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Abstract

Background: Risky decision-making is commonly observed in persons at risk for and infected with HIV and is associated
with executive dysfunction. Yet it is currently unknown whether HIV alters brain processing of risk-taking decision-making.

Methods: This study examined the neural substrate of a risky decision-making task in 21 HIV seropositive (HIV+) and 19
seronegative (HIV-) comparison participants. Functional magnetic resonance imaging was conducted while participants
performed the risky-gains task, which involves choosing among safe (20 cents) and risky (40/80 cent win or loss) choices.
Linear mixed effects analyses examining group and decision type were conducted. Robust regressions were performed to
examine the relationship between nadir CD4 count and Kalichman sexual compulsivity and brain activation in the HIV+
group. The overlap between the task effects and robust regressions was explored.

Results: Although there were no serostatus effects in behavioral performance on the risky-gains task, HIV+ individuals
exhibited greater activation for risky choices in the basal ganglia, i.e. the caudate nucleus, but also in the anterior cingulate,
dorsolateral prefrontal cortex, and insula relative to the HIV- group. The HIV+ group also demonstrated reduced functional
responses to safe choices in the anterior cingulate and dorsolateral prefrontal cortex relative to the HIV- group. HIV+
individuals with higher nadir CD4 count and greater sexual compulsivity displayed lower differential responses to safe
versus risky choices in many of these regions.

Conclusions: This study demonstrated fronto-striatal loop dysfunction associated with HIV infection during risky decision-
making. Combined with similar between-group task behavior, this suggests an adaptive functional response in regions
critical to reward and behavioral control in the HIV+ group. HIV-infected individuals with higher CD4 nadirs demonstrated
activation patterns more similar to seronegative individuals. This suggests that the severity of past immunosuppression
(CD4 nadir) may exert a legacy effect on processing of risky choices in the HIV-infected brain.
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Introduction

The human immunodeficiency virus (HIV) can cross the blood-

brain barrier early in the course of infection and trigger a cascade

of functional and structural alterations [1,2]. One of the primary

loci of this damage is the deep grey matter of the basal ganglia [2]

which are reciprocally connected to a broad range of cortical

regions [3–5]. HIV infection has been reliably linked to injury of

the fronto-striato-thalamo-cortical loops [6], and can thus

adversely impact a variety of higher-order neurocognitive func-

tions that rely on these circuits. For example, HIV-associated

neurocognitive deficits have been observed in approximately half

of infected persons in such ability areas as fine-motor skills [2],

working memory [7], and executive function [8].

Risk-taking and reward processing are important processes that

influence behavior [9]. Making a choice in a risky situation

typically requires a choice between an option that is associated

with a large outcome that may be either advantageous or

disadvantageous versus an alternative with a smaller, more certain

advantageous outcome [10,11]. One formulation of risk is its

econometric definition as the variance of the value of the possible

outcomes [12]. This conception, however, does not account for the

influences of emotion since human decision-making is not always

rational [13]. More recent approaches attempt to bridge the gap
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between rational choice and emotions guiding decisions. For

example, the somatic marker hypothesis [14,15], affect heuristic

hypothesis [16] and risk-as-feelings hypothesis [17] posit that

emotions are integrated with cognitive evaluation of choices to

regulate the decision making process.

Risky decision-making is commonly observed in individuals at

risk for (e.g., [18]) and infected with (e.g., [19,20]) HIV. For

example, on the Iowa Gambling Task (IGT), HIV-infected (HIV+)

individuals made disproportionately more selections from ‘‘bad’’

decks as the task progresses (e.g., [19,20]), which may reflect poor

inhibition response to the lure of high rewards even in the face of

large penalties [20]. Such risky decision-making is more common

in individuals with HIV-associated Neurocognitive Disorders

(HAND; [21]) and has been specifically, but not consistently,

linked to cognitive inflexibility and engagement in HIV transmis-

sion risk behaviors (e.g., [22]). Additionally, personality charac-

teristics such as sensation seeking, that is a propensity to seek out

novel, exciting and arousing stimuli, have been associated with risk

behaviors for HIV infection [23,24]. However, few studies have

examined the neural substrates of risky decision-making in HIV.

A number of neuroimaging studies have shown that HIV

infection can alter brain function [25–33]. In functional magnetic

resonance imaging (fMRI) experiments, HIV+ individuals have

been shown to exhibit deficits on tests of attention and working

memory and altered responses within the associated neural

substrates [25–27,31,32]. In these tasks, HIV+ individuals

exhibited greater activation and/or larger load dependent

increases in the frontal and parietal cortical regions underlying

task performance [25–27,31], a pattern that is consistent with

damage to fronto-striatal white matter tracts that has been

attributed to HIV infection [34]. Preliminary evidence suggests

that hippocampal function can be affected by HIV infection [28].

Reduced hippocampal activation during encoding and elevated

hippocampal activation during the recall phase of a verbal

memory task having been reported in a sample of HIV+ women

[28]. There has been a recent interest in the use of magnetoen-

cephalography (MEG) in the study of HIV infection in part due to

its high test-retest reliability in HIV infection [35]. These studies

have reported strong responses (in the 8–13 Hz band) in the

dorsolateral prefrontal cortex (DLPFC) during a simple finger

tapping task [30]. Reduced levels of synchronization (in the 6–

12 Hz band), recorded during a simple visual processing task, have

been also been observed in a HIV+ compared to a control group

[29]. Furthermore, those HIV+ individual with desynchronization

more similar to controls demonstrated better performance on a

neuropsychological test of verbal learning [29]. Notably, cortical

thinning in the DLPFC has been linked to the severity of immune

suppression in HIV infection [36]. Finally, reduced functional

connectivity has been reported in resting state MEG [37] and in a

fMRI task studying semantic event sequencing [38]. Together,

neuroimaging studies showing preferential involvement of fronto-

basal ganglia brain systems in HIV-infection [25,33,38] and

neuropsychological studies of the maladaptive use of feedback in

risky choice [8,19,20,39] lay the foundation for fMRI studies to

more directly link impaired behavior with abnormalities of the

brain substrates of risky decision-making and reward in HIV

infection.

Extensive study of risk-taking in the context of decision-making

has revealed a key network of cortical and subcortical brain

regions. This network is composed of circuits, two of which,

namely the ventral limbic circuit and the dorsal executive circuit,

may be important to choice behavior. The ventral circuit includes

several striatal structures: the nucleus accumbens, rostromedial

caudate, rostroventral putamen, and ventromedial caudate [40].

These regions receive extensive innervation from prefrontal

cortical regions such as the orbitofrontal and ventromedial cortex

[41,42] and insula [40]. This circuit is implicated in the

identification of rewarding and emotionally salient stimuli,

integrating these with autonomic, visceral, and hedonic informa-

tion, and generating affective responses to these stimuli [43–48].

The dorsal executive circuit encompasses the dorsal caudate,

dorsal anterior cingulate cortex (DACC), and DLPFC. In this

circuit DACC is thought to play a role in performance monitoring

[49–53] whereas DLPFC is thought to be important to the

maintenance of goal-directed behavior [54,55]. Indeed, in the

context of risky-choice behavior, modulation of activity within the

DLPFC can lead to different response styles under risk [56–58].

