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ABSTRACT: Two factors contribute to the inefficiency associated with screening pharmaceutical library collections as a means
of identifying new drugs: [1] the limited success of virtual screening (VS) methods in identifying new scaffolds; [2] the limited
accuracy of computational methods in predicting off-target effects. We recently introduced a 3D shape-based similarity algorithm
of the SABRE program, which encodes a consensus molecular shape pattern of a set of active ligands into a 4D fingerprint
descriptor. Here, we report a mathematical model for shape similarity comparisons and ligand database filtering using this 4D
fingerprint method and benchmarked the scoring function HWK (Hamza−Wei−Korotkov), using the 81 targets of the DEKOIS
database. Subsequently, we applied our combined 4D fingerprint and HWK scoring function VS approach in scaffold-hopping
and drug repurposing using the National Cancer Institute (NCI) and Food and Drug Administration (FDA) databases, and we
identified new inhibitors with different scaffolds of MycP1 protease from the mycobacterial ESX-1 secretion system. Experimental
evaluation of nine compounds from the NCI database and three from the FDA database displayed IC50 values ranging from 70 to
100 μM against MycP1 and possessed high structural diversity, which provides departure points for further structure−activity
relationship (SAR) optimization. In addition, this study demonstrates that the combination of our 4D fingerprint algorithm and
the HWK scoring function may provide a means for identifying repurposed drugs for the treatment of infectious diseases and
may be used in the drug-target profile strategy.

■ INTRODUCTION

Computational methodologies utilized for in silico high
throughput screening (HTS) are a critical component of drug
discovery approaches.1−7 Within the available in silico HTS
approaches, methodologies that combine ligand- and structure-
based screening procedures find the widest application.1,8 The
challenge in any HTS virtual screening (VS) platform is to
develop an algorithm that is sufficiently fast and robust to
evaluate many compounds while maintaining sufficient
accuracy to identify a subset of biological active compounds
(i.e., hits) that have diverse structural scaffolds (i.e., scaffold-
hopping). We sought to employ in silico screening to evaluate
the repurposing of current drugs for a new therapeutic
target.9−11 Drug-repurposing maximizes the potential value of
each hit by screening well-known compounds that have
minimal toxicity and/or few side-effects.12−14

Comparative studies of well-established ligand- and docking-
based approaches concluded that shape-based ligand screening
yielded markedly better outcomes than protein docking
schemes.15−18 A ligand-based computational method involved
two essential elements: [1] an efficient similarity measure and
[2] a reliable scoring method. The similarity measure varied
among different methods and focused on three factors:
pharmacophores, molecular shapes, and molecular fields. The
molecular-shape approaches maximized the overlap of shapes
and determined a similarity value based on the degree of shape
overlap. Over the years, despite the investment made in
developing scoring functions for molecular-shape approaches,
none possessed accuracy and general applicability. Every
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scoring function had its advantages as well as its limitations.
Consequently, investigators turned to the consensus-scoring
technique that improved the probability of finding solutions by
combining the scores from multiple scoring functions or using
different reference molecules.15,19−22

We recently developed an efficient 3D shape-based similarity
algorithm encoding the consensus molecular shape pattern of a
set of active ligands into one descriptor, called the 4D
fingerprint (Figure 1). The 4D fingerprint formalism was
originally proposed by Hopfinger and co-workers and
developed the quantitative structure−activity relationships
(4D-QSAR) model.23 The 4D-QSAR model estimates
molecular similarity measures as a function of conformation,
alignment, and atom type.24 The resulting descriptors values
were the occupancy measures for the atoms in the investigated
set of bioactive molecules. While the similarity measures
achieved excellent predictions for a variety of enzyme
inhibitors,25−27 the weakness of this approach lies with the
occupancy measures for the atoms (or pharmacophoric groups)
which may also be present in similar, “inactive” compounds.28

The 4D fingerprint approach implemented in the Shape-
Approach-Based Routines Enhanced or SABRE program
possessed a number of attractive advantages over other VS
methods.29,30 First, it depended explicitly on 3D shape, not on
the underlying chemical structure, and thus it excelled in
identifying novel chemical scaffolds based on a set of known
active ligands (scaffold-hopping). The iterative 4D fingerprint
approach was particularly robust for several reasons: (i) the 4D
fingerprint descriptors were very sensitive to the details of
molecular shape of active ligands, reducing the need to use
multiple conformers of multiple query structures; (ii) the
method excel by the incorporation of the spatial distributions of
chemical features of similar inactive ligands during the
optimization and screening procedures; (iii) the algorithm
was fast and had the ability to scan a library of millions of
compounds in a matter of hours. The method unified ligand-
and structure-based 4D fingerprint VS approaches by docking
the shape filtered ligand structures into the receptor-binding
cavity. Finally, running searches using this methodology was
remarkably easy and required only that the end-user supply a
query structure and runtime parameters to control the number
of hits that were returned. Despite these advantages, the 4D
fingerprint method, as previously reported, suffered from a
weakness in the empirical HWZ scoring function17 for ranking

