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Abstract

The performance of a commercially produced 62Zn/62Cu microgenerator system, and an 

associated kit-based radiopharmaceutical synthesis method, was evaluated for clinical site 

production of [62Cu]Cu-ETS (ethylglyoxal bis(thiosemicarbazonato)copper(II)), an investigational 

agent for PET perfusion imaging. Using 37 generators, containing 1.84 ± 0.23 GBq 62Zn at 9:00 

AM on the day of clinical use, a total of 45 patient doses of [62Cu]Cu-ETS (672 ± 172 MBq) were 

delivered without difficulty. 62Cu elution yields were high (approximately 90%), accompanied by 

extremely low 62Zn breakthrough (<0.001%). Radiopharmaceutical preparation, from the start-of-

elution to time-of-injection, consumed less than five minutes. The 62Zn/62Cu microgenerator was 

a dependable source of short-lived positron-emitting 62Cu, and the kit-based synthesis proved to 

be rapid, robust, and highly reliable for “on-demand” delivery of [62Cu]Cu-ETS for PET perfusion 

imaging.

Keywords
62Zn/62Cu generator; PET radiopharmaceuticals; [62Cu]Cu-ETS (copper(II) ethylglyoxal 
bis(thiosemicarbazone)); tumor perfusion

1. Introduction

Copper-62 (β+ 98%, t1/2: 9.7 min.) is formed by the decay of cyclotron-produced 62Zn (t1/2: 

9.2 hours) and offers attractive nuclear and chemical properties for many PET applications. 

Its nearly 10-minute half-life is compatible with relatively long image acquisition periods 

for good counting statistics, and yet remains short enough to permit repeat scanning within a 
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single imaging session (e.g., performance of stress/rest perfusion studies, or combination 

studies with other radiopharmaceuticals such as 18F-FDG).

A number of designs have been reported for 62Zn/62Cu generator systems that deliver 62Cu 

in forms suitable for radiopharmaceutical synthesis (Robinson, Zielinski, and Lee 1980; 

Fujibayashi, et al., 1989; Green, et al., 1990; Zweit, et al., 1992; Haynes, et al., 2000). One 

widely used approach to 62Zn/62Cu generator construction has been reliance on a design 

reported by Robinson, et al., (1980) in which selective 62Zn(II) retention is provided by an 

anion exchange resin. For maximum recovery of 62Cu from the generator column, an acidic 

elution solvent containing 2.0 molar chloride ion is normally used. Under these conditions, 

the anion exchange resin avidly adsorbs the 62Zn(II) as [ZnCl3(H2O)]1−, while the 62Cu2+ 

ions are more loosely bound as CuCl2(H2O)2 and can be selectively eluted from the column 

on-demand (Kraus and Moore, 1952).

62Cu-labeled ethylglyoxal bis(thiosemicarbazone) ([62Cu]Cu-ETS) (Figure 1), a lipophilic 

agent, has been identified as having favorable characteristics for in vivo organ perfusion 

imaging with PET (John and Green, 1989; Green, et al., 2007, 2009; Lacy, et al., 2007, 

2010; Basken and Green, 2009). This compound can afford high first-pass tissue extraction 

of radiotracer following intravenous administration (John and Green, 1989; Green, et al., 

2007). Upon tissue uptake, the radiocopper is trapped by intracellular reductive 

decomposition of the copper(II) bis(thiosemicarbazone) chelate, for example by reaction 

with ubiquitous intracellular thiols like glutathione, liberating the 62Cu ion to the 

endogenous copper pool of the cell (Petering, 1980; John and Green, 1990; Shelton, et al., 

1989, 1990; Mathias, et al., 1990; Baerga, Michael, and Green, 1992; Green, et al., 2007). 

This prolonged ‘microsphere-like’ tissue retention of 62Cu, together with its 10-minute 

physical half-life, allows use of extended image acquisition periods for improved counting 

statistics, as well as implementation of whole-body acquisition protocols similar to those 

employed with [18F]-FDG.

Practical clinical use of the 62Cu requires a rapid and robust radiopharmaceutical synthesis 

method for routine on-demand radiopharmaceutical delivery. The present study reports the 

performance of a commercially manufactured 62Zn/62Cu microgenerator system (Lacy, 

Stephens, and Yue, 2006; Stephens, et al., 2008), and a lyophilized H2ETS kit formulated 

for point-of-use [62Cu]Cu-ETS synthesis, in the delivery of [62Cu]Cu-ETS for whole-body 

PET perfusion imaging in patients with advanced renal carcinoma and head and neck 

cancer.