The anterior cingulate cortex (ACC) and DLPFC are extensively

interconnected [59] with the DACC also projecting to the dorsal

caudate [40]. This circuit is important to selective attention,

planning and effortful regulation of affective states, including task

switching and inhibition. Acting in concert, these two circuits may

code stimulus-reward value, maintain representations of predicted

future reward and future behavioral choice, and transform

decisions into motor output, playing a role in integrating and

evaluating reward prediction to guide decisions.

This study aimed to examine whether HIV alters brain

processes underlying risk-taking decision-making. We hypothe-

sized that greater activity for risky choices would be observed in

grey matter basal ganglia regions. Additionally, we theorized that

dorsolateral and anterior cingulate cortex would display greater

activity in the HIV+ group relative to HIV- comparisons, and that

this may be an adaptive functional response to compensate for

aberrant information provided by other cortical and subcortical

structures that may have been impacted by HIV infection. Finally,

we explored whether nadir cluster of differentiation 4 (CD4) count,

a measure of historical immune function that has been shown to

predict neurocognitive impairment [60–64] and structural vol-

umes [65] in HIV+ individuals, would demonstrate any associa-

tion with functional brain measures of risky decision-making.

Materials and Methods

Ethics Statement
The University of California, San Diego human research

protection program approved this study. Participants gave

informed written consent and were compensated for their time

and effort.

Participants
Participants were recruited as part of the Translational

Methamphetamine AIDS Research Center and included 21

HIV+ and 19 seronegative comparison adults. HIV status was

confirmed by MedMira Multiplo rapid test (MedMira Inc., Nova

Scotia, Canada). All participants were seronegative for Hepatitis C

virus (HCV) as determined by the MedMira Multiplo rapid test.

Current CD4 T lymphocyte counts (cells/ml) were determined by

flow cytometry at a medical center laboratory certified by Clinical

Laboratory Improvement Amendments (CLIA), or CLIA equiv-

alent. HIV RNA levels were measured in plasma by reverse

transcriptase PCR (Roche Amplicor, v. 1.5, lower limit of

quantitation 50 copies/ml). CD4 nadir was obtained by self-

report, with confirmation by documented prior measurements in a

subset of individuals. Participants were excluded if they tested

positive for illicit drugs (with the exception of marijuana (MJ)) or

alcohol (urine toxicology screen or Breathalyzer respectively) on

the day of scan; had contra-indications for MRI; had a lifetime

history of schizophrenia or other primary psychotic disorders; had
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previous cerebrovascular events, determined by comprehensive

neurological exam; head injury with loss of consciousness for

greater than 30 minutes or resulting in neurologic complications;

seizure disorder; demyelinating diseases from non-HIV neurolog-

ical disorders; met Diagnostic and Statistical Manual of Mental

Disorders (4th Edition-Text Revision; DSM-IV-TR) [66] condi-

tions for substance (other than alcohol, MJ and nicotine) abuse in

the prior year or dependence within the preceding five years.

Participants who met criteria for lifetime dependence or abuse of

MJ within the last 12 months were enrolled. Those who met

lifetime criteria for alcohol abuse within the prior 12 months were

enrolled but were excluded if they met criteria for dependence

within the previous 12 months. Nicotine use was not exclusionary

and participants were told not to alter their typical pattern of daily

usage. They were asked to refrain from smoking during the break

in the scanning session. Breath carbon monoxide levels and the

presence of cotinine in urine were assessed on the day of the scan.

Participant Assessment
Assessment took place on two separate visits: an initial

neurological and neuropsychiatric visit and a subsequent MRI

scan (see Table 1 for the interval between visits). Determination of

relevant psychiatric diagnoses were achieved using the Composite

International Diagnostic Interview (CIDI 2.0) [67], a computer

based structured interview administered by a trained research

associate on the initial visit. This evaluation tool yields lifetime and

current (within 1 month) diagnoses that are consistent with DSM-

IV-TR [66] criteria. The resultant measures of mood and

substance use disorders were used to inform eligibility for study

enrollment and characterizing the sample. Additionally, partici-

pants were asked their age, gender, handedness, and sexual

orientation.

Since HIV has been associated with cognitive impairment [68],

all participants completed the oral word reading subtest of the

Wide Range Achievement Test (WRAT-4) [69] on the initial visit

and a comprehensive neuropsychological test battery (described in

detail in [70]), performance on which was summarized using the

Global Deficit Score (GDS) [68,71,72]. Specifically, we assessed

the following domains: speeded information processing, verbal

fluency, learning, working memory, executive functions, and

motor skills (more details can be found in [21]). As neuropsychi-

atric symptoms are common in many HIV+ individuals [73], we

also administered the Beck Depression Inventory-II (BDI-II) [74]

and Profile of Mood State (POMS) [75] on the day of the scan.

BDI-II was also measured on the initial visit. Deficits in the IGT

suggest that HIV+ individuals tend to choose larger immediate

rewards over smaller rewards that result in longer term gains

overall [19,20]. This suggests an impulsive response style in HIV+
individuals [19]. Consequently, we measured this using the Barratt

Impulsiveness Scale-11 (BIS-11) [76]. Furthermore, since risky

decision-making in HIV+ individuals may be related to sensation

seeking and could represent a common pathophysiology [22], we

chose to measure it using the Kalichman Sexual Sensation Seeking

Scale (KS4) [24] which assesses personality characteristics and

high-risk sexual behavior known to be associated with HIV

transmission risk [23,24]. Estimates of smoking rates among HIV-

infected individuals are in the range of 50–70% [77,78] with

smokers being less likely to adhere to antiretroviral medication

regimes [79]. We therefore assessed nicotine usage using the

Fagerström Test for Nicotine Dependence (FTND) [80].

Task
Participants were administered the risky-gains task as previously

described [81–83] and depicted in Figure 1. The task consists of

102 trials during which the numbers 20, 40, and 80 are presented

in ascending order for one second each. Our choice of numbers,

where each one is twice the preceding choice, was motivated by

the observation that people typically reject gambles unless the

amount that could be gained is at least twice the amount that

could be lost [84]. The serial nature of the task, which required

participants to make sequential fast judgments as to whether to

accept or reject the amount displayed on the screen, was designed

to capture the escalating tension that often accompanies natural-

istic risky decision-making [17]. If the participant made a button

press within one second of stimulus onset, that amount (20/40/80)

could be added to their total winnings along with immediate visual

and auditory feedback. When a 40 or 80 appear there is a chance

that it appears in a different color with immediate feedback

indicating the loss of 40- or 80-cents, respectively. When this

happens the trial ends immediately and the participant may not

make any more responses. Each of the 102 trials lasted 3.5s

regardless of the participants’ choices and whether punishment

was scheduled or not.

Participants were told that waiting for 40- or 80-cents was risky

as, though it was possible to win more, it was also possible to lose

that amount. Additionally, they were informed that though they

would win less if they chose 20-cents, there was no risk of loss

associated with this choice. That is, they could always win by

choosing a 20-cents. However, participants were not told that

there was no inherent advantage to choosing the risky (40, 80)

choices over the safe choices (20). While the best response for each

trial depended on whether there was a punishment scheduled for

that trail or not, a strategy of selecting all 20 s would yield exactly

the same winnings as selecting all 40 s or all 80 s.