and selecting the active ligands from large databases. To
remedy this deficiency, we modified the shape-based VS
algorithm of the SABRE program and implemented a new,
robust scoring function that accommodated the diversity of
ligand scaffolds with an accuracy that exceeded our prior efforts.
Tuberculosis (TB) is a chronic and complex disease resulting

from infection with the bacterium Mycobacterium tuberculosis.
TB remains an important public health problem worldwide,
with 8.6 million estimated cases and 1.3 million deaths
attributed to the disease in 2012.31 In order to combat the
spread of TBparticularly resistant strains of M. tuberculosis
it is necessary to identify new molecular targets for TB drugs
and develop new, more efficient, methods for screening ligands
as potential drug candidates than methods used in the past.
Historically, high-throughput screening (HTS) approaches
coupled with in vitro testing served to identify promising hits
with anti-TB activity. While successful in some cases, the HTS
approach frequently failed in the antibacterial drug discovery
area due to the poor ADMET properties and insufficient or
improper molecular diversity of the compounds screened.32,33

The mycobacterial ESX secretion system, also referred to as the
type VII secretion system, represents a promising, new target
for TB drug development.34,35 The ESX secretion system is a
specialized system unique to mycobacteria that secrete a large
number of proteins necessary for M. tuberculosis virulence.36−38

Each ESX secretion system includes a membrane-associated
subtilisin-like protease, called the mycosin: MycP1−MycP5
(numbered according to gene cluster). MycP1 from the ESX-
1 system hydrolyzes the ESX associated protein B (EspB)
during secretion,39−41 and this processing affects virulence in a
mouse model of TB infection.42 The recent description of the
molecular structure and substrate specificity of MycP1

43−45

prompted interest in MycP1 as a promising target for structure-
based drug design.
Recently, we applied the combined ligand- and structure-

based virtual screening procedure and 4D fingerprint algorithm
to identify new inhibitors for MycP1 protease.30 The study
reported here extends our previous work and reports a rational
approach for ranking the ligand databases and demonstrates the
performance of the novel HWK scoring function using 81
targets from the DEKOIS database.46 Validation of the
efficiency of the VS method for scaffold-hopping and drug
repurposing involved the application of this methodology for
the identification of diverse inhibitor scaffolds against MycP1

Figure 1. Ligand and structure shape-based VS approach using the 4D fingerprint. The resulting 4D fingerprint encoded in the 3D shape of the
candidate ligand Bi is docked and ranked using the HWK scoring function. The application of the 4D fingerprint to the ligand Bi decreases the
interaction (purple arrow) with the receptor.
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protease and experimental testing of some of these scaffolds in
an in vitro enzyme assay.

■ METHODS
We have recently developed a ligand and structure shape-based
VS algorithm implemented within the SABRE program.29,30

Unlike other ligand-based shape overlapping methods,47−49 our
approach efficiently detected the key pharmacophore groups of
the active ligands responsible for binding to the target. The
main advance of our methodology resided in the consideration
of “virtual” but similar inactive structures (decoys) during the
consensus molecular-shape detection process (Figure 1). After
similarity scoring, the selected structures were ranked according
to their shape complementarity in the receptor-binding site.
This report highlights the major steps of the algorithm and
describes the approach used for the development of this scoring
function.
Enhanced Molecular Shape-Density Model. The

molecular shape density function φ(r) of a ligand is expressed
in terms of the shape density functions of individual atoms and
their overlap

∏ϕ ρ= − −r r( ) 1 [1 ( )]
i

i
(1)

in which each atom i with coordinates Ri = (Xi, Yi, Zi) is
described by a spherical Gaussian:50−53
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where σi is the van der Waals radius of the atom i. The
molecular volume V of the ligand is defined as54
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The intersection volume of atom pairs is defined as
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The overlap volume of two molecules A and B is defined as
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In the SABRE algorithm, the shape-density model is enhanced
and defined as a linear combination of weighted atomic
Gaussian functions.18,29,30 Thus, the molecular shape-density is
the sum of all individual weighted pharmacophore densities,
and the molecular volume is defined as
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pharm−k = ∑i∫ dr ρki(r) is the partial volume of the

pharmacophore group k and is defined as a linear combination
of atomic Gaussian functions. The optimal coefficients {Ck} are

determined by iteratively adjusting the coefficients of the set of
known active ligands {Ai} in the presence of virtual decoy
structures {Bi} (virtual decoys are inactive similar compounds
that are not necessarily synthetically feasible or identified in the
previous VS rounds) until they satisfy these two criteria:
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This algorithm quickly builds a consensus molecular-shape
pattern in which the optimal coefficients {Ck} define a 4D
fingerprint of the entire set of active ligands that also effectively
excludes structurally similar, but inactive ligands (decoys)
(Figure 1).29,30

