for each 

voxel time series, a temporal shift t0 with 0 ≤ t0 ≤ 1.2s was chosen such that the 

corresponding correlation coefficient is maximum with the voxel time course. To accurately 

determine X1(t), a cubic interpolation was used on CHF(t) sampled at ΔT=0.02s. This phase 

(i.e. time shift) optimization was done for each voxel so that possible delays of the high-

frequency cardiac wave depending on the voxel location could be incorporated. Similarly, 

the second regressor X2(t) = RHF(t + t0R) is a time-shifted version (0 ≤ t0R ≤ 3s) of the high-

frequency respiratory function with maximum correlation coefficient to the voxel time 

course. The third regressor is the low-frequency cardiac waveform, given by X3(t) = CLF(t) * 

hC(t). Similarly, the fourth regressor is the low-frequency respiratory waveform X4(t) = 

RLF(t) * hR(t). All regressors were interpolated at the given TR of the collected voxel time 

series. The design matrix X = [X1 X2 X3 X4] and all voxel time series were then high-pass 

filtered using a cut-off frequency of 1/100 Hz (Frackowiak, 2004) to eliminate low-

frequency drift of the signal. All voxel time series and all regressors in the design matrix X = 

[X1, X2, X3, X4] were variance normalized. A brain mask was used to effectively eliminate 

all non-brain voxels leading to an average of about 1300 voxels per slice. Standard 

smoothing using a Gaussian FWHM=5 mm was carried out to increase the SNR.

Subject-specific physiological response functions

To determine subject-specific physiological response functions hC(t) and hR(t), we use an 

optimization technique with cross-validation, as outlined in Fig.1. Since it is more accurate 

to determine hC(t) and hR(t) over such voxels that show significant activity of the 

corresponding waveforms, we determined both functions in separate runs using voxels for 

which each function is significant at the p<0.05 level (uncorrected) using the functional 

forms of Eqs.(6,8) according to Chang et. al. (2009) and Birn et. al. (2008).
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To determine optimized physiological response functions, first, we set up the voxel-specific 

design matrix X = [X1X2X3] (to determine the cardiac response function) or X = [X1X2X4] to 

determine the respiratory response function). The matrix X is sampled at the corresponding 

TR. The physiological regressors are formed by

(11a)

(11b)

(11c)

(11d)

where the time-shifts t0C and t0R were optimized for each voxel time series and the 

physiological hemodynamic response functions have the form

(12)

and similarly

(13)

where

(14)

and

(15)

Without any restriction, we can normalize both functions using a1 = b1 = 1. In the following 

let the free cardiac and respiratory parameters be abbreviated by

(16)

respectively. To determine all unknown parameters, we use a 2-step approach with cross-

validation. First, all data were split into the sets data1 and data2, where data1 contained all 

voxel time series for TR ∈ {700,900,1100,...,2500} ms and data2 all voxel time series for TR 

∈ {800,1000,1200,...,2600} ms. For each voxel of data1, the squared residual error was 

computed by

(17)
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where y is the voxel time series and b = X+y is the linear least squares solution of the general 

linear model. Then, the mean squared error, , is calculated for all data1 and minimized 

according to the optimization problem

(18)

where we explicitly included regularization parameters λ,μ to penalize the curvature of the 

physiological response function. For the cross-validation step we use data=data2 and 

determine

(19)

as the solution of the optimization problem for the cardiac response function. Similarly, to 

determine the parameters for the respiratory response function, we solve for data=data1 the 

optimization problem

(20)

where λ,μ are parameters that penalize the curvature of hR(t). Then, for cross-validation we 

use data=data2 and determine the optimized parameters by

(21)

Note that  and . According to optimization theory (see for example 

Nocedal and Wright, 2006), penalty terms of the L1 norm-type are exact and it is only 

necessary to find one appropriate value of λ that is large enough where the solution of the 

equality constraint is satisfied for a given μ. In our case this value is λ = 1 for all με[1,30]. 

The solutions to the optimization problems are obtained using the common Nelder-Mead 

algorithm, a derivative-free optimization method available in MATLAB (The MathWorks, 

Inc.).

RESULTS

High- and low-frequency physiological waveforms

Table 1 lists the dominant frequencies of the physiological noise functions CHF(t), RHF(t), 

CLF(t), RLF(t) for all subjects. The mean value of the high-frequency cardiac rate is 0.97Hz 

but varies significantly among the subjects (range 0.84 Hz to 1.37 Hz). Similarly, the high-

frequency respiratory rate is on average 0.21 Hz, but varies between 0.16Hz and 0.25 Hz. 

The dominant frequencies of CHF(t) and RHF(t) are weakly correlated among the subjects 

(correlation coefficient=0.23). The low-frequency cardiac rate has a mean value of 0.051Hz 

and varies from 0.038Hz to 0.063Hz. Similarly, the low-frequency respiratory rate has a 

mean value of 0.046Hz and varies between 0.025Hz and 0.064Hz. The correlation between 

the low-frequency cardiac waveform and the low-frequency respiratory waveform has a 
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distribution, that, when pooled over all TR and subjects, is centered at zero with standard 

deviation equal to 0.18. Thus, there is no significant coupling between CLF(t) and RLF(t). 

Similarly, the correlation between the high-frequency waveforms CHF(t) and RHF(t), has a 

mean of zero with standard deviation 0.09. Also here, there is no significant coupling 

between CHF(t) and RHF(t).