2 Materials and Methods

2.1 Preparation of the generator

All 62Zn/62Cu microgenerators were manufactured by Proportional Technologies, Inc., (PTI, 

Houston, Texas) and shipped to the Melvin and Bren Simon Cancer Center PET/CT at 

Indiana University. The generators were calibrated for 9:00 AM on the day of clinical use. 

The microgenerator houses a 50-µL AGl×8 (200–400 mesh) anion exchange resin connected 

to a pressurized eluent vessel containing 0.2M HCL and 1.8M NaCl elution buffer. The 

tungsten-shielded generator-column is contained within a cylindrical stainless steel outer 
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housing. Upon arrival, the generator unit was removed from the shipping packaging, and 

installed on the elution stand (Figure 2) as described in PTI’s IND documentation and 

Investigator Brochure. While PTI has an electronic control box that can automatically open 

the generator’s elution valve for the standard 30-second elution, for the studies described we 

instead elected to simply manually open and close that single-rotation valve using a 

stopwatch timer to track the elution period.

2.2 Generator elution

An initial 90-second flushing elution was always performed before any patient dose was 

prepared. For this flushing elution, after venting to atmospheric pressure a 5.0 mL empty 

sterile elution vial was placed in the vial shield, positioned underneath the generator, and 

raised into position for elution (Figure 2D). A total volume of approximately 0.75 mL is 

eluted into the vial during this 90-second period. Eluted radioactivity was measured using a 

dose calibrator (Atomlab 100 Medical System, calibration setting of 9.5). After the assay, 

the vial was stored for later measurement of 62Zn breakthrough after complete decay of the 

initial 62Cu.

For subsequent radiopharmaceutical preparations, a standard 30-second elution was 

performed to deliver 62Cu2+ in a volume of 0.25 mL directly into the reconstituted reaction 

vials. If the elapsed time between two consecutive elution was more than one hour, a 30-

second flushing elution was carried out 30–40 minutes before the planned dose delivery, as 

elution yields were observed to drop and become more variable when more than one hour 

elapsed between elutions.

The 62Cu elution efficiency was determined by comparison of the recovered 62Cu 

radioactivity (decay corrected to time-of-elution) and the calculated 62Cu available at time-

of-elution (Finn, et al., 1983; IAEA, 2010). 62Zn breakthrough levels were determined after 

the eluted 62Cu radioactivity had decayed (>20 hours post-elution), measuring the 

residual 62Zn/62Cu radioactivity using a Nal(TI) well counter with a counting window 

centered at 511 keV. The measured count rates were converted to dpm based on the 

measured efficiency of the gamma counter for 511 keV photons in the counting window, 

and decay-corrected to 62Zn breakthrough at time-of-elution.

2.3 [62Cu]Cu-ETS radiopharmaceutical synthesis

The sterile and pyrogen-free supplies and reagents used in the production of [62Cu]Cu-ETS 

were supplied by PTI unless otherwise stated. For each synthesis, a lyophilized vial of 

H2ETS ligand (10-mL vial, 2 µg H2ETS, 20 mg sucrose as excipient) was aseptically 

reconstituted with 3.75 mL 25mM NaOAc sterile solution (pH 6.5). The vial was then mixed 

with gentle swirling until all of the lyophilized cake was dissolved, yielding within seconds 

a clear and colorless solution with no visible particles. Then, the reconstituted ligand vial 

was placed inside the vial shield, and positioned for generator elution.

A volume of approximately 0.25 mL 62Cu2+ in the acidic eluate was delivered directly into 

the ligand vial over a 30-second elution period. The reaction vial was removed from the 

generator stand, and mixed thoroughly (30 seconds) in order to ensure homogeneous mixing 

and completion of the chelation process between the 62Cu2+ and H2ETS ligand. Each 
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preparation of the day was considered a sub-batch, with the first daily sub-batch employed 

solely for a required radiochemical purity assay.