Rational Approach for Developing a Robust and
Efficient Scoring Function. Given a set of known active
ligands {Ai} with volumes V{Ai} and a query structure A with the
volume VA, we effect the shape-filtering and ranking the
candidate molecule Bi with volume VB

i.
During the VS process, we observe two trends: (i) VBi ≤ VA

or (ii) VBi ≥ VA. As a result, we can rank the structure Bi

according to either the condition (i), (ii), or the combination of
(i) and (ii) for two different ligands Bi and Bj. Thus, we have
two possible outcomes:

(1) The volume of the candidate structure Bi is smaller than
the volume of the query A: VBi ≤ VA. The maximal
overlap volume VABi for the two structures is restricted as
VABi ≤ VBi and rewritten as

≤ −
V
V

0 1 AB

B

i

i (8)

(2) The volume of the structure Bi is larger than the volume
of the query A: VBi ≥ VA and VABi ≤ VA is rewritten as

≤ −
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i
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(3) We illustrate this case by considering two candidate
structures with VBi ≤ VA and VBj ≥ VA. For clarity we
consider that they have the same overlap volume with the
query structure and consequently, VABi ≈ VABj. Adding
eqs 8 and 9 gives
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and we obtain the Tanimoto scoring function:55
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We rewrote eqs 8 and 9 as smooth Gaussian distributions and
defined the scoring function HWK (Hamza−Wei−Korotkov)
that converges to one for optimal similarity:
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The Tanimoto function and eqs 11 and 12 clearly reveal that
the ranking of the candidate structure Bi is determined by
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several inhomogeneous criteria. For a fixed overlap volume, eq
11 gives the highest score for the ligand Bi with a smallest size
even if it possess less similar chemical features than other
ligands with larger volume sizes. Second, the VABi term takes
into account the overlap volume of the full ligand size instead
the volume of the key chemical features present in both the
query A, and candidate ligand Bi. This result in a higher ranking
for the ligand Bi with largest size since the overlap volume
varies with the full size of the ligand. Third, we recently
demonstrated the weakness of the Tanimoto scoring function
when used for filtering the 3D shape of the ligands and found
that the Tanimoto function only efficiently ranks the ligands
with comparable volume size to the query.17

These drawbacks can be overcome by taking into account the
specific atom-type information, such as the consensus
molecular shape pattern or “4D fingerprint” of the set of
known active ligands. According to the 4D fingerprint approach
(eq 7), the volume of the query A and the set of active ligands
{Ai} are defined as

* = + * = +ε ε′V V V V V Vand i
A A

PHARM
{A} {A}

PHARM
i i (13)

The optimization of the coefficients {ck} leads to the residual
volume Vε ≪ VA

PHARM, and the value of the VA
PHARM term in eq 7

ranges across the interval [min V{Ai}
PHARM; maxV{Ai}

PHARM].
In the following demonstration, we assumed that the

candidate Bi is an active ligand and similar to the query A in
the set of active ligands {Ai}, since if B

i is dissimilar the overlap
volume converges to a small value. We have
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the volume of Bi* is defined by eq 7 and is equals to the sum of
the weighted partial volumes of the key pharmacophore groups
and its volume size is in the interval of the set of active ligand
volumes V{Ai}* .
Three possible scenarios exist:

(1) VBi* ≤ VA*
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(3) According to the eqs 13 and 14 and the 4D fingerprint
coefficients, the Tanimoto scoring function is written as
T = VAB

i/(VBi* + VA* − VAB
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The optimal similarity is reached for Ti = VBi*/VA* ≈ Tj = VA*/VBj*
→ 1.
As a result, the candidate ligands with a volume size slightly

smaller or larger than the query volume are ranked equivalently
when using the 4D fingerprint method with the Tanimoto
equation. Finally, we observe that the weighting coefficients of
the 4D fingerprint adjust and group the unknown “active”
candidate structures with miscellaneous volume sizes and
scaffolds into three classes relative to the query size. This
confers the advantage of ranking more effectively these three
types of shape using the HWK scoring function (HWK−,
HWK+, HWKTanimoto).