Subject-specific physiological response functions

In Fig.2, we show for the data from subject #1 the solution of the cardiac response function 

according to Eq.(18). We show explicitly how the functional form of hc(t) changes for the 

average curvature . Tables 2 and 3 list the calculated 

parameters of the cardiac and respiratory response functions for all subjects, as determined 

by using the algorithm of Fig.1. For the cardiac response function, the coefficient of the 

derivative term was significantly different from zero and needs to be explicitly included, 

whereas for the respiratory response function, the derivative term did not play any 

significance in reducing the error variance, and thus can be neglected. Note that the 

physiological response functions have been variance normalized. Table 2 also lists 

approximations to the cardiac response function where the coefficient for α is smaller (of 

order 1) such that the approximate cardiac response function (with small α coefficient) is 

still similar to the exact cardiac response function for most time points (t< 30 s). The 

numbers in parenthesis give coefficients of approximate wave forms with small α 

coefficient. The mean squared error (MSE) between the approximate cardiac response 

function and the exact cardiac response function (which is the solution of the optimization 

problem) is less than 7×10−3.

In Fig.3, the subject-specific cardiac response functions are shown. We have also calculated 

the mean cardiac response function and compared it with the cardiac response function 

proposed by Chang et. al. (2009) (see Fig.4). Similarly, Fig.5 and Fig.6 show the obtained 

respiratory response functions for all subjects and the mean respiratory response function in 

comparison to the suggested form by Birn et. al. (2008).

Accuracy of the optimization method to determine physiological response functions from 
limited data

The low-frequency physiological response functions were determined with high accuracy 

using all available data for each subject. Using 10 data sets for estimation of the unknown 

parameters and another 10 data sets for validation (determination of the optimum curvature), 

and each data set consisted of 200 time frames, this amounted to 4000 data points to 

determine the hemodynamic response functions for each subject. It is important to 

investigate how practical the proposed optimization techniques is to estimate the 

physiological response functions based on limited data such as a single resting-state data set 

for estimation of the parameters and another independent resting-state data set for validation. 

In Fig.7 and corresponding Table 4 we show as an example the results for the cardiac 

response function of subject #1. As can be seen, the cardiac response function can be 

determined quite accurately based on 2 independently collected data sets. Specifically, we 

used the following 3 scenarios to determine the cardiac response function for subject #1: 
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Low TR data sets (TR 700ms for estimation, TR 800ms for validation), intermediate TR data 

sets (TR 1600ms for estimation, TR 1700ms for validation), and long TR data sets (TR 

2500ms for estimation, TR 2600ms for validation). Of particular importance is the computed 

mean squared error (MSE) of the obtained functions (based on 2 data sets) and the exact 

function according to Table 2 and Fig. 3 for subject #1.

Explained variance by physiological waveforms

For all brain fMRI data (all TR data sets and all subjects combined), we calculated the 

cumulative distribution of the residual variance by modeling all four (low-and-high-

frequency) physiological regressors optimized at each voxel time series and computed the 

probability distribution p(V > ν) where V is the random variable representing the explained 

variance by all physiological noise sources combined. As is shown in Fig.8, to obtain a 

value of 10% or larger for the explained variance by all physiological noise sources, only 

24% of all brain voxels are affected. However, this number increases to 64% of all voxels 

for an explained variance of 5% or larger.

To calculate accurate p-values of the explained variance, it is necessary to obtain a realistic 

null distribution of the voxel time series that does not contain any of the physiological noise 

characteristics and perform the same type of analysis (optimizing the temporal shift of the 

high-frequency regressors) on the null data with the voxel-optimized design matrix X. 

However, to eliminate physiological noise is not possible in a living subject. We proceeded 

by using wavelet-resampling techniques (Breakspear et. al., 2004; Bullmore et. al., 2001) to 

randomize the voxel time courses without affecting the inherent autocorrelation in the data 

and computed the null distribution of the explained variance. For specific p-values (p=0.05, 

p=0.01, p=0.001) of the explained variance, we calculated for each subject the variance 

contribution of each physiological waveform (Xi) and all physiological waveforms 

(X1X2X3X4) combined (see Table 5). Furthermore, we repeated the analysis using the 

previously published low-frequency physiological response functions of Chang et. al. (2009) 

and Birn et. al. (2008). As can be seen in Table 5, our approach yielded increased values of 

the explained variance (for example at p=0.001, 18% explained variance by our method 

versus 17.9% explained variance using the previously published waveforms). To compare 

above results with data that were not smoothed in the pre-processing stage, we repeated the 

analysis and computed the explained variance by all physiological regressors (Table 6). For 

all subjects, we obtained that the high-frequency regressors were able to explain more 

variance whereas the low-frequency regressors yielded a decrease of the explained variance. 

Overall, the combined effect of all 4 physiological regressors on using unsmoothed data was 

a reduction of explained variance for all subjects (compare Table 5 and Table 6).

In Fig.9(a–f) we show the locations of voxels that are affected by the high-frequency cardiac 

(X1) and respiratory (X2) waveforms, and the low-frequency cardiac (X3) and respiratory 

(X4) waveforms. It is very clear that X1 (first row in Fig.9(a–f)) affects mainly the brainstem 

region and the major blood vessels. Voxels in the prefrontal region are not affected. The 

brain locations have a sparse appearance, and the number of voxels affected can vary 

significantly among all subjects. For example, subjects #2 and #5 show a very small number 

of voxels affected at the p<0.01 level (yellow and white color). The influence of the high-
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frequency respiratory wave function X2) can be quite strong for certain subjects 

(#1,#3,#5,#6) and show many distinct locations throughout the brain, such as prefrontal 

cortex, cerebellum, brainstem, temporal lobe, midbrain and occipital cortex (second row in 

Fig.9(a–f)). Only for subjects #2 and #4 the affected regions are mostly cerebellum and 

visual cortex. Less cardiac activity does not imply less respiratory activity as subject #5 

clearly shows. Here, the respiratory activity is very large compared to the cardiac activity.

The voxels affected by the low-frequency cardiac waveform (third row in Fig.9(a–f)) are 

concentrated at the region near the top portion of the cerebellum and the lower visual cortex 

as well as some focal regions in the medial prefrontal cortex. For all subjects except #6, the 

affected voxels show a sparse location. Subject #6, however, shows a large influence of low-

frequency cardiac activity in visual cortex and prefrontal cortex. The low-frequency 

respiratory waveform (fourth row in Fig.9(a–f)) has several regions in common with the 

low-frequency cardiac waveform (visual cortex, lingual cortex, temporal cortex, prefrontal 

cortex) (subjects #1,#2,#4,#6). For subjects #3 and#5, the low-frequency respiratory 

contributions are minor compared with the other subjects.