For each patient administration, a new [62Cu]Cu-ETS synthesis was carried out. The 

synthesis was initiated with generator elution approximately 5-minutes before the intended 

injection. Immediately after the synthesis, all 4-mL of injectable solution was directly 

withdrawn from the shielded reaction vial into a shielded 5-mL sterile syringe through a BD 

TwinPak device. Finally, the product was filtered through a sterile 0.22-µm PVDF 

membrane filter (Whatman Puradisc™ 13 mm) into another sterile 5-mL BD syringe (BD, 

Franklin Lakes NJ, USA). Although the radiopharmaceutical synthesis uses sterile and 

pyrogen-free reagents, and the synthesis process was carried out with aseptic technique in a 

closed system, the final terminal filtration was performed as a redundant process for 

ensuring product sterility. (This terminal filtration was not the primary control for product 

sterility.)

Immediately after the filtration process was completed, the radioactivity in the syringe was 

measured using a dose calibrator, the time of assay recorded, and the dosage was delivered 

for patient administration. The time of the patient injection was recorded, followed by 

measurement of residual radioactivity in the injection syringe, and the injected radioactivity 

calculated.

2.4 Radiochemical purity assay

Standard assay: Oasis HLB cartridge method—An Oasis HLB (hydrophilic 

lipophilic balance) cartridge (Waters, USA) was connected to a 3.0 mL receiving syringe 

using a clip assembly, and the entire set-up was mounted onto a mini lab jack. Before use, 

the Oasis HLB column was pre-conditioned with 1.0 mL of methanol (Mallinckrodt 

Chemicals, USA), followed by 2.0 mL NaOAc buffer (25 mM, pH 4.7). The waste was 

collected in a 3.0-mL syringe at the outlet of the cartridge and was discarded, leaving the 

column bed wetted with buffer.

Immediately after the [62Cu]Cu-ETS synthesis, a 0.1 mL sample of the quality control sub-

lot was withdrawn from the vial with a 1.0 mL syringe and diluted with 0.9 mL of NaOAc 

buffer. The sample was mixed thoroughly, and loaded onto the prepared Oasis HLB column. 

The column was eluted by drawing 1.0 mL NaOAc buffer through the column, collecting 

the eluate in a 3.0 mL receiving syringe. The radioactivity of the aqueous HLB column 

eluate, and remaining on the HLB column was measured, and the times of measurements 

were recorded. Total time for the entire procedure was also recorded. [62Cu]Cu-ETS 

radiochemical purity was calculated using the decay-corrected radioactivity measurements 

for the aqueous eluate and the HLB column as follows:

Alternative assay: C18 Sep-Pak® cartridge method—The C18 Sep-Pak® method 

was carried out in tandem with the standard Oasis method. In the Sep-Pak® method, a 

single-use solid phase extraction (SPE) C18 SepPak Light Cartridge (Waters, Milford, MA, 
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USA) was pre-hydrated and pre-conditioned manually with 5.0 mL of absolute ethanol 

followed by 10.0 mL of deionized water. A volume of 0.05 mL [62Cu]Cu-ETS product 

solution was withdrawn from the quality control sub-lot reaction vial, and diluted with 0.95 

mL deionized water. The sample was mixed thoroughly and then loaded into the SPE 

column. The loading eluate was collected into a test tube (“A”). Next, the C18 Sep-Pak® 

Light was eluted with 10.0 mL of water, followed by 10.0 mL of air flush. This aqueous 

eluate was also collected in tube “A”, and contains ionic impurities (e.g. 62Cu2+ 

and 62Zn2+). In order to recover the lipophilic [62Cu]Cu-ETS complex, the Sep-Pak® was 

then eluted with 1.0 mL ethanol, followed by 5.0 mL of air flush. The ethanol fraction was 

collected in tube “B”. The ‘dry’ cartridge was placed in test tube “C”. Finally, the 

radioactivity of samples A, B, and C was determined using a radionuclide dose calibrator, 

and the radiochemical purity of the [62Cu]Cu-ETS was calculated as:

3 Results

3.1 Performance of the 62Zn/62Cu microgenerator

All 42 generators arrived as scheduled, but five were not used to prepare the patient doses 

because of last-minute patient cancellations, or local cyclotron problems that prevented 

delivery of the [15O]-water required by the imaging protocol as a reference tracer for tumor 

perfusion assessment. The average 62Zn at 9:00 AM Eastern Time on the day of clinical use 

was 1.84 ± 0.23 GBq (49.8 ± 6.2 mCi, range: 1.67 to 2.04 GBq or 45 to 55 mCi). These 

results include two generators loaded with relatively low 62Zn activity (24 and 30 mCi), due 

to manufacturing problems. If these two generators are excluded from the calculations, the 

average activity of 62Zn at calibration time was 1.88 ± 0.13 GBq (50.9 ± 3.43 mCi). The 

entire generator set-up process, from receiving the generator shipment to delivery of the first 

patient dose, took approximately 1.5 hours.