Shape-Fitting Procedure. The docking approach de-
scribed in our previous work combined the performance and
speed of the ligand-based 4D fingerprint method with the shape
characteristic of the receptor binding site.29 The current
SABRE docking algorithm encodes both the 4D fingerprint
and the novel HWK scoring function, and it generates
alignments where patterns with similar binding character are
oriented in a similar fashion in the binding site of the receptor
(Figure 1). During the rigid docking process, the SABRE
program takes into account only the pharmacophore groups
present in the VB

iPHARM(VBi*) that interact in designated ways
with key receptor atoms. Five important chemical features were
assigned to an atom type: hydrogen bond donor, hydrogen
bond acceptor, acidic center (negatively charged at physio-
logical pH 7), basic center (positively charged at pH 7), and
metal-chelation. The main novelty of the SABRE docking
approach is that the pairwise interaction between the key
pharmacophoric groups (defined by the 4D fingerprint, Figure
1) of the ligand and the receptor atoms are calculated using the
Gaussian function Gij. The pairwise interaction of atoms i
(ligand atoms) and j (receptor atoms) is defined as

λ ω= + − −G d D d( ) 1 exp( ( ) )i j i j i j,
type

,
type type

Eq
type

,
2

(15)

where DEq
type is the standard distance between the heavy atoms i

and j for each “type” of interaction (i.e., hydrogen bond
interaction, electrostatic interactions) and di,j is the distance
between the two atom centers. The parameter ωtype is a freely
adjustable parameter and controls the distribution of the
Gaussian function. The parameter λtype controls the weight of
the interaction type and depends on the 4D fingerprint
coefficients.
The pairwise interaction is attractive for λtype > 0 and

repulsive for λtype < 0. The total of n pairwise interactions
between the pharmacophoric groups of the ligand and the key
receptor atoms is defined by the geometric mean Gi,j

TOTAL(di,j)
as
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Thus, the combination of the total pairwise interactions
Gi,j
TOTAL(di,j) and eqs 10−12 takes into account both the 4D

fingerprint and the key interacting pharmacophoric groups of
the ligand and leads to improved enrichment of the VS process.
The HWKDock scoring function of the SABRE docking method
is summarized by the three equations:
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It is interesting to note that a ligand with high similarity score
(eqs 10−12) is reranked with a lower score if its chemical
features are close to repulsive receptor atoms. Therefore, our
scoring strategy developed in the docking method combines
the fast and efficient ligand-shape-based 4D fingerprint VS with
an extremely quick calculation of the interactions between the
ligand pharmacophoric groups and the key receptor atoms. In
addition, we observe in Figure 1 that the interaction (purple
arrow) involving the pharmacophore groups present in both
active and decoy structures become negligible. Analysis of the
HWKDock function (eqs 17−19) highlights a new strategy for
improving scaffold-hopping and drug repurposing perform-
ances. During the VS campaign, the shape size of the query is
fundamental and orients the choice of the scoring equations.
Thus, if the shape of the query is small and does not completely
fill the receptor binding cavity, the HWKDock

+ is appropriate to
identify structural hits with either comparable or larger volume
sizes than the query volume. However, the hits with volume
sizes ranging in the interval [min(V{Ai}* ); VA*)] of the set of
active ligands (eq 14) are also ranked with a high HWKDock

+

score. In contrast, if the shape of the query complement the
receptor binding cavity, the HWKDock

− is better suited to identify
hits with smaller volume sizes while keeping high overlap
volume with the pharmacophore groups of the query. Finally,
the HWKDock

Tanimoto is effective to identify hits with comparable
query shape (i.e., rather smaller or larger structural sizes that fit
into the receptor binding cavity while retaining structural
diversity). Consequently, three different classes of hits emerge
based on the equations of the HWK function that selected
them. In each list, the compounds are first ranked according to
query similarity using the 4D fingerprint approach, and the
diversity is achieved by selecting compounds ranked highly
using one of these scoring equations.
Evaluation of VS Efficiency and Robustness Using the

Novel HWK Scoring Function. The DEKOIS (version 2.0)
database of annotated active compounds and decoys was used
to validate the HWK scoring function.46 The DEKOIS database
is a publicly available VS test database consisting of 81 targets.
For our purposes, the ratio of the number of decoys to the
number of active ligands was fixed at 30. We used the DEKOIS
database instead of the 40 targets of the DUD database for our
VS test in order to measure the robustness of the scoring
function when screening a large number of targets. This is one
of the most commonly encountered measures for estimating
prediction accuracy of VS algorithms.
The effectiveness of the SABRE program was evaluated using

the enrichment factor (EF) metric at a given percentage of the
database screened,56−58 and the area under the ROC (receiver
operator characteristics). To test the efficiency of the HWK
scoring function defined by eqs 10−12, we screened each target
10 times using a different set of five randomly selected active
ligands (as templates) and reported both the highest perform-

ance (ROC AUC value) and enrichment factor EF at 1% for
the 81 targets. Screening results using the empirical HWZ
scoring function were reported for comparison.17 For each
screening test, the five template structures where first removed
from the list of active ligands.