We also calculated highly significant clusters of physiological noise activity for a family-

wise error rate FWE<0.05, as determined by AlphaSim in AFNI (Cox, 1996) using an 

individual p-value=0.001 with cluster size of at least 240mm3. For the high-frequency 

cardiac waveform, all significant clusters were at the brainstem and larger blood vessels, and 

no cortical area was involved. For the high-frequency respiratory waveform, significant 

clusters were found in fusiform gyrus (subjects #1,#5,#6), lingual gyrus (subjects #1,#5) and 

cerebellum (subjects #1,#5,#6). The low-frequency cardiac waveform had significant 

clusters in caudate nucleus (subject #1), cerebellum (subjects #1,#2,#6), fusiform gyrus 

(subject #1), lingual gyrus (subjects #1,#2,#6), temporal cortex (subjects #1,#2,#6) and 

frontal cortex (subject #6). Significant clusters for the low-frequency respiratory waveform 

were found in calcarine cortex (subject #1), cerebellum (subjects #1,#6), lingual gyrus 

(subject #1), temporal cortex (subject #6) and frontal cortex (subject #6).

Aliasing of high-frequency physiological waveforms as a function of TR

To show the effect of aliasing of the high-frequency cardiac rate, we parameterized the 

cardiac waveform of each subject by a Gaussian distribution with mean and standard 

deviation given in Table 1 and calculated the aliased frequency distribution after sampling 

by different using Eq.(5). Fig.10 shows the distribution of the high-frequency cardiac 

waveform of subject #6 and Fig.11 the corresponding aliased frequency spectrum after 

sampling with TR = 2s. Please note that Fig.10 is a hypothetical cardiac waveform of subject 

#6, based on the Gaussian distribution and the mean and standard deviation values of subject 

6. For better visibility of the effect of aliasing we have colored different frequency bands of 

the cardiac rate in Fig.10 and show explicitly in Fig.11 where each of the colored frequency 

bands aliases to. For example, the frequencies near 1Hz of the peak region in Fig.10 (red 

color) alias at TR = 2s to the low-frequency range near 0Hz, whereas the frequency regions 

one standard deviation away from the peak in Fig.10 (turquois blue colors) alias to the 

frequency-range larger than 0.1Hz.
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Next, we calculated the probability that the distribution of the high-frequency cardiac 

waveform after sampling at a TR will be larger than 0.1Hz. Fig.12 shows the results of the 

probability p(f > 0.1Hz) for all subjects and TRs from 0 to 4s. As can be seen, there exist 

distinctive plateaus where p(f > 0.1Hz) is maximum. For example, subject #6 with a cardiac 

rate of 0.98Hz (σ = 0.067Hz) has p(f > 0.1Hz) ≈ 1 for TR < 0.8s and 1.3s < TR < 1.7s. Also, 

in the vicinity of TR = 2.5Hz the value for p(f > 0.1Hz) has a maximum. In general, those 

TRs for which p(f > 0.1Hz) is maximum (or close to maximum) offer advantages in terms of 

separating the cardiac influence on brain voxel time series associated with the high-

frequency cardiac waveform from the low-frequency BOLD response, which is usually 

related to the frequency range f < 0.1Hz because of the low-pass functional form of the 

hemodynamic response function. If this is the case, the cardiac noise that aliases to the f > 

0.1Hz range does not contaminate the BOLD frequency range and can be eliminated by 

digital low-pass filtering, providing voxel time-series with less variance from cardiac noise.

Please note that the optimum TRs (when p(f > 0.1Hz) ≈ 1) is different for each subject since 

the subjects had mean heart rates between 0.77Hz and 1.37Hz. However, each subject had a 

stable heart rate over a scanning time of 2h with a small variance (compare Table 1). Thus, 

choosing a more optimal TR with less interference from cardiac noise is possible, especially 

if the study in question focuses on problematic areas that are known to vibrate with the 

cardiac rate, for example the brainstem.

As the TR can be optimal, it can also be detrimental to the data. For example, if a standard 

TR = 2s would have been chosen for subject 6, the value for p(f > 0.1Hz) is very low (<0.2), 

and all the high-frequency cardiac noise will alias into the f < 0.1Hz BOLD range.

For the high-frequency respiratory waveform, the aliasing behavior at typical TRs is very 

different (Fig.13). Because of its lower mean frequency values (see Table 1), aliasing of the 

respiratory rate for TR < 2.5s will be very small leading to large values of p(f > 0.1Hz) at 

typical TRs. Thus, there is no preference of certain TRs as long as TRs are chosen to be less 

than 2.5s.

So far we considered only the high-frequency waveforms for the cardiac rate and the 

respiratory rate. The low-frequency waveforms for both physiological noise sources are less 

than 0.1Hz and will not be affected by aliasing at typical TRs used in fMRI. Thus, in order to 

eliminate these low-frequency noise sources, digital low-pass filtering will not be possible. 

Only modeling will work, as we have shown here in the first part of this research.

Validation

So far we have assumed that the probability density function of the physiological noise 

sources is stationary for each subject during the entire fMRI scanning time of 2h. This is a 

very strong assumption which needs validation. In the following we show that these 

assumptions are approximately true for the cardiac waveform using the collected pulse-

oximeter data of all subjects by computing empirical results corresponding to the theoretical 

figures 10–12. In Fig.14 (top) we show the cardiac frequency as a function of time for 

subject #6, as computed for one pulse-oximeter data set that was simultaneously recorded 

with the fMRI (TR 700ms data) for this subject. Using kernel density estimation (Silverman, 
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1986), we computed the probability density function of the cardiac frequency (Fig.14 

(middle)), which shows a maximum near 1Hz and rapid fall-off for higher and lower 

frequencies. Using this empirically determined probability density function, we calculated 

the aliased frequency spectrum for a sampling rate Δt = 2s (using Eq.(2)) and determined the 

probability p(f > 0.1Hz) by integrating all frequencies larger than 0.1Hz (see Fig.14 

(bottom)). Next, to prove that the frequency probability density function is also quasi-

stationary across the entire 2h scanning time, we calculated the empirical mean probability 

 and its standard deviation for all 20 pulse-oximeter data sets for each subject 

(which were collected over a 2h time period while the subject was being scanned for fMRI), 

based on the frequency probability density functions that were estimated from all 

corresponding pulse-oximeter raw data. Results are shown in Fig.15 for all subjects.

Temporal SNR

To compute the temporal SNR of our fMRI data, we have bandpass-filtered all raw fMRI 

data to remove low-frequency drift less than 0.01Hz and removed all frequencies larger than 

0.1Hz to capture the dominant frequency region of the BOLD response. Fig.16 shows the 

temporal SNR for all fMRI data (subjects #1 to #6) as a function of TR. Due to aliasing of 

the high-frequency cardiac rate, we get more or less aliasing into the low-frequency range (f 

< 0.1Hz), resulting in smaller or higher temporal SNR, depending on the TR used. All 

subjects show an oscillatory behavior of the temporal SNR, similar to the curves in Fig.12. 

From theory, there should be a high correlation of the probability that the cardiac waveform 

after sampling is above 0.1Hz and the temporal SNR restricted to a frequency range less 

than 0.1Hz. This is indeed the case for the majority of all subjects, as shown in Table 7. In 

fact, for subjects #1,#3,#4,#6, the correlation coefficient between the equivalent curves of 

Fig.12 and Fig.16 is at least 0.24. For subject #3 the correlation coefficient is very high 

(0.65). Only for subject #2 and #5, the correlation coefficient is lower (−0.27 for #2 and 

−0.01 for #5), which was expected because of the small number of voxels affected by the 

high-frequency cardiac waveform, as shown in Fig.9e for subject #5 (top row). It is 

interesting to observe that the minima and maxima predicted by the aliasing analysis of the 

high-frequency cardiac noise (Fig.12) indeed correspond well to the minima and maxima of 

the temporal SNR of Fig.16.

Comparison with RETROICOR on temporal SNR

To determine the effectiveness of our method with an established method, we used 

RETROICOR (Glover et. al., 2000). RETROICOR models the high-frequency physiological 

noise components by a low-order Fourier series that are expanded in terms of phases, which 

can be derived from external measurements. We used a Fourier series of order 2 for both 

cardiac and respiratory noise components, leading to 4 cardiac (2 sine functions, 2 cosine 

functions) and 4 respiratory regressors (2 sine functions, 2 cosine functions). After 

preprocessing with RETROICOR, we calculated the temporal SNR for voxels that have 

high-cardiac content. We also repeated the analysis using our proposed correction method 

for the high-frequency waveforms using CHF(t) and RHF(t) as regressors. Results are shown 

in Fig.17. Here, the top graph shows that the temporal SNR is increased by about 10 units 

(on average) at specific TRs when RETROICOR is used in the preprocessing stage. For 

example, the temporal SNR of subject #1 is increased by about 15–18 units for the TR- 
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interval [0.9s,1.2s] when the high-frequency cardiac noise aliases mostly into the f < 0.1Hz 

frequency range (see Fig.15 top left). For other subjects, similar scenarios can be found. 

When our method is used, we obtain also an increase of 10 units (on average) of the 

temporal SNR. It is shown in Fig.17 (middle graph), that RETROICOR and our method are 

comparable in eliminating cardiac noise contributions in fMRI data. However, small 

differences (|Δ tSNR| < 4) exist for several TR- intervals. For example, the temporal SNR of 

subject #3 for the TR- interval [1.1s,1.3s] (where the high-frequency cardiac noise aliases 

mostly into the f < 0.1Hz frequency range according to Fig.15) is improved by our method.

For simplicity, in the previous comparison we have not taken into account the different 

number of regressors for our method and RETROICOR. From a statistical perspective, a 

simpler model is usually preferred over a more complex model (if all other parameters or 

features are equal). Thus, to assess the model fit of each method accurately and explicitly 

take into account the different numbers of regressors in the design matrix (2 for our method 

versus 8 for RETROICOR), we computed for both methods the adjusted R2 statistic (see for 

example Montgomery and Runger (2003)). In Fig.17 (bottom graph) we show the difference 

in the adjusted R2 statistic between our method and RETROICOR. This graph shows that 

the difference of the adjusted R2 statistic is small and satisfies  which 

implies that our method and RETROICOR have similar performance, since the average 

value  is about 0.03.

DISCUSSION

The purpose of this research was to simultaneously estimate the physiological noise 

contributions arising from cardiac and respiratory activity in fMRI resting-state data by 

using physiological data acquired with pulse-oximeter and respiratory belt, and investigate 

the aliasing properties of the high-frequency cardiac noise as a function of TR. We have 

explicitly modeled the physiological noise by four different regressors. The first two 

regressors represented the high-frequency cardiac and respiratory activity. These functions 

were obtained from the physiological measurements and phase-optimized for each voxel to 

obtain the best time-shift of the regressors to accommodate the timing difference between 

the measured physiological waves at fingertip or abdomen and the different locations of 

cerebral tissue. Besides modeling of the high-frequency physiological noise sources, we 

have calculated the low-frequency changes of the cardiac and respiratory noise sources and 

computed a cardiac and a respiratory hemodynamic response function, optimized for each 

subject.

Optimization algorithm and cross-validation

A strength of this research is that the computed physiological hemodynamic response 

functions were not derived from specific voxels using a convolution approach but instead 

from an optimization algorithm with cross-validation using a parameterization of the cardiac 

and respiratory response functions with forms previously established (see Chang et. al. 

(2009) and Birn et. al.(2008)). We explicitly added a first-order derivative and applied 

constraints to allow for subject-specific variations of the hemodynamic response. With this 

subject-specific approach, low-frequency physiological response functions were obtained. 
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We found that the off-diagonal elements of the covariance matrix of the four physiological 

regressors were not larger than 0.15 for variance normalized regressors, indicating a small 

overlap of the noise sources. Similar to the approach suggested by Chang et. al. (2009), we 

used the standard deviation using a sliding time-window approach to determine the low-

frequency respiratory waveform related to differences in the breathing inspiration rate 

instead of the approach used by Birn et. al. (2008).

The methods proposed in this research are accurate, even if only a single fMRI resting-state 

data set is used for estimation and another fMRI resting-state data set is used for validation. 

We attribute the accuracy of the proposed method to the cross-validation step in 

combination with penalizing curvature. We obtained characteristic minima spanning a range 

of about 2 units in curvature in the cross-validation step leading to accurate prediction of the 

physiological response functions, as shown explicitly for the cardiac response function of 

one subject (#1). Even if different data sets are used, the corresponding physiological 

response functions are similar.

The results obtained can also be slightly improved, if desired, by using both data sets for 

estimation and validation (i.e. using set1 for estimation, set2 for validation getting hc(t), then 

using set2 for estimation, set1 for validation getting ), and then calculating the average 

of the obtained response functions (i.e. )). Switching estimation and validation 

steps will result in maximum efficiency to solve the optimization and validation problem.

Nonparametric estimation of p-values

To arrive at accurate p-values of the explained variances by the physiological regressors, we 

used wavelet-resampling of the fMRI resting-state data to obtain approximate null data, and 

applied the same type of methodology that we used for modeling of the physiological noise 

sources to the null data. We found this step to be important to correct for the optimized time-

shift selection at each voxel to obtain the high-frequency cardiac and noise regressors.

Comparison of the physiological response functions with other studies

The subject-specific physiological response functions obtained show some differences to the 

types proposed by Chang et. al. (2009) and Birn et. al. (2008). For example, with our 

approach we obtained cardiac response functions that have a first maximum between 1.5s 

and 5s and minimum between 11s and 14s. Furthermore, for one subject (#1) we obtained a 

pronounced second maximum at about 19s which arises by the inclusion of the derivative 

term. A second maximum was also found by Chang et. al. (2009) but not explicitly modeled. 

A more recent approach (Falahpour et. al. (2013)) also showed a first maximum at about 4s, 

a minimum at 10s and a second maximum at about 18s, similar to our results. For all 

subjects we found that the inclusion of the derivative term in the model is necessary to 

determine the optimum cardiac response function. To obtain a subject optimized respiratory 

response function, we found that the solution of the optimization problem can be 

parameterized by the form given by Birn et. al. (2008), but with different coefficients. There 

is no need for inclusion of a derivative term to obtain an optimum respiratory response 

function. Besides magnitude differences, we found that the occurrence of the undershoot is 
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subject-specific and can occur between 4s and 9s. However, using subject-specific 

physiological response functions leads only to a small increase of the explained noise 

variance. In the study by Falahpour et. al. (2013) there was small improvement in the 

average explained variance (similar to our results), but it was shown that using the subject-

specific filters expands the explained variance in the entire brain.

We found that the difference in the respiratory wave forms using the method by Chang et. 

al. (2009) versus the method by Birn et. al. (2008) is rather minor, since both functions are 

highly correlated with correlation coefficient larger than 0.7, according to our research.

Effect of spatial smoothing versus no smoothing

Spatial filtering is a common preprocessing technique that is used to increase the signal- to-

noise ratio in fMRI data. Since high-frequency information is reduced by spatial filtering, it 

is conceivable that high-frequency physiological noise regressors will be less effective in 

smoothed data and may reduce the data correction. On the other hand, low-frequency effects 

caused by the low-frequency cardiac and respiratory hemodynamic response functions may 

show the opposite effects and lead to less data correction for unsmoothed data. Our analysis 

comparing the variance explained for smoothed versus unsmoothed data showed that by 

using all four noise regressors simultaneously, the data correction of all 6 subjects for 

smoothed data is still better than for unsmoothed data, due to a larger effect of the low-

frequency physiological response functions on the data correction.

Appearance of activation maps

The subject-specific noise activity maps obtained have a sparse appearance and show that 

the physiological noise attributed to all four low-and high-frequency waveforms is more 

voxel-specific rather than affecting larger continuous regions of the brain. For example, the 

high-frequency cardiac waveform mostly affected the brainstem and larger blood vessels in 

the lower slices rather than the entire brain. Upper slices showed a very small amount of 

high-frequency cardiac noise, and it appears that most of grey matter and brain periphery 

were not affected.

Existence of subject-specific optimal TRs

A particular focus of this research was to investigate if a subject-optimized TR can be 

chosen where the high-frequency cardiac rate does not alias into the low-frequency BOLD 

range. This is indeed the case as we have shown by computing the temporal SNR as a 

function of TR. Since the cardiac high-frequency activity was very stable for each subject 

during a 2h of scanning time, it is possible to predict where the cardiac frequency will alias 

to. Even if the empirical probability density functions of the cardiac rate are computed from 

the pulse-oximeter data and the obtained density differs from an ideal Gaussian distribution, 

the variance of the density is still small enough so that aliasing after digital sampling is 

predictable and the empirical findings shown in Fig.15 agree well with the theoretical 

predictions from Fig.12. Thus, by knowing the mean cardiac frequency and its standard 

deviation of each subject (for example from pilot studies), it is possible to choose an optimal 

TR to reduce aliasing of the high-frequency cardiac noise into the low-frequency BOLD 

range. This approach could have advantages for mapping activations of the brainstem or 
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nearby spinal cord regions, which are inherently difficult to study with fMRI because of the 

large vibration associated with the heartbeat. As we have shown, the temporal SNR can be 

improved by about 40–50 in problem areas if an optimal TR is chosen. However, for the 

majority of grey matter voxels in the upper cortex, high-frequency cardiac noise is relatively 

absent.

The results obtained in this research have been obtained for 2h of resting-state data 

collection with 6 young healthy volunteers who had previous fMRI scanning experience. 

None of the subjects were recruited because of prior measurements of the heart rate. 

Furthermore, none of the subjects were selected based on a low variance of heart rate 

fluctuations. Thus, the subjects scanned were a true random sample of young students with 

prior fMRI experience. For activation data (instead of resting-state data), however, the 

method of finding an optimal TR may be less useful (depending on the task), because in 

activation data a larger variance of the heart rate fluctuations has been observed leading to 

less structured aliasing properties (Lund et al, 2006).

Limitations of this study

A limitation of this study is that only partial coverage of the brain was obtained, due to the 

short TRs used. Physiological noise affects have been shown in widespread regions of the 

brain (see for example Chang et. al., 2009). Thus, it would be more desirable to have full 

brain coverage and investigate the effects of the proposed approach in the entire brain. 

Although pulsation effects are higher in the lower brain regions (which we focused on in this 

study), the proposed methods may have been more effective in the lower brain regions. 

Also, amplitude changes of the pulsations due to vasomotion were neglected by normalizing 

the amplitude of the high frequency cardiac wave to one.

A computational limitation of this study is that the parameters of the cardiac and respiratory 

low-frequency hemodynamic response functions were determined independently. It is 

conceivable that a simultaneous estimation of both functions may have advantages and may 

be more accurate because other research have shown that there are extensive regions of grey 

matter which are affected by both cardiac and respiration-related fluctuations (see for 

example Chang et. al. (2009)). However, due to the large increase of local minima in the 

solution space going from 6 to 12 dimensions, finding a global constraint solution in a 12-

dimensional space is considerably more challenging and beyond the aims of this research 

project.

Finally, we provided only a limited comparison with another established method 

(RETROICOR) to model the high-frequency cardiac and respiratory noise sources. 

Preliminary results indicate a similar performance between our method and RETROICOR, 

based on the increase of the temporal SNR and assessment of the model fit using the 

adjusted R2 statistic. A more complete study of the differences, similarities and effectiveness 

of RETROICOR and our proposed method is beyond the scope of this research project.
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CONCLUSIONS

In summary, modeling of all four physiological noise sources can lead to significant 

improvements in fMRI resting-state data quality. The high-frequency cardiac noise is mostly 

associated with the brainstem, nearby spinal cord and larger blood vessels. The cardiac noise 

affecting the brainstem and other nearby regions can be efficiently eliminated for fMRI 

using imaging at subject-specific TRs where the high-frequency cardiac noise will not alias 

into the BOLD frequency range.
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APPENDIX

In the following, we derive the Fourier transform of a sampled continuous time-dependent 

function f(t), as used in Eq.(2). Sampling f(t) at discrete intervals ΔT yields the sampled 

function, , given by

(A1)

where

(A2)

is the sampling function and

(A3)

is the Dirac delta function. Since the sampling function is periodic, it can be expanded in a 

Fourier series according to

(A4)

where the Fourier coefficients, cn, are calculated by

Thus,

(A5)
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The Fourier transform of the sampling function, S(μ), where μ indicates the frequency 

variable, is obtained by using (A2–A5). We obtain:

(A6)

Now, let F(μ) be the Fourier transform of f(μ). Furthermore, let the letter  indicate the 

Fourier transform operator and the symbol * to note convolution. Then, the Fourier 

transform of , , becomes using (A1) and (A6):

and the proof of Eq.(2) is complete.
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Fig.1. 
Flowchart of the algorithm to determine the cardiac and respiratory hemodynamic response 

functions.
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Fig.2. 
Cross-validation result for subject #1 to determine an optimized cardiac response function 

hc(t) for different values of the average curvature  and objective 

function  of data=data2 (compare Fig.1). The best cardiac response function is obtained 

at the minimum of the objective function (μ = 7). On top of the large figure, three cardiac 

response functions hc(t) are shown corresponding to μ = 2 (small figure A), μ = 7 (small 

figure B), μ = 25 (small figure C). Note that the best cardiac response function (B) has two 

maxima and one minimum.
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Fig.3. 
Computed cardiac-response functions for subjects #1 to #6 using the algorithm from Fig.1. 

The cardiac response function was parameterized as  where 

.
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Fig.4. 
Comparison of the cardiac response functions from this research with previous published 

work (Chang et. al. (2009)). The solid blue line is the mean over all subjects, and the broken 

lines are the upper and lower limit of one standard deviation from the mean of all subjects.
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Fig.5. 
Computed respiratory response functions parameterized by where 

 where  for subjects #1 to #6 

using the algorithm from Fig.1.
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Fig.6. 
Comparison of the respiratory response functions from this research with previous published 

work (Birn et. al. (2008)). The solid blue line is the mean over all subjects, and the broken 

lines are the upper and lower limit of one standard deviation from the mean of all subjects.
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Fig.7. 
Reliability of the proposed optimization method to determine the cardiac response functions 

hc(t) of subject #1 using limited data (i.e. a single data set for estimation and a single data set 

for validation). The determined cardiac response functions are shown for the following four 

scenarios: 1. Blue curve: TR 700ms data set was used for estimation, TR 800ms data set was 

used for validation. 2. Green curve: TR 1600ms data set was used for estimation, TR 1700ms 

data set was used for validation. 3. Red curve: TR 2500ms data set was used for estimation, 

TR 2600ms data set was used for validation. 4. Black curve: Comparison to the full run 

using all data, i.e. TRs {700, 900, 1100, 1300, 1500, 1700, 1900, 2100, 2300, 2500} ms data 

sets were used for estimation, {800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600} 

ms data sets were used for validation).
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Fig.8. 
Probability of a brain voxel to have a physiological noise variance larger than v (in %), 

considering the combination of all four physiological noise sources. For example, the 

probability to obtain an explained noise variance of at least 10% is about 0.24, and the 

probability to obtain an explained noise variance of at least 5% is about 0.64.
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Fig.9. 
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abc. Subject #1,#2,#3. Locations of significant voxels associated with high-frequency 

cardiac activity (1. row), high-frequency respiratory activity (2. row), low-frequency cardiac 

activity (3. row), low-frequency respiratory activity (4. row). The meaning of the color scale 

is: p=0.05 (red), p=0.01 (yellow), p=0.001 (white). The white dot visible in the structural 

images for the center slices is a vitamin D capsule (attached to the forehead) to indicate the 

right side.

def. Subject #4,#5,#6. Locations of significant voxels associated with high-frequency 

cardiac activity (1. row), high-frequency respiratory activity (2. row), low-frequency cardiac 

activity (3. row), low-frequency respiratory activity (4. row). The meaning of the color scale 

is: p=0.05 (red), p=0.01 (yellow), p=0.001 (white). The white dot visible in the structural 

images for the center slices is a vitamin D capsule (attached to the forehead) to indicate the 

right side.
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Fig.10. 
Approximate frequency spectrum of a typical high-frequency cardiac waveform with mean 

frequency 0.98Hz and standard deviation 0.067Hz. The coloring emphasizes different 

frequency bands and the labels L and R refer to the left (L) or right (R) side of the 

distribution (compare with Fig.11).
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Fig.11. 
Aliased frequency spectrum of the high-frequency cardiac waveform from Fig.10 using a 

sampling time TR = 2s. The coloring of the aliased frequencies corresponds to the coloring 

of the un-aliased frequencies in Fig.10. The labels L and R refer to the left (L) or right (R) 

side of the distribution in Fig. 10. The black curve is the total probability density of the 

aliased frequencies.
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Fig.12. 
Probability that the frequency of the cardiac waveform after sampling at the given TR is 

above 0.1Hz for subjects #1 to #6 using the information from Table 1. The higher the 

probability, the less likely it will be that the cardiac frequency occupies the low-frequency 

spectrum of the BOLD response.
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Fig.13. 
Probability that the frequency of the respiratory waveform after sampling at the given TR is 

above 0.1Hz for subjects #1 to #6 using the information from Table 1. The higher the 

probability, the less likely it will be that the respiratory rate occupies the low-frequency 

spectrum of the BOLD response.
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Fig.14. 
Subject #6: Instantaneous frequency as a function of time based on the pulse-oximeter 

measurements (top), corresponding probability density function of the frequencies (middle), 

and calculated aliasing probability that the pulse-oximeter frequencies after sampling at the 

given TR are above 0.1 Hz.
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Fig.15. 
Solid (center) line: Calculated mean aliasing probability that the pulse-oximeter frequencies 

after sampling at the given TR are above 0.1 Hz for each subject. The mean was calculated 

using all 20 different pulse-oximeter data for each subject collected within a 2 hour scanning 

time. Broken lines (above and below center line): One standard deviation above and below 

the corresponding mean probability.
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Fig.16. 
Calculated temporal SNR (tSNR) for all voxels that show a cardiac activity with p<0.05, as a 

function of TR for all six subjects. All fMRI data were band-pass filtered using the 

frequency range [0.01,0.1]Hz. Note the cyclic behavior of the curves similar to the ones in 

Fig.12.
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Fig.17. 
Comparison of performance between our method and RETROICOR for all voxels that show 

a cardiac activity with p<0.05, as a function of TR for all six subjects. Top: Difference in 

temporal SNR (tSNR) for RETROICOR-corrected data and uncorrected data (from Fig.16), 

after bandpass-filtering using the frequency range [0.01,0.1]Hz. Middle: Difference in 

temporal SNR for data corrected by the proposed method (using the high-frequency cardiac 

and respiratory functions) and by RETROICOR, after bandpass-filtering using the frequency 

range [0.01,0.1]Hz. Bottom: Difference in the adjusted R2 statistic for data corrected by the 

proposed method (using the high-frequency cardiac and respiratory functions) and by 

RETROICOR.
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Cordes et al. Page 41

Table 1

Average frequencies and standard deviations for physiological noise sources

subject CHF (Hz) RHF (Hz) CLF (Hz) RLF (Hz)

#1 1.01±0.075 0.24±0.056 0.052±0.041 0.050±0.045

#2 1.37±0.073 0.21±0.067 0.040±0.035 0.048±0.038

#3 0.77±0.054 0.16±0.043 0.061 ±0.051 0.042±0.040

#4 0.84±0.069 0.18±0.089 0.038±0.038 0.025±0.028

#5 0.82±0.059 0.25±0.032 0.050±0.049 0.048±0.040

#6 0.98±0.067 0.19±0.038 0.063±0.050 0.064±0.051

mean 0.97±0.220 0.21±0.035 0.051±0.010 0.046±0.013
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Cordes et al. Page 42

Table 2

Parameters of cardiac response functions

a1 a2 a3 a4 a5 a6 α

#1 0.0984 (0.641) 2.02 (2.20) 2.81 (1.88) 0.0584 (0.682) 13.5 (33.2) 16.2 (14.3) 21.8 (3.59)

#2 0.000949 (0.218) 4.47 (4.37) 1.89 (1.14) 0.00917 (1.50) 14.8 (42.0) 12.7 (11.1) 73.4 (0.303)

#3 0.00121 (0.255) 4.91 (4.47) 1.53 (1.07) 0.0183 (1.99) 13.4 (22.7) 13.0 (9.82) 55.4 (0.241)

#4 0.00300 (0.564) 3.69 (3.64) 2.21 (1.19) 0.0115 (1.22) 16.7 (56.3) 11.4 (11.4) 66.3 (0.323)

#5 0.000374 (0.256) 4.34 (4.27) 1.94 (1.14) 0.00333 (1.51) 15.9 (44.0) 12.5 (11.2) 219 (0.304)

#6 0.000761 (0.362) 4.58 (4.11) 1.62 (1.12) 0.00876 (2.04) 14.5 (23.6) 12.8 (9.69) 130 (0.252)

fit of mean function 
(MSE=6×10−3)

0.667 2.97 1.53 1.83 32.5 10.4 0.336

Chang et.al. 0.6/1.0167 2.7 1.6 2.128/1.0167 18.0 12.0 0.0

Note: The obtained cardiac response function was parameterized as  where 

. The function hc(t) was scaled such that var(hc(t)) = 1. We have also calculated approximations to 

the cardiac response function where the coefficient for α is smaller such that the approximate cardiac response function (with small α coefficient) is 
similar to the exact cardiac response function for most time points (t< 30 s). The numbers in parenthesis give coefficients of approximate wave 
forms with a small α coefficient. The mean squared error (MSE) between the approximate cardiac response function and the exact cardiac response 

function (which is the solution of the optimization problem) is less than 7×10−3.
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Table 3

Parameters of respiratory response functions

b1 b2 b3 b4 b5 b6 β

#1 12.9 2,25 0.628 0.0784 2.19 4.93 −6.9×10−5

#2 6.55 2.13 0.925 0.0358 2.30 4.69 1.4×10−4

#3 0.682 2.12 1.56 0.00266 3.73 4.40 −8.9×10−5

#4 1.28 2.22 1.68 0.00496 3.23 4.22 −1.0×10−4

#5 0.468 2.10 1.52 0.00184 3.87 4.51 −1.7×10−4

#6 1.84 2.00 1.65 0.00619 3.03 4.38 −4.4×10−4

fit of mean function (MSE=3.5×10−4) 2.50 1.59 1.48 0.0035 3.50 4.38 0.0

Birn et. al. 0.6/0.5618 2.1 1.6 0.0023/0.5618 3.54 4.25 0.0

Note: The obtained respiratory response function was parameterized as  where 

. The function hR(t) was scaled such that var(hR(t)) = 1.
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Table 5

Mean explained variance by physiological noise at different p values for smoothed data

p X1 (%) HF cardiac X2 (%) HF resp X3 (%) LF cardiac X4 (%) LF resp [X1 X2 X3 X4] (%) Affected voxels (%)

0.05 1.3+0.3 3.1±0.7 2.0±0.7 2.2±0.5 11.2±1.1 34.5±10.4

(0.05) (1.3±0.3) (3.3±0.7) (1.9±0.7) (1.9±0.4) (11.1 ±1.4) (30.2±11.4)

0.01 1.3±0.4 3.8±1.0 2.5±1.0 2.7±0.7 14.1+1.5 11.8+6.5

(0.01) (1.4±0.4) (4.3±1.0) (2.3±1.1) (2.3±0.7) (14.0±1.9) (9.9±6.2)

0.001 1.6±0.7 4.8±1.6 3.4±1.6 3.4±1.2 18.0±2.2 3.5±3.1

(0.001) (1.7±0.6) (5.6±1.8) (3.0±2.0) (2.9±1.0) (17.9±2.5) (2.9±2.4)

Note: The columns refer to the type of physiological noise averaged over all subjects (X1: high-frequency cardiac waveform, X2: high-frequency 

respiratory waveform, X3: low-frequency cardiac waveform, X4: low-frequency respiratory waveform). The rows refer to different p values 

(uncorrected). The numbers without parenthesis refer to the optimized model using the low-frequency waveforms in this research, whereas the 
numbers in parenthesis refer to the low-frequency model of Chang et. al. (2009) and Birn et. al. (2008). The last column refers to the percentage of 
the voxels that are affected by all 4 regressors.
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Table 6

Mean explained variance by physiological noise at different p values for unsmoothed data

p X1 (%) HF cardiac X2 (%) HF resp X3 (%) LF cardiac X4 (%) LF resp [X1 X2 X3 X4] (%) Affected voxels (%)

0.05 1.5±0.2 3.2±0.9 1.4±0.3 1.3±0.2 9.8±0.9 20.3±8.7

(0.05) (1.5±0.2) (3.3±0.8) (1.2±0.3) (1.2±0.2) (9.6±0.8) (19.7±8.7)

0.01 1.7±0.3 4.3±1.3 1.7±0.6 1.6±0.4 12.5±1.0 7.3±4.6

(0.01) (1.8±0.3) (4.6±1.3) (1.4±0.5) (1.5±0.4) (12.3±0.9) (7.1 ±4.6)

0.001 2.3±0.6 6.0±2.1 2.2±0.9 1.9±0.7 16.2±1.4 2.2±1.9

(0.001) (2.3±0.5) (6.5±2.1) (1.7±0.8) (1.7±0.7) (15.9±1.0) (2.2±1.9)

Note: The columns refer to the type of physiological noise averaged over all subjects (X1. high-frequency cardiac waveform, X2: high-frequency 

respiratory waveform, X3: low-frequency cardiac waveform, X4: low-frequency respiratory waveform). The rows refer to different p values 

(uncorrected). The numbers without parenthesis refer to the optimized model using the low-frequency waveforms in this research, whereas the 
numbers in parenthesis refer to the low-frequency model of Chang et. al. (2009) and Bim et. al. (2008). The last column refers to the percentage of 
the voxels that are affected by all 4 regressors.
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Table 7

Correlation coefficient of p(f > 0.1Hz) of the cardiac waveform (from Fig.12) with the tSNR of fMRI data 

(from Fig.16).

cc

Subject #1 0.33

Subject #2 −0.27

Subject #3 0.65

Subject #4 0.44

Subject #5 −0.01

Subject #6 0.24

mean 0.23
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