Three different trial types were presented in a predetermined

pseudo-randomized order: (1) non-punished (20, 40, or 80; n = 54),

(2) punished 40 (n = 24), (3) punished 80 (n = 18) and six null trials.

The relative number of punished and non-punished trials was

chosen to guarantee that the strategy of consistently choosing 20-

cents or always selecting 40- or 80-cents would yield the exact

same winnings. Punishment occurred on a punished trial only if

the participant failed to respond to the previous numbers on that

trial (i.e. when holding out for 80 they did not respond to either the

20 or 40 stimulus). The relative frequency of safe (20) to risky (40

and 80) was used to quantify baseline risk-taking behavior. To

investigate the sensitivity to punishment, defined here as the

propensity to alter choice pattern on a trial immediately following

a losing trial, the relative frequency of risky responses was

examined as a function of the outcome of the previous trial, that is,

punished versus non-punished risky trials.

This task has previously been used to assess risk-taking behavior

in healthy volunteers [81]. This investigation revealed activation

differences in insula, DLPFC, and posterior parietal cortex.

Greater activation was observed in the insula during risky than

during safe choices. The insula also showed significant activation

on punished trials with activation magnitude predicting subse-

quent safe choices after a punished trial. In a purely behavioral

study of stimulant users [82], we observed greater propensity for

risk taking in the stimulant users but a similar degree of sensitivity

to punishment in both the users and a control group. Those with

higher measures of sensation seeking and impulsivity showed

greater propensity to risk taking. Finally, Lee et al. [83] examined

the effect of aging using the risky gains task. They reported greater

levels of risk taking in younger people and more safe choices in

older adults with faster reaction times to risky choices irrespective

of group. They also observed greater insula and DLPFC activation

for risky as compared to safe choices in the older adult group.

Risky Choice in HIV Infection
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Table 1. Characteristics of the HIV- and HIV+ groups.

Characteristic HIV- a HIV+ a DoF Statistic b P-value Effect Size c Significance

Demographic Characteristics

Number of Participants 19 21 1.00 x2 = 0.03 0.87

Gender (M/F) 18/1 19/2 1.00 x2<0 1.00

Sexual Orientation (MSM/Heterosexual) 5/14 18/3 1.00 x2 = 12.07 ,0.001 ***

Handedness (R/L) 18/1 18/3 1.00 x2 = 0.18 0.67

Age at time of scanning (years) 38.162.5 (23–54) 40.862.6 (23–58) 37.99 t = 20.74 0.46

Years of education 14.460.5 (11–20) 13.860.5 (9–18) 37.97 t = 0.85 0.40

Days between initial and scanning visits{ 58637.1 (19–124) 77644.5 (23–733) NA W = 135.5 0.09 g = 0.34

Ethnicity (%) 3.00 x2 = 3.85 0.28

African-American 2.5 12.5

Hispanic 12.5 10

Other 0 2.5

White 32.5 27.5

Scanner (n) 1.00 x2 = 5.05 0.02

East 10 3

West 9 18

Dates of scan acquisition d

East 2011/02/03–
2011/08/10

2010/06/05–
2010/08/14

West 2011/04/01–
2012/04/04

2011/01/03–
2012/03/19

Psychiatric Characteristics

Wide Range Achievement Test 106.162.7 (94–134) 99.762.2 (85–134) 35.81 t = 1.85 0.07 g = 0.60

Global Deficit Score{ 0.260.2 (0–1) 0.360.3 (0–1.9) NA W = 151.5 0.20 PS = 0.38

Global Deficit Score Impaired (n) 3 7 1.00 W = 0.84 0.36

Speeded Information Processing 51.861.9 (38.8–69.5) 48.161.9 (31.5–63.8) 37.95 t = 1.38 0.17 g = 0.40

Verbal Fluency 49.261.9 (38–66.7) 46.561.6 (35.3–64.7) 35.92 t = 1.10 0.28 g = 0.30

Learning 46.862.2 (20–58) 42.361.6 (24.5–56) 32.91 t = 1.63 0.11 g = 0.50

Working Memory 51.762.3 (28.5–68) 4761.5 (33.5–59.5) 31.28 t = 1.68 0.10 g = 0.50

Executive Functions 51.162.2 (34.5–67.8) 4662 (29.2–68.5) 37.07 t = 1.7 0.10 g = 0.50

Motor Skills 52.462.4 (38–71.5) 49.762.5 (33.5–72) 38.00 t = 0.78 0.44 g = 0.20

BDI-II (at initial visit) 1.760.6 (0–7) 10.962.2 (0–35) 22.53 t = 24.07 0.00 g = 21.3 ***

BDI-II (at time of scan) 1.760.8 (0–14) 8.662 (0–35) 25.71 t = 23.16 ,0.01 g = 21.00 **

POMS (at time of scan) 55.863.3 (25–78) 68.866.6 (27–146) 29.02 t = 21.75 0.09 g = 20.50

Lifetime MDD Diagnosis (n) 3 11 1.00 x2 = 4.37 0.04 *

Current MDD Diagnosis (n) 0 5 1.00 x2 = 3.22 0.07

Kalichman Sexual Sensation Seeking
Scale

Sexual Sensation Seeking Scaled (Mean) 1.860.1 (1.2–2.6) 2.160.1 (1–3.3) 34.04 t = 21.79 0.08 g = 20.60

Non Sexual Sensation Seeking
Scaled (Mean)

2.360.1 (1.5–3.5) 260.1 (1.3–3) 36.32 t = 2.02 0.05 g = 20.60 *

Sexual Compulsivity Scaled (Mean) 1.160 (1–1.6) 1.460.1 (1–2.4) 26.01 t = 22.33 0.03 g = 20.70 *

Barratt Impulsiveness Scale

Total 59.362.3 (46–79) 61.162.4 (45–85) 38.00 t = 20.54 0.59

Attentional Subscale 15.360.7 (9–20) 16.660.8 (9–22) 37.86 t = 21.16 0.25

Motor Subscale 18.160.8 (13–30) 19.160.9 (13–27) 37.96 t = 20.84 0.41

Non Planning Subscale 2661.2 (16–38) 25.561.1 (16–38) 37.05 t = 0.32 0.75

Clinical Characteristics

Duration of Infection (months) Not applicable 96.9622.8 (1.6–318.1)

Nadir CD4 Count{ Not applicable 2506174.9 (3–763)