Identification of Potential Inhibitors of MycP1
Protease. The detailed VS procedure was described in our
previous work30 and summarized in the Supporting Informa-
tion (Supplementary Figure SI-1). Briefly, the 4D fingerprint
algorithm defined in the 3D-shape-based similarity method of
SABRE was used as the first filter of the NCI (National Cancer
Institute) from the NCI Open Database Compounds (Release
4, ∼265 000 structures) and FDA (Food and Drug
Administration, 1217 compounds) database downloaded from
the ZINC database.59 It is important to note that the 4D
fingerprint was generated using both the previously identified
leads (active ligands) and inactive compounds (considered as
decoys).30 The multiple conformation states of each ligand in
the database were generated using OMEGA (OpenEye
Scientific Software).60−62 Thereafter, we utilized the “docking
option” of the SABRE program to place the filtered
conformations of each ligand into the active site of the
MycP1 (PDB ID: 4HVL) and ranked them using the HWK
scoring function.

Drug Repurposing Approach Using the 4D Finger-
print. According to eq 14, the candidate Bi structure is similar
to the set of known active ligands {Ai} if VBi* ∈ [min(V{Ai}* );
max(V{Ai}* )] and VBi* ≈ VA

PHARM ≈ VAB, which results in HWK
converging to 1. The volume VA

PHARM is defined by the 4D
fingerprint coefficients {Ck} that encoded the chemical features
of the consensus molecular shape pattern of known active
ligands (eq 7) for the specific binding target. Therefore, this
suggests that the best fitted and most highly ranked ligands
from the VS of the database have similar 4D fingerprint
coefficients and thus should interact with the receptor of the
known active ligands (concept of the drug-target profile). It is
important to note that this approach considers only the 4D
fingerprint and the fast-fitting method implemented in the
SABRE program. To validate the effectiveness of SABRE for
drug repurposing, we conducted a ligand- and structure-based
VS procedure using the FDA database.

In Vitro Assay of MycP1 Inhibitors. Recombinant
Mycobacterium thermoresistibile MycP1 was expressed and
purified as reported previously.43 A quenched, fluorescent
peptide assay was used to measure the activity of MycP1 in the
presence of inhibitors. MycP1 was used to digest 20 μM of the
fluorescent substrate, AbzAVKAASLGK(Dnp)OH (GenScript
Inc.). Potential MycP1 inhibitors identified by SABRE were
diluted to a concentration of 150 μM, and assays were
measured in 96-well format. Compounds that were considered
hits showed less than 50% activity compared to controls
(DMSO-buffer blank). The same in vitro assay was used to
measure the inhibitory concentration 50% (IC50) of the most
promising hits. For IC50 measurements, inhibitors were added
at 0, 5, 10, 50, 100, 200, 350, and 500 μM concentrations.
Initial rates of fluorescent peptide hydrolysis were measured
then incorporated into dose−response curves using GraphPad
Prism.

■ RESULTS AND DISCUSSION
Performance of the SABREHWK Scoring Function. We

evaluated the accuracy of the HWK scoring function and
compared the current values to those obtained with the
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empirical HWZ scoring function17 using the multi conforma-
tional states of the decoys and active ligands of the 81 targets
from the DEKOIS database. The merits of scoring function
became clear as it accurately ranked compounds with subtle
structural changes. In the present VS trial, we selected query
molecules according to the procedures presented in Kirchmair
et al.63 and used to describe the performance of the
algorithms.29,49