3.2 Evaluation of 62Cu yield

The generator elution yield was calculated based on the elutions made in the clinical study 

day (Day 1; 30-second elution period; elapsed time between two successive elutions of <1 

hour). The generators were not used for patient doses on Day 2, due to the reduced level of 

available 62Cu, but remained useful on Day 2 for other radiochemistry studies. The 62Cu 

elution yield of all generators in Day-1 is shown in Figure 3. The results show that all of the 

generators exhibited a high elution yield that ranged from 60% to 100% with an overall 

average of 89.9 ± 12.9%.

We occasionally observed elution yields calculated to exceed 100%. This could reflect the 

calculated available level of 62Cu neglecting in-growth of 62Cu during the 30-second elution 

process itself, as well as 62Cu radioactivity partially remaining (and recovered) from the 

previous elution if the successive elution were carried out at short time intervals. 

Additionally, the loaded 62Zn radioactivity may slightly exceed the amount shown on the 
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package label, reflecting within-limits variations in the accuracy of the dose calibrators 

employed at the manufacturing and clinical sites.

Figure 4 shows the generator elution yields plotted as a function of the time period between 

elutions, with intervals varying from 10 minutes to more than 1.5 hours. The results show 

that within the 10-to-60 minute intervals, the yield was high, consistent, and reproducible, 

averaging 90% (n = 152). However, when the elapsed time from the preceding elution 

exceeded 1 hour, the yield decreased (73.4 ± 24.3%; n = 34) and became more variable.

This variation in elution yield with the period between elutions was never observed on Day 

2, when the radioactivity level on the column was over 4-fold lower than on Day 1. Because 

the observed declines in yield were clearly reversible in subsequent elutions (yield was 

readily recovered by a 30-second flushing elution 30–40 minutes prior to the next elution), 

there does not appear to be channeling damage to the column. Instead, we suspect that the 

altered yield reflects a reversible physical change, such as formation of gas bubbles in the 

column bed, due to the high Day-1 concentration of radioactivity on the column. The high 

elution efficiency observed when controlling the period between elutions assured that even 

at 5:00 pm on Day 1 the generator could deliver levels of 62Cu sufficient for patient studies.

3.3 Evaluation of 62Zn breakthrough

Table 1 summarizes the 62Zn breakthrough levels found in the first elution (90-second 

flushing elution, 0.75 mL), and the average value of breakthrough in the subsequent 30-

second elutions (0.25 mL/elution; n ≥ 3) for a subset of 20 of the generators used. Overall, 

the eluted 62Zn constituted less than 0.001% of the total eluted 62Cu activity. All the 

generators had breakthrough levels that were less than 0.1 µCi of 62Zn, with values ranging 

as low as 0.0001 µCi.

The fractional breakthrough of the 62Zn was determined as the eluted 62Zn relative to the 

total 62Zn activity present on the column at the time-of-elution. The chloride concentration, 

elution flow rate, elution volume, and column resin bed size are all fixed, but one factor that 

could contribute to variations in parent breakthrough is the number of prior elutions 

(reflecting the total cumulative eluent volume passed through the column). Since even for 

strongly absorbed solutes there is always a bound ⇆ free equilibrium, the bound 62Zn 

nuclide could migrate from the top of the generator column to the lower part of the column 

with high elution volumes, potentially increasing 62Zn leakage in later elutions. However, 

examination of the pattern of breakthrough in a subset of eight generators (Figure 5), 

provides no indication of any significant bulk migration of 62Zn through the column bed, 

even at the highest elution volumes one could encounter in clinical generator use.

These studies confirm that the radionuclidic purity of the delivered 62Cu was more than 

99.99% throughout the shelf-life of these generators. The extremely low levels of 62Zn 

contaminant in the 62Cu-radiopharmaceutical product will make a negligible contribution to 

total patient radiation exposure. For example, even a 1.0 µCi 62Zn contaminant in the 62Cu 

product will contribute only a 0.16 mGy (16 mRad) exposure to the liver (the critical organ 

for 62Zn), based on published dosimetry, with a corresponding effective dose equivalent of 

only 0.018 mSv (1.8 mRem) (ICRP, 1988).
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3.4 Performance of the kit-based method for [62Cu]Cu-ETS synthesis

The [62Cu]Cu-ETS synthesis protocol is relatively simple, straightforward, and easy to 

perform. Over a period of three years, using 37 generators, a total of 45 doses of the Cu-ETS 

were successfully prepared for use in PET perfusion imaging at Indiana University Hospital. 