Current CD4 Count{ Not applicable 4266277.2 (81–1061)
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MR Data Acquisition
Functional images were acquired in bottom-up interleaved axial

slices using T2* weighted echo planar imaging (EPI). Images were

acquired on two scanners: a 3T GE Discovery MR 750

(Milwaukee, WI) (252 volumes TR/TE = 2 s/30 ms, flip an-

gle = 90u, 64664 matrix, 40 axial slices, 3.7563.7563.0 mm

voxels) and a 3T GE Signa HDx (Milwaukee, WI) (252 volumes,

TR/TE = 2 s/30 ms, flip angle = 90u, 64664 matrix, 40 3.0 mm

(2.6 mm +0.3 mm gap) axial slices, 3.563.5 mm voxels). High-

resolution T1-weighted fast spoiled gradient echo anatomical

images (MR 750: TR/TE = 8.1 ms/3.17 ms, flip angle = 8u,

2566256 matrix, 172 sagittal slices, 16161 mm voxels; Signa

HDx: TR/TE = 7.77 ms/2.97 ms, flip angle = 8u, 2566256 ma-

trix, 172 sagittal slices, 0.9760.9761 mm voxels) were acquired to

permit subsequent activation localization and spatial normaliza-

tion. Gradient echo field-maps were also acquired to permit

compensation for geometric distortions caused by magnetic field

inhomogeneity (MR 750: TR = 1 s, TE = 3.7/5.5 ms, flip an-

gle = 60u, 64664 matrix, 160 axial slices, 3.7563.7563 mm

voxels; Signa HDx: TR = 1 s, TE = 3.5/5.5 ms, flip angle = 60u,
64664 matrix, 160 3.0 mm (2.6 mm +0.3 mm gap) axial slices,

3.563.5 mm voxels). Stimuli were projected onto a screen at the

Table 1. Cont.

Characteristic HIV- a HIV+ a DoF Statistic b P-value Effect Size c Significance

Plasma Viral Load (% Detectable) Not applicable 42.90

AIDS (%) Not applicable 47.60

ART Currently Prescribed (%) Not applicable 71.43

ART Past Use (%) Not applicable 9.52

ART Never Used (%) Not applicable 19.05

Current Substance Use Characteristics

Fagerström Test for Nicotine
Dependence (Total Score)

1.660.6 (0–8) 1.860.6 (0–9) 38 t = 20.22 0.82

Nicotine Dependence (%) 0 5 (23.8) 1 x2 = 3.22 0.07

Alcohol Abuse (%) 1 (5.3) 0 1 x2<0 0.96

Alcohol Dependence 0 0

Cannabis Abuse 0 0

Cannabis Dependence 0 0

Lifetime Substance Use Characteristics

Alcohol Abuse (%) 5 (26.3) 5 (23.8) 1 x2<0 1

Alcohol Dependence (%) 2 (10.5) 1 (4.8) 1 x2 = 0.01 0.93

Cannabis Abuse (%) 5 (26.3) 4 (19.0) 1 x2 = 0.03 0.86

Cannabis Dependence (%) 0 1 (4.8) 1 x2<0 1

Cocaine Abuse 0 0

Cocaine Dependence 0 0

Methamphetamine Abuse 0 0

Methamphetamine Dependence 0 0

Hallucinogen Abuse (%) 1 (5.3) 0 1 x2<0 0.96

Hallucinogen Dependence (%) 0 1 (4.8) 1 x2<0 1

Inhalant Abuse 0 0

Inhalant Dependence 0 0

Opioid Abuse 0 0

Opioid Dependence 0 0

PCP Abuse 0 0

PCP Dependence 0 0

Sedative Abuse (%) 0 1 (4.8) 1 x2<0 1

Sedative Dependence 0 0

MDMA Abuse 0 0

MDMA Dependence (%) 0 1 (4.8) 1 x2<0 1

aMean 6 SEM (min - max) or median 6 MAD (min - max) if indicated by {.
bStatistic: W, Wilcox rank sum test; x2, x2 test for equality of proportions; t, Student’s T test.
cEffect size: g, Hedge’s g; PS, probability of superiority.
dDates are in year/month/day format.
Abbreviations: SEM, standard error of the mean; MAD, median absolute deviation; MSM, men who have sex with men; BDI-II, Beck Depression Inventory II, POMS, Profile
of Mood States; MDD, Major Depressive Disorder; CD4, Cluster of Differentiation 4; AIDS, Acquired Immunodeficiency Syndrome; ART, Anti-retroviral therapy; MDMA,
3,4-methylenedioxymethylamphetamine; DoF, degrees of freedom; NA, not applicable; M, male; F, female; R, right; L, left. ’*’ p,0.05, ’**’ p,0.01.
doi:10.1371/journal.pone.0111583.t001
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participants’ feet and viewed with the aid of a mirror attached to

the head coil.

MR Data Analysis
Analyses were conducted using AFNI [85] and FSL [86]. T1-

weighted images were skull-stripped using 3dSkullStrip and

transformed to MNI152 standard space using FLIRT [87,88]

followed by nonlinear registration using FNIRT [89,90]. Func-

tional images were processed using FUGUE to compensate for B0

inhomogeneity [91]. Time series were motion corrected using an

iterated linearized weighted least squares algorithm and aligned to

the anatomical using a local Pearson correlation method [92]

before being subjected to global mean-based intensity normaliza-

tion. These were resampled to 3 mm isotropic voxels and

transformed to standard space using the warp fields derived from

transforming the T1 anatomy to MNI152 space. Finally, the time

series were spatially blurred with a 4.2 mm isotropic FWHM

Gaussian filter kernel within a mask derived from the T1 anatomy.

Data were visually inspected to assess the quality of the warping

and alignment. Preprocessed time series were subjected to multiple

linear regression. Time series of interest, derived from the

behavioral data (described below), were convolved with a gamma

variate function [93] and subsequently normalized to a peak

amplitude of 1.

Decision phase regressors were created such that they started at

trial onset and ended either when the participant responded or was

punished. Five regressors were defined: (1) 20 (safe), (2) win 40, (3)

win 80, (4) lose 40, and (5) lose 80. General linear tests (GLT) of

the safe (20) versus the risky win (40, 80) choices were computed

for each participant. The baseline comprised all other time-points

not accounted for by the regressors of interest. Additionally, six

nuisance motion-related regressors (three translational and three

rotational) and a 3rd order Lagrange polynomial, which accounted

for slow signal drift, were included in the baseline. Brain activation

was operationally defined as percent signal change relative to

baseline.

Task Related Group Analyses. The within-participant

general linear tests of safe versus risky choices were subjected to

linear mixed effects (LME) analyses in the R statistical analysis

package [94]. As some participants had a lifetime diagnosis of

major depressive disorder (MDD), a within-participant dichoto-

mous variable indicating the presence/absence of MDD was also

included in the model. Significant voxels were required to pass a

voxel-wise statistical threshold (F(1, 37) = 4.11, p = 0.05, uncorrect-

ed) and, to control for multiple comparisons, were required to be

part of a cluster of no less than 1685 mL. The volume threshold

was determined by a Monte-Carlo simulation that together with

the voxel-wise threshold resulted in a 5% probability of a cluster

surviving due to chance. The average percent signal change was

extracted from the clusters so formed and a series of post hoc t-

tests were conducted in R to examine the group and task

interaction effects.

Since the HIV+ group consisted of more nicotine users than the

HIV- group (see below), we conducted an additional analysis to

investigate whether there was an effect of nicotine usage (FTND

total score) on differential brain activation to risky versus safe

choices. This was performed within the HIV+ group and

accomplished using linear mixed effects models on the average

contrast of risky versus safe choices in each of the clusters identified

by the task related group analysis. In this analysis participant was

treated as a random effect.