As shown in Figure 2, we evaluated the AUC for each target
of the DEKOIS database and the average AUC using the
SABREHWK and SABREHWZ scoring functions. The average
AUC value of the best performing query for the 81 DEKOIS
targets using HWK and HWZ scoring functions was 0.875 ±
0.054 and 0.851 ± 0.054, respectively. The two scoring
functions had similar overall performance for some of the 81
targets based on the AUC metric; however, an analysis of the
complete set of targets revealed that SABREHWK performed
more consistently in terms of AUC with an average AUC ≥ 0.9
for 26 targets and 0.9 > AUC ≥ 0.8 for 51 targets than
SABREHWZ. Moreover, SABREHWK did not fail for any of the 81
targets screened. In comparison, SABREHWZ ranked the
screening results with an AUC > 0.9 for only 17 of the 81
DEKOIS targets (11 targets out of 81 have AUC ≤ 0.8). The
detailed results for each target are displayed in Table SI-1. One
of the advantages of the SABREHWK approach is that the VS
performance combining the 4D fingerprint and the novel HWK
scoring function depended less on the screened targets, as
already observed in our previous benchmark tests using the
HWZ function with the 40 DUD targets.17,18,29

Analysis of the Enrichment Factor Using the
SABREHWK Scoring Function. The efficiency of the
SABREHWK scoring function was evaluated using the enrich-
ment factor at 1% (EF1%), and the results were also compared
to those using the SABREHWZ function (Figure 3 and Table SI-
1). The average EF1% values for the 81 targets using the novel
HWK and empirical HWZ score-based virtual screening were
21.8 ± 5.0 and 15.5 ± 5.9, respectively. The SABREHWK

method performed more consistently resulting in an EF1%

less than 10% for only two targets, whereas the results using
the SABREHWZ method provided enrichment factors below
10% for 24 targets. Thus, the enrichments achieved with
SABREHWK are considerably better than those obtained with
the empirical HWZ scoring function, indicating that the novel
scoring function was more efficient in identifying hits with
notably different scaffolds compared to the query structure.
Therefore, on the basis of the AUC and enrichment factor EF
values, these results indicated that the novel HWK score
demonstrated an improved and robust VS performance, albeit
with the caveat that we used only 81 targets in this study.

Identification of Novel Inhibitors of MycP1 Protease.
The SABRE program was generally applicable for ranking any
bioactive scaffold classes with the exception of inactive decoys.
The recognition of a wide variety of structurally different ligand
classes was an important goal of our virtual screening strategy.
The MycP1 protease represented a challenge for both ligand-
and structure-based virtual-screening approaches. Indeed, only
the crystal structure of the apo form of the enzyme was
available, and the protein active site is relatively large, which

Figure 2. Comparison of the areas under the ROC curves (AUC) of the 81 DEKOIS databases using the SABREHWK and SABREHWZ scoring
functions.

Figure 3. Comparison of the Enrichment Factor EF at 1% of the 81 DEKOIS databases using the SABREHWK and SABREHWZ scoring functions.
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decreased the probability of successfully identifying and ranking
the correct pose of the screened ligands. The structures of
MycP1 inhibitors that we previously reported were available,
and visual analysis of their putative poses in the active site
revealed that the binding mode of compound 1 was
reasonable.30 These compounds have chemical features that

enabled SAR (structure−activity relationship) studies and
generated a novel 4D fingerprint. For the purpose of SAR, an
intuitive strategy for scaffold-hopping used the hit compound 1
as query and the HWKDock

+ scoring function to rank hits with
larger volume sizes from the NCI database. We constructed
such a ranking of the best 1000 structures (top-1000) according

Table 1. Experimentally Determined Inhibitory Activity of the 13 Compounds Selected from the Virtual Screening

compound name % inhibition at 150 μM IC50 (μM)a PAINS filterc

NCI database 1 (query) NSC-357905 73.0% 48.0b pass
2 NSC-67021 71.5% 76.8 pass
3 NSC-270375 75.8% pass
4 NSC-67931 63.8% pass
5 NSC-356820 68.5% fail
6 NSC-206155 54.7% pass
7 NSC-614859 54.3% pass
8 NSC-207092 55.6% fail
9 NSC-111151 52.5% fail
10 NSC-641874 57.3% pass

FDA database 11 Hydroxystilbamidine 79.1% 85.6 pass
12 Diminazene 58.0% fail
13 Thiacetazone 80.1% pass

aOnly IC50 < 100 μM are reported. bIC50 value according to ref 30. cPan Assay Interference Compounds (PAINS) remover, see ref 64.

Figure 4. Structural scaffold of MycP1 inhibitors identified during the VS of the NCI database.
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to the docking-score function. The pharmacophore model
reduced the number of these structures to a small subset of
promising MycP1 lead candidates. The 135 hits derived from
the NCI database were superimposed with the binding query
(compound 1) and visually inspected. Forty molecules were
selected from the hits and tested in vitro for inhibitory activity
against MycP1. Notably, 9 compounds out of the 40 were able
to inhibit MycP1 by more than 50% when added at 150 μM
(Table 1 and Figure 4) and one compound showed an IC50 less
than 100 μM. Compound 2 inhibited MycP1 activity in the low
micromolar range with an IC50 of 76.8 μM and does not
includes substructures described as Pan Assay Interference
Compounds (PAINS).64

The VS procedure identified these compounds based on
their common chemical features (4D fingerprint) present in the
subset of known active ligand structures and their fit in the
binding pocket. The coefficients of the 4D fingerprint efficiently
encoded the spatial distributions of pharmacophoric points
providing the alignment of compounds relative to the binding
site surfaces. Each point accounted for an important chemical
feature such as hydrogen bond donors/acceptors and negative/
positive charged groups. The basic physicochemical features of
the known MycP1 compounds included the potential to
establish hydrogen bonds as donors with Thr156 and Ser202,
Glu203 and Thr333 residues. (Figure 5). Furthermore, analysis
of the docking results revealed that the lead compound 2 fit
well within the binding site cavity. The compound 2 formed
hydrogen bonds with the Thr156, Thr333, Ser202, and Glu203
residues of MycP1. The results were in agreement with our
previous docking studies pointing out Ser202 and Thr156 as
key residues to stabilize the ligand scaffold in the MycP1
catalytic binding site.30 A detailed analysis of the docking
mode of the 11 compounds (Figure 4) revealed a close match
between the pattern of hydrophobic and hydrogen bond donor
pharmacophoric points of these hits compared to the
pharmacophore model defined in our previous study.30

As shown in Table 2, the VS procedure ranked 9 lead
compounds at different cut-offs among the initial 1000 docked
structures. Among the top-30, one lead compound was present,
and this outcome corresponded to 11% coverage. Furthermore,
the 9 lead compounds were among the top-300 of the filtered
NCI database. These results highlight the merits of our 4D
fingerprint VS approach when combined with the novel HWK
scoring function. We also compared this simple approach to a
complex approach including other likely query conformations.

We modeled three plausible binding poses of the compound 1
(query) with different conformations in MycP1 cavity and
redocked the top-1000 ligands using these three conformations,
as shown in Table 2. The fusion approach markedly improved
the percentage of retrieved lead compounds in the top-75 and
further underscored the potential of the 4D fingerprint and
HWKDock scoring VS procedure in the identification of lead
compounds using the structure of unliganded receptor.

Assessment of the 4D Fingerprint and HWK Scoring
Function for Drug Repurposing. The integration of this
newly generated computational method, which combined the
4D fingerprint and the HWK scoring function with in vitro
enzyme inhibition studies, was a useful approach for evaluating
current drugs, already on the market for a particular therapeutic
purpose as potential agents for treating TB. To demonstrate the
applicability of this integrated virtual and experimental
screening for drug-repurposing, we undertook the virtual
screening of the FDA-approved drug database consisting of
1,217 compounds (corresponding to 3358 structures including
tautomers) using the 4D fingerprints previously generated
during NCI database screening. Hits were evaluated using the
aforementioned MycP1 enzyme assay. In order to increase the
structural diversity of the compounds identified by this process,
we conducted the VS procedure three times using compounds
1, 8, and 9 as query for each VS round. The choice of the
structural query was critical to the success of this approach. As
described in Methods, the scaffold diversity depended on the
selected HWK− or HWK+ or HWKT (Tanimoto) scoring
equations, which also depended on the query size. Thus,
compound 1, discovered in our previous work, was used as
query since it has the highest affinity to MycP1. The
compounds 8 (larger volume than that of compound 1) and
9 (smaller volume than that of compound 1) were selected
based on their differential volumes and structural diversity

Figure 5. Stick view of the binding compound 2 (NSC-67021) and 11 (Hydroxystilbamidine) in the MycP1 active site.

Table 2. Percent of Lead Compounds Recovered at Different
Cutoffs of the Final Docked and Ranked Structures

cut off (top structures) number of leadsa % coverage of leadsb

30 1 11
75 4 44
150 5 55
300 9 100

aTotal lead structures = 9. b% coverage of leads = (number of leads in
the top/total lead) × 100.
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compared to the structure of 1. The goal of our screen was to
find hits with diverse structural scaffolds and comparable
volume sizes to the queries. Thus, the resulting docked ligands
of the FDA database were ranked using the HWKDock

Tanimoto

scoring function (eq 19).
Since the screening process of the NCI database and the

benchmark test using the 4D fingerprint of SABRE program
demonstrated high enrichment factor at 1% of the screened
database, we visually inspected the binding mode of the best 30
structures (∼1%) identified within the FDA database. We
focused, in particular, on four compounds based on their high
HWKDock

Tanimoto docking score and their interactions with the key
residues (Thr156 and Ser202) of the MycP1 binding cavity.
These four compounds were chosen for in vitro inhibition
assays, and three out of the four selected compounds exhibited
more than 50% inhibition of MycP1 when used at 150 μM
(Table 1), which validated the merits of our VS approach.
Finally, the active compounds were filtered for Pan Assay
Interference Compounds (PAINS) (Table 1) and showed that
the hydroxystilbamidine scaffold may be used as starting
structure for further optimization. An analysis of the three
ranked FDA approved drugs showed that the compounds 11,
12, and 13 were ranked by SABRE near the top at positions 2,
24, and 3 out of 1217. The high score for compounds 11 and
13 was attributable to the HWKDock

Tanimoto scoring function, which
took into account the ligand similarity as well as the optimal
ligand/receptor pharmacophore model (eq 19). Out of the
three, compound 11 had the greatest effect, with an IC50 of 85.6
μM, whereas the two other leads had IC50 > 100 μM. In
addition, we noted the low structural similarity between the
three identified FDA compounds (Figure 6). As observed for
the other leads, compound 11 formed hydrogen bonds with the
Thr156, Glu203, and Thr333 residues of the MycP1 active site
(Figure 5). Interestingly, compound 11 is typically used as a
histochemical stain to understand the distribution and
localization of biomarkers,65 and these results suggested that
it or its analogs may be repurposed for inhibition of MycP1.
More importantly, these preliminary findings show that the
SABRE algorithm with HWK scoring provides an efficient
means for the identification of new uses for current drugs and
encourages us to pursue the applicability of methodology in
drug repurposing strategy for other medically relevant drug
targets.
Assessment of Lead Scaffold Diversity. Published data

suggested counting hits only when the chemotype of a
molecule is not equal to a template chemotype or any other
chemotype that already exists in the hit list.66 This approach
resulted in a chemotype enrichment that emphasizes discovery

of ligands with different chemotype properties. We assessed the
novelty of the confirmed 12 hits by comparing their structural
similarities with a “simple 2D descriptor”.67 We computed the
pairwise similarity index using the molecular access system
MACCS structural keys (MACCS, 166 bits) of our 13
compounds (query +12 leads) and represented the structural
diversity using the heat map (Figure 7). The MACCS similarity

indexes were calculated using Openbabel.68 The map visualizes
15 × 15 = 225 pairwise comparisons and was color-coded by
similarity values ranging from red (low similarity value) to dark
blue (high similarity value). We observed only two lobes in
dark blue consistent with high similarity between the
compounds (MACCS index > 0.8) and most of the compounds
were dissimilar. This result supported the increased structural
diversity (MACCS index < 0.6) of the new lead compounds
using the combined 4D fingerprint and HWK scoring function.
Considering the high degree of substructure encoded in each
VS round, it was not surprising that the 4D fingerprint
algorithm performed well at finding diverse chemotypes.

■ CONCLUSION
We report a rational method for the design of novel scoring
function HWK and validated its performance using a large
number of targets from the DEKOIS database. The VS
approach test using the 4D fingerprint and the HWK scoring

Figure 6. Structural scaffolds of MycP1 inhibitors identified during the VS of the FDA database. The percentage of inhibition and IC50 are displayed.

Figure 7. Heat map of the MACCS similarity index for the 13
compounds (12 leads + query).
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function provided high enrichment factors in detecting active
compounds at early stage of the 81 screened databases. We
validated the efficiency of the combined 4D fingerprint and
HWK scoring function in scaffold-hopping strategy through the
identification of nine novel lead compounds in a short hit list
from the VS of the NCI database. The result of the VS round
ranked these compounds in the top-300 of the database, and
one of them displayed an IC50 comparable to that of the
reference structure.
In the absence of new drugs for infectious diseases like TB, it

made sense to develop a VS strategy capable of exploring
databases of current drugs used to treat diseases other than
infectious diseases and potentially repurpose some of them for
TB treatment.9−11 The merit of this approach lies in the
obvious point that these commercially available drugs lack
significant toxicity or side-effects.12−14 To test this notion, the
screening of the FDA database using our screening approach
identified three FDA-approved compounds as potential lead
structures. One of these compounds displayed an IC50 of 85.6
μM against MycP1 protease. The distributions of pairwise
structural similarities presented in the heat map revealed that
the 13 lead compounds resulting from the VS of NCI and FDA
databases were structurally diverse. In summary, this study
represents the comprehensive quantification of VS approach for
scaffold-hopping and drug repurposing and provides a solid
strategy for the discovery of new classes of MycP1 inhibitors.
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