Every batch passed the radiochemical purity test standard (>95%), with an average 

radiochemical purity of 98.1 ± 1.1% (n=40) using standard Oasis-based assay method. 

Equivalent radiochemical purity values were obtained using the alternative C18 Sep-Pak® 

method, where values averaged 97.8 ± 0.9% (n=28). The synthesis process was rapid and 

robust, taking approximately 3.5 minutes to complete, resulting in an average elapsed time 

of 4.5 ± 0.9 minutes (n = 45) from start-of-generator-elution to patient-injection. The mean 

injected dose was 18.2 ± 4.6 mCi (672 ± 172 MBq; n=45).

4 Discussion

Generator-produced positron-emitting radioisotopes provide a practical route to performance 

of PET with short-lived radionuclides, even in the absence of a nearby cyclotron. The results 

of the present study confirm the commercially produced 62Zn/62Cu microgenerator to be a 

reliable source for on-site production of 62Cu-radiopharmaceuticals. The generator set-up is 

easy and rapid, even in a space-limited PET hot lab. The generator module does not require 

a hot cell, as the integrated shielding is sufficient to protect the operator during generator 

elution and radiopharmaceutical synthesis. The elution process efficiently recovers nearly all 

of the available 62Cu from the column in a very small volume (0.25 mL) of dilute HCI 

solution. This small elution volume facilitates in situ adjustment of the final product’s pH 

and isotonicity.

The kit-based [62Cu]Cu-ETS synthesis procedure, from the beginning of the generator 

elution to the patient injection, involves only few simple steps: (1) a 30-second ligand 

reconstitution in the kit vial; (2) a 30-second generator elution of 62Cu; (3) 30 seconds of 

mixing; (4) 0.5 to 1 minutes for the 0.2-µm membrane filtration process; and finally, (5) 

radiopharmaceutical injection. The 62Cu-generator eluate is delivered directly into the kit 

vial, where it is buffered by sodium acetate and allowed to react with the 

bis(thiosemicarbazone) chelating ligand (Figure 1). The resulting 4.0-mL isotonic product 

solution (pH 4.5–5) is suitable for direct intravenous administration. This simple procedure 

minimizes the time needed for radiopharmaceutical synthesis, and thus minimizes pre-

injection radionuclide loss due to decay. We did not encounter a single failure in [62Cu]Cu-

ETS dose delivery over the three-year study period. This simple “elute and mix” synthesis 

protocol can be conveniently implemented in any clinical facility, with the lyophilized kit 

formulation enabling the robust and reliable on-demand production of Cu-labeled 

radiopharmaceuticals.

The sole disadvantage of the 62Zn/62Cu generator is the somewhat short half-life of the 

cyclotron-produced 62Zn parent (9.2 hours), as it limits the generator to a one to two day 

shelf-life. This limitation is somewhat offset by the capability of the generator to produce 

radiopharmaceutical doses at 30–40 minute intervals throughout the day of use. In addition 

to the present example, where we focused only on delivery of [62Cu]Cu-ETS for perfusion 

imaging, the kit-based methodology can also be applied to [62Cu]Cu-PTSM or [62Cu]Cu-

Ng et al. Page 7

Appl Radiat Isot. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



ETSM for cerebral perfusion imaging, [62Cu]Cu-ATSM for tumor hypoxia imaging, 

and 62Cu-labeling of peptide-chelate conjugates (John and Green, 1989; Mathias, et al., 

1990; Fujibayashi, et al., 1997; Lewis, et al., 1999; Castle, et al., 2003; Vavere and Lewis, 

2007; Mathias, et al., 2013).

The production process for the 62Zn/62Cu microgenerator is fully scalable in response to 

clinical demand. The 62Zn can be readily produced in very large quantities via the 63Cu(p,

2n)62Zn nuclear reaction using a medium energy cyclotron. A GMP-compliant cyclotron 

facility could centrally produce 62Zn/62Cu generators for nationwide distribution relying on 

standard overnight delivery services.

