Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Apr 25;92(9):4046–4050. doi: 10.1073/pnas.92.9.4046

Regulatory region in choline acetyltransferase gene directs developmental and tissue-specific expression in transgenic mice.

P Lönnerberg 1, U Lendahl 1, H Funakoshi 1, L Arhlund-Richter 1, H Persson 1, C F Ibáñez 1
PMCID: PMC42099  PMID: 7732028

Abstract

Acetylcholine, one of the main neurotransmitters in the nervous system, is synthesized by the enzyme choline acetyltransferase (ChAT; acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6). The molecular mechanisms controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo are largely unknown. A previous report showed that a 3800-bp, but not a 1450-bp, 5' flanking segment from the rat ChAT gene promoter directed cell type-specific expression of a reporter gene in cholinergic cells in vitro. Now we have characterized a distal regulatory region of the ChAT gene that confers cholinergic specificity on a heterologous downstream promoter in a cholinergic cell line and in transgenic mice. A 2342-bp segment from the 5' flanking region of the ChAT gene behaved as an enhancer in cholinergic cells but as a repressor in noncholinergic cells in an orientation-independent manner. Combined with a heterologous basal promoter, this fragment targeted transgene expression to several cholinergic regions of the central nervous system of transgenic mice, including basal forebrain, cortex, pons, and spinal cord. In eight independent transgenic lines, the pattern of transgene expression paralleled qualitatively and quantitatively that displayed by endogenous ChAT mRNA in various regions of the rat central nervous system. In the lumbar enlargement of the spinal cord, 85-90% of the transgene expression was targeted to the ventral part of the cord, where cholinergic alpha-motor neurons are located. Transgene expression in the spinal cord was developmentally regulated and responded to nerve injury in a similar way as the endogenous ChAT gene, indicating that the 2342-bp regulatory sequence contains elements controlling the plasticity of the cholinergic phenotype in developing and injured neurons.