Controlling for Scanner Effects. Several recent studies

have examined the effect of including MR data from multiple sites

within the same analysis. Overall, these studies reported that inter-

participant variance was anywhere from 7–44 times greater than

that generated by site variance [95–98], even when group

membership was confounded by site [99]. This suggests that

scanner-induced variance is less likely to contribute to task or

group-related effects. The inclusion of data from two scanners in

our study effectively makes it a multi-site study and though the

inclusion of site as a fixed-effect in the model examining group

differences has been recommended [100], our study data was

acquired in such a way that each participant was scanned only

once on one scanner. It was therefore not possible to separately

estimate the effects due to scanner and participant. Since scanner

and participant are confounded in our study, we opted to include a

dichotomous variable for scanner as the random effect in the linear

mixed effects model described above.

Figure 1. An illustration of four different trial types from the risky gains task: (A) lose 80, (B) win 20, (C) win 40 and (D) lose 40. The
blue arrow indicates participant response to select the value on screen.
doi:10.1371/journal.pone.0111583.g001
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Neuropsychiatric and Neuromedical Measures and Task-

Related Brain Activations. Whole-brain voxel-wise Huber

robust regressions [101,102] were conducted in R [94] to examine

the relationships between the neuromedical and neuropsychiatric

measures and GLTs of safe versus risky win trials in the HIV+
group. We opted to perform regressions as some of the

neuropsychiatric variables were confounded by diagnosis, and

the neuromedical variable existed solely within the HIV+ group,

precluding inclusion in the LMEs. Regressions were performed for

the non-sexual sensation seeking and sexual compulsivity subscales

of the KS4 based on our observation of between group differences

on these measures (see below). A further regression examining the

effect of nadir CD4 count was also conducted. Dichotomous

variables for lifetime MDD diagnosis and scanner (for reasons

outlined above) were included in these models. In the case of the

nadir CD4 count, age and estimated duration of infection were

also included in the model, as older participants or those with

longer durations of HIV infection might have had lower nadirs

and accumulated more damage due to HIV infection [103] that

may manifest in altered brain functioning.

In all cases, regression coefficients and their corresponding t-

values were split according to whether they demonstrated a

positive or negative relationship with the GLTs. Thereafter,

significant voxels were required to pass a voxel-wise statistical

threshold (t(18) = 2.10, p = 0.05, uncorrected) and, to control for

multiple comparisons, were required to be part of a cluster of no

less than 1685 mL which resulted in a 5% chance of a cluster

surviving due to chance. The volume threshold was determined in

the same manner as above.

Overlap between Group and Regression Regions of

Interest. To investigate whether between-group differences

could potentially be attributed to neuropsychiatric and neurome-

dical variables, we assessed whether the regions identified from the

task related analysis overlapped with those regions identified by

the robust regression analysis. To accomplish this we computed

the intersection of all those regions from the task related analysis

with those from the regression analyses conducted solely within the

HIV+ group. Since both of the maps included in this analysis

included significantly different clusters, the resultant overlap maps

can, therefore, also be regarded as statistically significantly

different [104].

Demographic and Clinical Scales Analysis
All analyses were conducted in R [94]. Between-group

differences for demographics and clinical scales were assessed by

means of Welch T tests for age, years of education, WRAT-4,

BDI-II, POMS, KS4, BIS-11, FTND, speeded information

processing, verbal fluency, learning, working memory, executive

functions, and motor skills. Effect sizes were computed using

Hedge’s g [105]. A linear mixed effects analysis (where participant

was treated as a random effect) was conducted to investigate

whether there was an effect on the BDI-II score of group, visit

(baseline, scanning day), and their interaction. Group differences

in GDS and days between the initial visit and scanning were

assessed using Wilcox rank sum test. Effect sizes for these two

measures were computed using the probability of superiority

[106]. Group differences in gender, ethnicity, handedness, sexual

orientation, the number of participants per group, the number of

participants per scanner, and the number of individuals with a

positive urine toxicology test for MJ were assessed using x2 test of

equal proportions. Using Spearman’s rank correlation test, we

tested for the presence of a relationship between BDI-II score and

the mean percentage signal change from each of the clusters

resulting from the task-based whole brain analysis. This correla-

tion was performed both solely within participants with lifetime

diagnosis of MDD and within the sample as a whole.

Task Analysis
The behavioral data gathered during task performance was

subjected to a 3-way ANOVA in R [94]. In this model the effect of

response choice (2 levels: safe (20) and risky (40, 80)), group (2

levels: HIV- and HIV+), punishment (2 levels: non-punished and

punished trial), and their interactions were examined. This

permitted assessment of the effects of choice behavior and

susceptibility to prior punishment and how these varied by group.

Results

Demographics
There were no significant differences between the serostatus

groups in age (t(37.99) = 20.74, p.0.1), handedness (x2(1) = 0.18,

p.0.1), gender (x2(1) = 1.00, p.0.1), years of education

(t(37.97) = 20.85, p.0.1), or ethnicity (x2(3) = 3.85, p.0.1). The

groups differed in terms of sexual orientation, with the HIV+
group composed primarily of men who have sex with men,

whereas the HIV- group was predominantly heterosexual

(x2(1) = 13.81, p,0.001). Three participants tested positive for

MJ (2 HIV+, 1 HIV-), a proportion that did not differ between

groups (x2(1)<0, p<1). None of these participants met DSM-IV

criteria for current or lifetime substance abuse or dependence. No

participants tested positive for alcohol.

Clinical Scales
There was no difference between the groups on GDS

(W = 151.50, p.0.05). Three HIV- and seven HIV+ were classed

as impaired (GDS .0.5); the proportions did not differ between

the two groups (x2(1) = 0.84, p.0.1). There were no between-

group differences observed in any of the speeded information

processing, verbal fluency, learning, working memory, executive

functions, and motor skills domains (all p$0.1). There was a trend

for the HIV- group to exhibit a higher WRAT-4 score than the

HIV+ group (t(35.81) = 1.85, p = 0.07, g = 0.60). On the subscales

of the KS4, the groups did not differ on the sexual sensation

seeking subscale (t(34.04) = 21.79, p.0.05, g = 20.60) but the

HIV-positives scored higher on sexual compulsivity (t(26.01) =

22.33, p,0.05, g = 20.70) and lower on non-sexual sensation

seeking (t(36.32) = 2.02, p,0.05, g = 0.60). The groups showed no

differences on the BIS-11 or any of its subscales (all p.0.05) (See

Table 1.) Three HIV- and 11 HIV+ participants had a lifetime

diagnosis of MDD (x2(1) = 4.37, p,0.05). The HIV+ group was

comprised of marginally more nicotine dependent individuals than

the HIV- group (x2(1) = 3.22, p = 0.07). There were no significant

between-group differences on nicotine usage measured by the

FTND (t(38) = 20.22, p.0.1). There were no significant differ-

ences between the two groups on other substance use character-

istics (see Table 1). Significant between-group differences were

observed on the BDI-II scale with the HIV+ group endorsing

significantly greater levels of depression than the HIV- group both

at the initial visit (t(22.53) = 24.07, p,0.001, g = 21.3) and at the

time of scanning (t(25.71) = 23.16, p,0.01, g = 21.00). When

determining the stability of BDI-II score over time, the HIV+
group had significantly higher BDI-II scores than the HIV- group

(F(1, 38) = 14.06, p,0.001), there was no effect of visit (F(1, 38) =

1.81, p = 0.18), or an interaction between group and visit (F(1, 38) =

1.79, p = 0.18). This suggests that the BDI-II score was stable over

time. Finally, no significant between-group differences on the

POMS were observed (t(29.02) = 21.75, p.0.05).
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Behavioral Task Results
A significant main effect of risk was evident (F(1, 214) = 337.92,

p,0.0001) with safe (M = 0.65) responses more likely than risky

(M = 0.16). No significant effects of punishment (F(1, 214) = 0.05,

p.0.05, punished: M = 0.33, non-punished: M = 0.33) or group

(F(1, 214) = 0.21, p.0.05; HIV-: M = 0.33, HIV+: M = 0.32) were

observed. No significant interactions of punishment 6 group

(F(1,214) = 0.06, p.0.05) or risk 6 punishment 6 group

(F(1,215) = 0.00, p.0.05) were observed. A marginally significant

effect for risk 6group (F(1, 214) = 3.09, p = 0.08) was observed with

the HIV- group selecting risky choices marginally more than the

HIV+ group (HIV-: risky M = 0.19, safe M = 0.62; HIV+: risky

M = 0.14, safe = 0.68). Consistent with our prior observations on

this task [81,82], a significant interaction of risk 6 punishment

(F(1,214) = 11.42, p,0.001) was observed wherein participants were

more likely to chose the safe option when the prior trial was

punished. See Table S2 for a complete list of the cell and marginal

means.

fMRI Task Results
Task Related Brain Activation. We identified eight regions

where the HIV- and HIV+ groups differed (Table 2 and Figure 2).

Cortical regions were located in the right anterior cingulate gyrus,

inferior parietal lobule, superior frontal gyrus, and bilaterally in

the middle frontal gyri. Two subcortical regions, one in each

hemisphere with centers of mass in the left lentiform nucleus and

right claustrum were identified. The left cluster extended dorsally

from the ventral striatum to include portions of the head and body

of the caudate and further extended to include parts of the

putamen and anterior insula. The right cluster predominantly

included portions of the head of the caudate and extended laterally

to include the anterior insula. An additional subcortical cluster in

the left thalamus was identified. Post hoc analyses were conducted

to identify the directionality of these effects. Within the HIV+
group, activation was greater for risky relative to safe choices in the

right ACC (t(31.31) = 4.56, p,0.001), left middle frontal gyrus

(t(28.43) = 4.97, p,0.001), right middle frontal gyrus

(t(27.86) = 6.39, p,0.001), left thalamus t(36.07) = 3.67, p,

0.001), right claustrum (t(26.66) = 4.58, p,0001), and right

superior frontal gyrus (t(28.76) = 3.21, p,0.001. Within the

HIV- group, there were no significant differences between risky

and safe choices (all p.0.1). For risky choices, the HIV+ group

displayed greater activation than the HIV- group in left thalamus

(t(70.83) = 2.66, p,0.01), left lentiform nucleus (t(68.71) = 3.41,

p,0.01), and right claustrum (t(57.64) = 2.37, p,0.05). For safe

choices, the HIV+ group displayed less activation than the HIV-

group in the right ACC (t(32.45) = 24.1, p,0.001), left middle

frontal gyrus (t(30.58) = 22.75, p,0.01), and right middle frontal

gyrus (t(36.48) = 23.23, p,0.01). Within the participants with a

lifetime diagnosis of MDD, none of these clusters showed a

relationship with the BDI-II scores (all p.0.05). Across the sample

as a whole, none of the clusters showed a relationship with the

BDI-II scores (all p.0.05). Within the HIV+ group, there was no

relationship between nicotine usage (FTND total score) and the

contrast of risky versus safe choices in any of the aforementioned

brain regions (all p.0.1).

Neuromedical and Neuropsychiatric Measures and Task-

Related Brain Activations. Significant associations, detailed in

Table S1, between differential brain responses to risky versus safe

choice were identified for nadir CD4 and the Kalichman sexual

compulsivity subscale. Those individuals with a higher CD4 nadirs

exhibited lower activation in several regions including anterior

cingulate gyrus, bilateral inferior parietal lobules, and middle

frontal gyrus. Moreover, those individuals with higher ratings on
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the sexual compulsivity subscale of the KS4 showed lower

activation in cingulate gyrus, and medial and middle frontal gyri.

One region in the right pyramis was negatively associated with the

non-sexual sensation seeking subscale of the KS4.

Overlap between Group and Regression Regions of

Interest. Several brain regions identified as showing task-

related between-group differences overlapped with the regions

identified in the regression analysis results just described. Regions

that demonstrated a negative association with nadir CD4

overlapped with the between-group results in the right anterior

cingulate, bilateral middle frontal gyri, left inferior parietal lobule,

and right superior frontal gyrus. When the beta values for the risky

and safe choices that contributed to this negative relationship were

separated out, the difference between the two choice types

appeared to be driven almost entirely by an increased response

to the safe choice with greater nadir CD4 count (Figure 3).

Regions showing a negative relationship with the sexual

compulsivity subscale of the KS4 overlapped with the task related

clusters in the right anterior cingulate gyrus, left thalamus, and

right superior frontal gyrus. Similarly, when the risky and safe beta

values were separated out, the negative relationship appeared to

be largely driven by the relationship between safe beta values and

the compulsivity measure (Figure 4). No overlap between the non-

Figure 2. Brain regions identified by the between-group whole-brain analysis of the general linear test of risky (40, 80) versus safe
(20) choices. The bar charts indicate percentage signal change and are the breakdown of responses within group and by choice (20, 40, 80) in these
regions. Error bars indicate the standard error of the mean. L, left; R, right.
doi:10.1371/journal.pone.0111583.g002
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sexual sensation seeking subscale of the KS4 and the between-

group differences was observed.

Discussion

Risky decision-making is a common feature of HIV-associated

neurocognitive disorders, but its neural substrates within persons

living with HIV are poorly understood. Here, we examined risky

choice behavior in HIV+ individuals compared to seronegative

individuals using functional magnetic resonance imaging. We

observed significant between-group functional activation differ-

ences in a number of regions (ACC, DLPFC, caudate, and insula)

critical to risk and reward processing despite broadly similar task

performance between the two groups. In the overlap between the

task-related regions of interest and those resulting from the robust

regression analysis, those HIV+ individuals with greater sexual

compulsivity measured by the KS4 and higher nadir CD4 count

displayed lower differential responses to safe versus risky choices in

many of the regions that showed between-group task related

differences. Taken together, these results support the hypothesis

that HIV alters risk-related processing in the basal ganglia, among

other structures.

We observed significant between-group differences in left and

right hemisphere clusters that included subcortical regions and

small insular components. The subcortical constituents of this

cluster included the ventral and dorsal striatum. These regions

have been heavily implicated in reward related processing [47]. In

non-human primates, single unit recordings have revealed

populations of neurons in the caudate and putamen that fire in

proportion to the value of an action irrespective of whether the

action was subsequently executed [107,108]. In humans, fMRI

studies have shown that the ventral striatum is important to

judging reward value [109,110] and reduced striatal volume has

been reported in HIV infection [111]. Similarly, increased blood

oxygenation level dependent (BOLD) responses have been

recorded in the dorsal striatum in response to anticipation of

both primary (e.g., food) [112] and secondary (e.g., money) [109]

rewards. Additionally, BOLD responses in the dorsal striatum

have been shown to predict expected value of actual choices in a

risky context [113]. This has lead some to suggest that the striatum

is primarily involved in the prediction of reward value and that

other brain regions (e.g., the insula) may be more important to

quantifying risk [81,114,115]. The insula is thought to be

important to integrating autonomic, visceral, and hedonic

information [48], and it has been suggested that it is a critical

neural substrate for selecting between internally and externally

available homeostatically relevant information that serves to guide

behavior [48]. Indeed, greater activation levels within the insula

Figure 3. Within the HIV+ group, graphs of the relationship between nadir CD4 count and a subset of the voxels in each of the
clusters depicted in Figure 2 and Table 2. The subset of voxels is the overlap between the clusters showing between-group task related
functional differences and those clusters identified by the robust regression analysis conducted only within the HIV+ group. The black line is the
robust regression line on the difference between risky and safe responses. The red and blue lines are robust regression lines of the safe and risky
components of the black line. L, left; R, right; Inf, Inferior; Sup, Superior; Gy, Gyrus.
doi:10.1371/journal.pone.0111583.g003
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have be associated with risky choices in the task deployed here

[81,83]. Our results suggest that the differences in these clusters

are predominantly driven by the HIV+ group who display

progressively greater responses to the 20-, 40- and 80-cent choices

compared to the HIV- group. Larger striatal activation for high

gain/high risk trials has been observed in a study of decision

making under risk [116]. Our observation of increased activation

with greater value of the potential gain may be significant insofar

as it may be the functional neuroanatomical realization of over-

valuation of the potential benefit of risky choices which has

previously been reported in HIV+ individuals [19]. Alternatively,

it is possible that increasing activation to progressively higher

valued risky choices in these subcortical clusters may be related to

damage caused to the basal ganglia by HIV [2] and may thus be

an adaptive functional response to this injury [25]. Disambigua-

tion of these alternatives will require future studies.

There were significant between-group differences in activation

level in the right anterior cingulate between the HIV+ and HIV-

groups. This dorsal region of the ACC is thought to be important

to cognitive processes [117], reward-based learning and affective

valence [118,119]. Indeed, prior studies have indicated that the

ACC is critical to judging the magnitude and likelihood of risky

outcomes [120,121], and others have suggested that ACC

activation may be related to encoding of action cost [122] and

action selection for uncertain rewards [123]. It has also been

suggested that the ACC may perform a cost benefit analysis to

guide action selection [124]. Activation of the ACC in a risky

decision making paradigm has been associated with risk-aversive

behavior, whereas deactivation was correlated with risk-seeking

behavior [125]. Finally, the DACC has been proposed to play a

critical role in the detection of response conflict [55]. In the

context of decision making, tension between reward seeking and

loss avoidance may naturally give rise to a state of conflict [126].

The greater DACC activation for the risky choices in the HIV+
group may indicate that they are more sensitive to conflict

between risk seeking and loss avoidance behavior or, alternatively,

the cost of losing. Here, it may be the case for the HIV+ group that

the possibility of losing on the risky options outweighs that benefit

of winning. The opposite may be the case for the HIV- group: the

cost of losing on the risky choices may not loom large and be

reflected in the lower activation for the risky choices. This stands

in contrast to the observations on the IGT where HIV+ individual

make more selections from disadvantageous decks [19,20].

However, recent evidence suggests that this effect may be more

common in individuals with HAND [21]. The small number of

participants (n = 7) with HAND in the present study precluded

examination of this possibility here. Therefore, further studies with

larger numbers of participants with and without HAND are

required to assess whether the present patterns of activation would

vary by diagnosis.

Finally, consistent with prior finding of this task in [83], a

between-group activation emerged bilaterally in the middle frontal

gyrus, a component of the DLPFC. DLPFC is thought to be one of

the seats of higher executive brain function [127], and it has been

suggested that DLPFC plays a key role in the maintenance of goal-

directed behavior necessary for successful task performance when

alerted to the presence of conflicting behavioral choices by the

DACC [55]. Several studies have examined the role played by the

Figure 4. Within the HIV+ group, graphs of the relationship between Kalichman Sexual Compulsivity Scaled Mean and a subset of
the voxels in three of the clusters depicted in Figure 2 and Table 2. The subset of voxels is the overlap between the clusters showing
between-group task related functional differences and those clusters identified by the robust regression analysis conducted only within the HIV+
group. The black line is the robust regression line on the difference between risky and safe responses. The red and blue lines are robust regression
lines of the safe and risky components of the black line. L, left; R, right; Sup, Superior; Gy, Gyrus.
doi:10.1371/journal.pone.0111583.g004
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DLPFC during risky decision-making. In an fMRI study,

activation of the DLPFC has been identified in decision making

under uncertainty [126]. Using repetitive transcranial magnetic

stimulation, a technique that can transiently suppress neuronal

function [128], it has been shown that interrupting activity in the

right DLPFC can increase risk-taking behavior [57,58]. Another

technique, transcranial direct current stimulation, has also been

employed to assess the role of DPLFC in risky decision-making. In

this method, low-voltage direct current is passed through the brain

using electrodes placed on the scalp [129]. Using this technique, it

has been shown that increasing excitability of the right or left

DLPFC leads to risk-aversion and suggests that DLPFC may be

critical to the suppression of riskier choices [56].

DACC and DLPFC are extensively interconnected [59] and are

components of a dorsal executive circuit that is critical to

performance monitoring [49–53] and maintenance of goal-

directed behavior [54,55]. Furthermore, this dorsal circuit

interacts with the ventral circuit (consisting of insular and striatal

regions) to predict stimulus-reward value and guide future

behavior. The striatal regions of this circuit are known to be

injured by the HIV virus [2], and documented cognitive deficits in

HIV infection are consistent with fronto-striatal white matter

damage that has been attributed to HIV infection [34]. Our

observation of increased DACC and DLPFC activation in the

HIV+ group in the presence of broadly similar task performance

may therefore be an adaptive functional response [25,30] wherein

additional cortical resources are recruited to maintain task goals

[130]. This may be necessitated by aberrant information provided

by other cortical and subcortical structures to which the dorsal

circuit is connected and that may have been damaged by HIV

infection. Indeed, additional functional recruitment in the

presence of equivalent task performance has previously been

observed in HIV+ individuals performing visual attention tasks

[26,27,31,32], working memory tasks [25,26], and a simple finger

tapping task [30]. This has led some to suggest that functional

brain differences, in the absence of behavioral changes, may

precede clinical signs of cognitive impairment [25,38].

Since, relative to the seronegative group, the HIV+ group

displayed elevated sexual compulsivity – a factor that has been

associated with risk of HIV infection [131] – we investigated

whether sexual compulsivity would show any relationship between

differential activation to safe versus risky choices in the HIV+
group. Of those regions-of-interest (ROIs) identified as showing

between-group task related differences, a subset of voxels in three

of those ROIs (see Table 3) also showed a relationship with sexual

compulsivity. We separated out the risky and safe components of

this relationship. The change in differential responses to risky

versus safe responses appeared to be driven by an overall increase

in activation to both risky and safe choices with increasing

compulsivity (see Figure 4). While there are, to our knowledge,

currently no brain imaging studies that examine the relationship

between functional activation and sexual compulsivity, neurobio-

logical models of obsessive-compulsive disorder, however, have

implicated excessive activity in fronto-striatal circuits, particularly

in orbitofrontal, ACC, thalamus and caudate [132–136]. This

suggests that those HIV+ individuals with elevated sexual

compulsivity may be characterized by on overall increase of

activation in fronto-striatal regions.

Within the HIV+ group, we also investigated whether nadir

CD4 counts would show any relationship to differential activation

to safe versus risky choices. We observed that subsets of the voxels

identified as showing between-group task related differences also

showed a relationship to nadir CD4 count. As depicted in Table 3

and Figure 3, greater nadir CD4 counts were negatively associated

with decreased differences in response to risky versus safe choices

in all of the task related ROIs. When the risky and safe

components of this difference were separated out, the disparity

between risky and safe responses appeared to be driven by

increased activation to safe responses with greater nadir CD4

count. This suggests that differential activity to safe versus risky

choices may be, in part, predicted by nadir CD4 count.

Furthermore, it may be the case that those individuals with higher

nadir CD4 counts may have activations patterns more similar to

that of seronegative individuals than those with lower CD4 nadirs.

Table 3. Overlap between regions showing task related between-group differences (from Table 2) and regions identified by
robust regression relating brain activity to neuromedical and neuropsychiatric measures.

Structure Hemisphere BA Volume Average Average

(mL) t-valuea b value

Term: Nadir CD4 Polarity: Negative

Anterior Cingulate R 24/32 1,215 22.37 20.0011

Middle Frontal Gyrus L 9 216 22.89 20.0009

Middle Frontal Gyrus R 9/46 621 22.57 20.0011

Thalamus L 756 22.71 20.0024

Lentiform Nucleus L 13 108 22.84 20.0012

Claustrum R 378 21.52 20.0006

Inferior Parietal Lobule L 40 594 22.21 20.0013

Superior Frontal Gyrus R 10 486 22.39 20.0011

Term: Kalichman Sexual Compulsivity Scale Polarity: Negative

Anterior Cingulate R 24/32 3,456 22.61 20.42

Thalamus L 81 22.42 20.61

Superior Frontal Gyrus R 10 783 22.64 20.51

Term refers to the neuropsychiatric or neuromedical explanatory variable in the regression model from which the clusters were derived. Polarity refers to the sign
(positive or negative) of the regression coefficients from which the cluster was generated. BA, Brodmann Area; L, Left; R, Right. a t(17).

doi:10.1371/journal.pone.0111583.t003
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This finding is consistent with the so-called ‘‘legacy events’’

hypothesis wherein historical immune-compromise increases the

vulnerability of HIV-associated central nervous system injury

[30,36,61,65,103].

This study has several limitations. The data were acquired from

the two groups of participants on two different scanners. Though

we attempted to minimize the differences between the protocols on

both scanners and to account for this source of variation in our

models, future studies are required to replicate the results reported

here in the absence of this potential confound. This is a cross-

sectional study, and thus we cannot address whether the

differences reported here arose as a consequence of HIV infection

or whether they predated HIV infection. Future longitudinal

studies are required to determine whether factors such as duration

of infection or the use of anti-retroviral therapy may influence

impairment. In light of the recent report that risky decision-

making is more prevalent in individuals with HAND [21], future

studies should examine whether the effects reported herein are

driven by more impaired individuals. HIV infection has been

associated with risky decision making in individuals at risk for [18]

and infected with HIV [19,20]. Our observation in the behavioral

analysis of a marginally significant interaction of risk and group

with HIV- participants, counter-intuitively, choosing more risky

options than the HIV+ group therefore warrants further

investigation in a larger sample where the source of this

observation may be more fully explored. Recent studies have

reported differences in brain structure and function between

homosexual and heterosexual men [137,138]. The confounding of

the serostatus groups by sexual orientation in the present sample

prevented us from investigating whether HIV-infection status

interacts with sexual orientation in risky decision-making. Future

studies with a larger non-confounded sample are required to

elucidate this issue. Depression is common in many HIV+
individuals [73] and inclusion of such individuals arguably makes

the present sample more representative of the individuals seen in

clinics and thus improves the generalizability of our results.

Nevertheless, future studies should be conducted in groups with

equivalent levels of depression to determine the specificity of the

results reported herein. Risk for HIV infection has been associated

with substance use (cf. [139–142]) and, as with depression, our

inclusion of participants with histories of such behaviors arguably

makes our sample more representative of the HIV-infected

population. Nevertheless, substance use has been independently

associated with functional brain changes in many of the brain

regions reported here (e.g., [82,143–146]). Investigating the

specificity of the changes reported here in larger samples of

HIV+ individuals with and without a history of substance use is

therefore crucial. Given the preliminary evidence which suggests

that anti-retroviral therapy (ART) can effect recovery of brain

function to patterns typical of healthy controls [147], it remains

unclear whether ART can influence risky choice behavior or the

brain processes underlying it. Since our study was underpowered

to examine this question, future studies with larger cohorts are

required to examine this issue. Our sample of participants is

almost exclusively male, limiting generalizability to the female

population. Future studies with a larger sample of females are

required to address this issue. Finally, our study concentrated on

the time period prior to choosing between risky and safe options,

future studies should investigate whether HIV+ individuals,

compared to seronegative individuals, exhibit differences in

sensitivity to the outcomes of these choices.

Conclusions

In summary, the present study examined the functional

neuroanatomy of risky decision-making in HIV+ individuals

compared to seronegetative individuals. The HIV+ group

displayed altered functional responses to safe and risky choices

in several brain regions compared to the seronegetative group.

Specifically, these regions included portions of the anterior

cingulate, ventral and dorsal striatum, insula, and bilateral

DLPFC. These results are consistent with and further support

the role of these structures in risky decision-making [47,48,56–

58,148,149]. We observed greater DACC and DLPFC activation

to risky choices in the HIV+ group in the presence of broadly

similar task performance between the two serostatus groups. This

suggests an adaptive functional response [25], wherein additional

cortical resources are recruited to maintain task goals [130]. This

may be in response to aberrant information provided by other

cortical and subcortical structures to which these regions are

connected and that may have been damaged by HIV infection.

Within the HIV+ group, we observed increased activation in the

right ACC, left thalamus, and right superior frontal gyrus as a

function of increased sexual compulsivity. This suggests that those

HIV+ individuals with elevated sexual compulsivity may be

characterized by on overall increase of activation in fronto-striatal

regions. Finally, we also observed that greater nadir CD4 count

was significantly associated with greater activation to safe choices

rather than risky options in all of the regions displaying between-

group task-related differences. This suggests that HIV infection

may alter risk-related neural processing.
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