The manufacturer’s Oasis-column method, and the alternative C18 Sep-Pak® method, were 

equally effective as approaches to verifying product radiochemical purity. However, we 

preferred the C18 Sep-Pak® method, due to its speed and simplicity (notably requiring less 

operator care than the Oasis method in conditioning the stationary phase, since one does not 

need to visually monitor the solvent being drawn down to the top of the stationary phase 

bed).

5 Conclusions

The 62Zn/62Cu microgenerator has served as a reliable source for “on-demand” delivery of 

short-lived positron-emitting 62Cu at a clinical site. The generator consistently provided 

high 62Cu elution yields, coupled with extremely low 62Zn breakthrough. The kit-based 

[62Cu]Cu-ETS synthesis method has proven to be convenient, rapid, reliable, and robust. 

Analysis and validation of the performance of [62Cu]Cu-ETS in whole-body tumor 

perfusion imaging is in progress (Fletcher, et al., 2014).
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Highlights

The microgenerator system is a dependable high-yield source of positron-emitting 62Cu.

Synthesis of the [62Cu]Cu-ETS radiopharmaceutical is rapid and reliable.

Kit-based production methods offer the convenience required for clinical PET with 62Cu-

agents.
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Figure 1. 
Synthesis and chemical structure of the [62Cu]Cu-ETS radiopharmaceutical.
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Figure 2. 
The 62Zn/62Cu microgenerator produced by Proportional Technologies, Inc. (Houston). A: 

Generator unit as delivered to the clinical site via overnight shipment. B: Generator and 

disassembled stand and shielding. C: Assembled generator stand and shielded elution vial. 

The fulcrum on the base of the stand allows the shielded vial to be raised into the generator 

housing, whereupon the generator outlet needle punctures the septum of the vial. D: 

Generator with shielded vial positioned for elution. In the background one can also see the 

tungsten shield for the 5-mL syringe used to withdraw the patient dose from the shielded 
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product vial. This syringe shield is designed to securely mate with guide holes in the vial 

shield, thereby controlling the position and depth of needle penetration into the vial septum, 

and allowing nearly quantitative dose withdrawal with limited radiation exposure to the 

hands of the operator.
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Figure 3. 
The elution yields of 62Cu from 42 generators on the day of receipt (overall mean: 89.9 ± 

12.9%; 30-second elution period, elapsed time from prior elution < 1 hour).
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Figure 4. 
The 62Cu elution yield on the day of generator receipt plotted as a function of the elapsed 

time since the preceding elution for 42 generators. The elution yield was observed to 

decline, and become more variable, when the elapsed time between elutions was greater than 

60 minutes.
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Figure 5. 
62Zn breakthrough (62Zn breakthrough/total 62Zn at time-of-elution) from a subset of 

eight 62Zn/62Cu generators studied, each with total cumulative eluted volume of ≥ 2.5 mL 

The fraction of leakage remained < 5× 10−5 for up to a 3.5 mL cumulative elution volume 

(10–12 elutions).
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Table 1

Levels of 62Zn-breakthrough in the initial 90-second (0.75-mL) flushing elution, and subsequent 30-second 

(0.25-mL) elutions. Values shown are decay-corrected to time-of-elution.

Generator I.D. 62Zn Breakthrough in Initial
90-sec Elution

(µCi)

62Zn Breakthrough
in Subseque 30-sec

Elutions
(µCi)

(Mean ± SD; n ≥ 3)

Z260 0.01 0.0006 ± 0.0004

Z261 0.002 0.003 ± 0.005

Z262 0.01 0.009 ± 0.0007

Z263 0.0002 0.0001 ± 0.00006

Z264 0.0006 0.00025 ± 0.0002

Z266 0.0075 0.006 ± 0.0005

Z267 0.006 0.01 ± 0.006

Z268 0.003 0.002 ± 0.0009

Z269 0.0039 0.03 ± 0.02

Z270 0.0002 0.0001 ± 0.00007

Z271 0.01 0.04 ± 0.03

Z273 0.09 0.05 ± 0.006

Z274 0.0076 0.012 ± 0.008

Z275 0.004 0.034 ± 0.03

Z276 0.0002 0.0006 ± 0.0005

Z280 0 0

Z281 0.003 0.001 ± 0.001

Z283 0.002 0.002 ± 0.001

Z286 0 0

Z393 0 0
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