Full text

PDF
4046

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguzzi A., Wagner E. F., Williams R. L., Courtneidge S. A. Sympathetic hyperplasia and neuroblastomas in transgenic mice expressing polyoma middle T antigen. New Biol. 1990 Jun;2(6):533–543. [PubMed] [Google Scholar]
  2. Alderson R. F., Alterman A. L., Barde Y. A., Lindsay R. M. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron. 1990 Sep;5(3):297–306. doi: 10.1016/0896-6273(90)90166-d. [DOI] [PubMed] [Google Scholar]
  3. Balkan W., Colbert M., Bock C., Linney E. Transgenic indicator mice for studying activated retinoic acid receptors during development. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3347–3351. doi: 10.1073/pnas.89.8.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bartus R. T., Dean R. L., 3rd, Beer B., Lippa A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982 Jul 30;217(4558):408–414. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
  5. Friedman W. J., Ibáez C. F., Hallbök F., Persson H., Cain L. D., Dreyfus C. F., Black I. B. Differential actions of neurotrophins in the locus coeruleus and basal forebrain. Exp Neurol. 1993 Jan;119(1):72–78. doi: 10.1006/exnr.1993.1007. [DOI] [PubMed] [Google Scholar]
  6. Gnahn H., Hefti F., Heumann R., Schwab M. E., Thoenen H. NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Brain Res. 1983 Jul;285(1):45–52. doi: 10.1016/0165-3806(83)90107-4. [DOI] [PubMed] [Google Scholar]
  7. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gould E., Butcher L. L. Developing cholinergic basal forebrain neurons are sensitive to thyroid hormone. J Neurosci. 1989 Sep;9(9):3347–3358. doi: 10.1523/JNEUROSCI.09-09-03347.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hahn M., Hahn S. L., Stone D. M., Joh T. H. Cloning of the rat gene encoding choline acetyltransferase, a cholinergic neuron-specific marker. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4387–4391. doi: 10.1073/pnas.89.10.4387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hammond D. N., Wainer B. H., Tonsgard J. H., Heller A. Neuronal properties of clonal hybrid cell lines derived from central cholinergic neurons. Science. 1986 Dec 5;234(4781):1237–1240. doi: 10.1126/science.3775382. [DOI] [PubMed] [Google Scholar]
  11. Hefti F., Hartikka J., Bolger M. B. Effect of thyroid hormone analogs on the activity of choline acetyltransferase in cultures of dissociated septal cells. Brain Res. 1986 Jun 11;375(2):413–416. doi: 10.1016/0006-8993(86)90769-9. [DOI] [PubMed] [Google Scholar]
  12. Honegger P., Lenoir D. Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Brain Res. 1982 Feb;255(2):229–238. doi: 10.1016/0165-3806(82)90023-2. [DOI] [PubMed] [Google Scholar]
  13. Ibáez C. F., Ernfors P., Persson H. Developmental and regional expression of choline acetyltransferase mRNA in the rat central nervous system. J Neurosci Res. 1991 Jun;29(2):163–171. doi: 10.1002/jnr.490290205. [DOI] [PubMed] [Google Scholar]
  14. Ibáez C. F., Pelto-Huikko M., Söder O., Ritzèn E. M., Hersh L. B., Hökfelt T., Persson H. Expression of choline acetyltransferase mRNA in spermatogenic cells results in an accumulation of the enzyme in the postacrosomal region of mature spermatozoa. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3676–3680. doi: 10.1073/pnas.88.9.3676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ibáez Carlos F., Persson Håkan. Localization of Sequences Determining Cell Type Specificity and NGF Responsiveness in the Promoter Region of the Rat Choline Acetyltransferase Gene. Eur J Neurosci. 1991;3(12):1309–1315. doi: 10.1111/j.1460-9568.1991.tb00063.x. [DOI] [PubMed] [Google Scholar]
  16. Kamegai M., Niijima K., Kunishita T., Nishizawa M., Ogawa M., Araki M., Ueki A., Konishi Y., Tabira T. Interleukin 3 as a trophic factor for central cholinergic neurons in vitro and in vivo. Neuron. 1990 Mar;4(3):429–436. doi: 10.1016/0896-6273(90)90055-k. [DOI] [PubMed] [Google Scholar]
  17. Kengaku M., Misawa H., Deguchi T. Multiple mRNA species of choline acetyltransferase from rat spinal cord. Brain Res Mol Brain Res. 1993 Apr;18(1-2):71–76. doi: 10.1016/0169-328x(93)90174-n. [DOI] [PubMed] [Google Scholar]
  18. Kitt C. A., Höhmann C., Coyle J. T., Price D. L. Cholinergic innervation of mouse forebrain structures. J Comp Neurol. 1994 Mar 1;341(1):117–129. doi: 10.1002/cne.903410110. [DOI] [PubMed] [Google Scholar]
  19. Knüsel B., Winslow J. W., Rosenthal A., Burton L. E., Seid D. P., Nikolics K., Hefti F. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):961–965. doi: 10.1073/pnas.88.3.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kushner P. J., Baxter J. D., Duncan K. G., Lopez G. N., Schaufele F., Uht R. M., Webb P., West B. L. Eukaryotic regulatory elements lurking in plasmid DNA: the activator protein-1 site in pUC. Mol Endocrinol. 1994 Apr;8(4):405–407. doi: 10.1210/mend.8.4.8052261. [DOI] [PubMed] [Google Scholar]
  21. Large T. H., Bodary S. C., Clegg D. O., Weskamp G., Otten U., Reichardt L. F. Nerve growth factor gene expression in the developing rat brain. Science. 1986 Oct 17;234(4774):352–355. doi: 10.1126/science.3764415. [DOI] [PubMed] [Google Scholar]
  22. Li Y., Camp S., Rachinsky T. L., Bongiorno C., Taylor P. Promoter elements and transcriptional control of the mouse acetylcholinesterase gene. J Biol Chem. 1993 Feb 15;268(5):3563–3572. [PubMed] [Google Scholar]
  23. Luckow B., Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. doi: 10.1093/nar/15.13.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Luine V. N., Renner K. J., McEwen B. S. Sex-dependent differences in estrogen regulation of choline acetyltransferase are altered by neonatal treatments. Endocrinology. 1986 Aug;119(2):874–878. doi: 10.1210/endo-119-2-874. [DOI] [PubMed] [Google Scholar]
  25. Martínez H. J., Dreyfus C. F., Jonakait G. M., Black I. B. Nerve growth factor selectively increases cholinergic markers but not neuropeptides in rat basal forebrain in culture. Brain Res. 1987 Jun 2;412(2):295–301. doi: 10.1016/0006-8993(87)91136-x. [DOI] [PubMed] [Google Scholar]
  26. Matsuoka I., Mizuno N., Kurihara K. Cholinergic differentiation of clonal rat pheochromocytoma cells (PC12) induced by retinoic acid: increase of choline acetyltransferase activity and decrease of tyrosine hydroxylase activity. Brain Res. 1989 Nov 13;502(1):53–60. doi: 10.1016/0006-8993(89)90460-5. [DOI] [PubMed] [Google Scholar]
  27. Misawa H., Ishii K., Deguchi T. Gene expression of mouse choline acetyltransferase. Alternative splicing and identification of a highly active promoter region. J Biol Chem. 1992 Oct 5;267(28):20392–20399. [PubMed] [Google Scholar]
  28. Mobley W. C., Rutkowski J. L., Tennekoon G. I., Gemski J., Buchanan K., Johnston M. V. Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Brain Res. 1986 Jul;387(1):53–62. doi: 10.1016/0169-328x(86)90020-3. [DOI] [PubMed] [Google Scholar]
  29. Mobley W. C., Woo J. E., Edwards R. H., Riopelle R. J., Longo F. M., Weskamp G., Otten U., Valletta J. S., Johnston M. V. Developmental regulation of nerve growth factor and its receptor in the rat caudate-putamen. Neuron. 1989 Nov;3(5):655–664. doi: 10.1016/0896-6273(89)90276-6. [DOI] [PubMed] [Google Scholar]
  30. Nilsson E., Lendahl U. Transient expression of a human beta-actin promoter/lacZ gene introduced into mouse embryos correlates with a low degree of methylation. Mol Reprod Dev. 1993 Feb;34(2):149–157. doi: 10.1002/mrd.1080340206. [DOI] [PubMed] [Google Scholar]
  31. Saadat S., Sendtner M., Rohrer H. Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture. J Cell Biol. 1989 May;108(5):1807–1816. doi: 10.1083/jcb.108.5.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spaete R. R., Mocarski E. S. Regulation of cytomegalovirus gene expression: alpha and beta promoters are trans activated by viral functions in permissive human fibroblasts. J Virol. 1985 Oct;56(1):135–143. doi: 10.1128/jvi.56.1.135-143.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Whitehouse P. J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., Delon M. R. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982 Mar 5;215(4537):1237–1239. doi: 10.1126/science.7058341. [DOI] [PubMed] [Google Scholar]
  34. Zimmerman L., Parr B., Lendahl U., Cunningham M., McKay R., Gavin B., Mann J., Vassileva G., McMahon A. Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron. 1994 Jan;12(1):11–24. doi: 10.1016/0896-6273(94)90148-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES