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Cancer progression is an example of a rapid adaptive process
where evolving new traits is essential for survival and requires a
high mutation rate. Precancerous cells acquire a few key mutations
that drive rapid population growth and carcinogenesis. Cancer
genomics demonstrates that these few driver mutations occur
alongside thousands of random passenger mutations—a natural
consequence of cancer’s elevated mutation rate. Some passengers
are deleterious to cancer cells, yet have been largely ignored in can-
cer research. In population genetics, however, the accumulation of
mildly deleterious mutations has been shown to cause population
meltdown. Here we develop a stochastic population model where
beneficial drivers engage in a tug-of-war with frequent mildly dele-
terious passengers. These passengers present a barrier to cancer
progression describable by a critical population size, below which
most lesions fail to progress, and a critical mutation rate, above
which cancers melt down. We find support for this model in cancer
age–incidence and cancer genomics data that also allow us to esti-
mate the fitness advantage of drivers and fitness costs of passen-
gers. We identify two regimes of adaptive evolutionary dynamics
and use these regimes to understand successes and failures of dif-
ferent treatment strategies. A tumor’s load of deleterious passen-
gers can explain previously paradoxical treatment outcomes and
suggest that it could potentially serve as a biomarker of response
to mutagenic therapies. The collective deleterious effect of passen-
gers is currently an unexploited therapeutic target. We discuss how
their effects might be exacerbated by current and future therapies.
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Although many populations evolve new traits via a gradual
accumulation of changes, some adapt very rapidly. Exam-

ples include viral adaptation during infection (1), the emergence of
antibiotic resistance (2), artificial selection in biotechnology (3),
and cancer (4). Rapid adaptation is characterized by three key
features: (i) the availability of strongly advantageous traits acces-
sible by rare mutations, (ii) an elevated mutation rate (1), and (iii)
a dynamic population size (5). Because traditional theories of
gradual adaptation are not applicable under these conditions, new
approaches are needed.
Cancer progression is an example of a rapidly adapting pop-

ulation: cancers develop as many as 10 new traits (6), exhibit a
high mutation rate (6–8), and rapidly change in population size
(9). Progression is driven by a handful of mutations (10) and
chromosomal abnormalities (11) in cancer-related genes (onco-
genes and tumor suppressors), collectively called “drivers.” Driv-
ers are beneficial to cancer cells as they facilitate uncontrolled
proliferation and other hallmarks of cancer (6). Drivers, however,
arise alongside thousands of other mutations/alterations, called
“passengers,” that are randomly dispersed throughout the ge-
nome, are nonrecurrent in patients, and have no immediate ben-
eficial effect (10).
Passengers have previously been assumed to be neutral and

largely ignored in cancer research, yet growing evidence suggests
that they can be deleterious to cancer cells and play an important

role in both cancer progression and clinical outcomes. Previously, we
showed that deleterious passengers readily accumulate during tu-
mor progression and exhibit signatures of damaging mutations (12).
Passenger mutations and chromosomal abnormalities, including
aneuploidy, can be deleterious via a variety of mechanisms such as
direct loss-of-function (13), cytotoxicity from protein disbalance
and aggregation (14), or by eliciting an immune response (15).
Although the role of deleterious mutations in cancer is largely

unknown, their effects on natural populations have been exten-
sively studied in genetics (16–18). The accumulation of deleterious
mutations can cause population extinction by Muller’s ratchet and
mutationalmeltdown (16, 19).How this applies to rapidly adapting
populations with a varying size and advantageous mutations, and
specifically to cancer, remains unknown.
A rapidly adapting population faces a double bind: it must

quickly acquire often exceedingly rare, adaptivemutations, yet also
avoid mutational meltdown. As a result, adaptive processes fre-
quently fail. Indeed, less than 0.1% of species on Earth have
adapted fast enough to avoid extinction (20), and similarly, only
∼0.1% of precancerous lesions ever advance to cancer (21). Evo-
lutionary properties of extinction may be exploitable in evolving
tumors (22).
Here we investigate how asexual populations such as cancer

rapidly evolve new traits while avoiding mutational meltdown. We
observed a tug-of-war between beneficial drivers and deleterious
passengers that creates twomajor regimes of population dynamics:
an adaptive regime, where the probability of adaptation (cancer)
is high, and a nonadaptive regime, where adaptation (cancer) is
exceedingly rare. These regimes are separated by an effective
barrier, which makes cancer progression an unlikely event. Our
model is consistent with cancer genomic and age–incidence data,
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offers a new interpretation of cancer treatment strategies, and
explains a previously paradoxical relationship between cancer
mutation rates and clinical outcomes. Most importantly, it sug-
gests that deleterious passengers offer a new, unexploited av-
enue of cancer therapy.

Results
Model. In simulations, each cell can divide, mutate (in a general
sense, i.e., including copy number alterations, chromosomal gains
and losses, epigenetic changes, etc.), and die stochastically. Mu-
tations occur during cell divisions with a per-locus rate μ. The
frequency of driver mutations per cell division is the overall mu-
tation rate times the number of driver loci in the genome (i.e.,
target size) Td; hence, μd = μTd. The frequency of passenger
mutations is μp = μTp. Because there are many more passenger
loci than driver loci, Tp � Td (SI Appendix).
A single cell’s fitness w is determined by its number of accu-

mulated drivers nd that each increase its fitness by sd, and its
number of accumulated passengers np that each decrease fitness
by sp: w= ð1+ sdÞndð1+ spÞ−np . This form assumes that mutations
act independently, i.e., no epistasis. In SI Appendix and Discus-
sion, we consider a simple two-hit form of epistasis. Constant
values of sd and sp are used here because previous work showed
that sampling s from various distributions exhibits qualitatively
similar dynamics (12). We assume here and estimate from data
below that sd > sp.
Cell fitness w and the population size N determine the birth

and the death rate of that cell. The death rate increases with
N according to a Gompertzian function often used to describe
cancer dynamics (9). Stochastic cell division (with mutations)

and death were modeled using a Gillespie algorithm. To develop
the most tractable and foundational model, we assume that all
parameters stay constant in time.
Adaptive processes occur within a broad range of evolutionary

parameters. For example, μ varies dramatically across cancers
(8), whereas estimates of sd range from 0.0001 (4) to 0.58 (23).
Hence, we varied each parameter by 1,000-fold (SI Appendix,
Table S1) and found that dynamics varied considerably over this
range but fell into two broad categories: adaptation (cancer) and
extinction (no progression). Previous studies have concluded that
passengers minimally affect progression when lethal (7) or if only
deleterious in a few housekeeping genes (24); however, we pre-
viously presented genomic evidence that cancers accumulate
myriad mildly deleterious passengers (12).

A Critical Population Size. Fig. 1A shows the dynamics N(t) of in-
dividual populations starting at different initial sizes N0, which cor-
respond to different potential hyperplasia sizes (trajectories begin
immediately after a stem cell acquires its first driver; see SI Appendix
for a discussion of dynamics before this point). Populations exhibit
two ultimate outcomes, growth to a macroscopic size (i.e., cancer
progression) or extinction, which depend on a critical population
size N*. Larger populations (N > N*) generally commit to rapid
growth, whereas smaller populations (N < N*) generally commit to
extinction.
To understand the origin of this critical population size N*, we

examined the short-term dynamics of populations. All trajectories
follow a reversed sawtoothed pattern (Fig. 1B), resulting from
a tug-of-war between drivers and passengers (12). When a new
driver arises and fixates in the population, the population size

Fig. 1. Tug-of-war between drivers and passengers leads to a critical population size. (A) Population size verses time of simulations initiated at various sizes
(N0 = 500, 1,000, or 2,000). For all simulations presented in this paper, μ = 10−8, Td = 1,400, Tp = 107, sd = 0.1, and sp = 0.001 (SI Appendix, Table S1), unless
specified otherwise. (B) A segment of a trajectory shows periods of rapid growth and gradual decline. New drivers arrive with a frequency f(N), abruptly
increasing the population size by an amount ΔN. Passenger accumulation causes a gradual decline with rate vp. (C) Analytically computed mean velocity of
population growth (Upper) and an effective barrier (Lower) as a function of population size N. Velocity is negative below N* and positive above it. (D) The
probability of adaptation (cancer) as a function of initial population size N (Left) and a relative initial population size (N/N*; Right) for nine sets of evolu-
tionary parameters. Curves collapse and behave similarly when plotted relative to N*. (E) Same as in D for simulations and theory but for different values of
sd. Higher values of sd leads to a more gradual transition from nonadaptive to adaptive regime. In our formalism, an increase in sd results in a larger jump size
ΔN and lower potential barrier, allowing more populations to overcome the barrier (Right).
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increases to a new stationary value. In between these rare driver
events, the population size gradually declines due to passenger
accumulation. The relative rates of these competing processes
determine whether a population grows rapidly or goes extinct.
The value of N* can be identified by considering the average

change in population size over time (〈dN/dt〉), which is the av-
erage population growth due to accumulating drivers (vd) minus
the population decline due to accumulating passengers (vp).
When a new driver fixates, the population size immediately
increases by ΔN = Nsd. These jumps occur randomly at a nearly
constant rate f = μdNsd [a product of the driver occurrence rate
μdN and its probability of fixation sd/(1 + sd) ≈ sd]. Thus, the
velocity due to drivers is vd = fΔN = μdN

2s2d. Similarly, pas-
sengers’ velocity vp = μpNsp is a product of their rate of oc-
currence μpN, effect on population size Nsp, and fixation
probability (near-neutral ∼1/N; see SI Appendix for a more
precise estimate). Thus, we obtain

�
dN
dt

�
= μpspN

�
N
Np

− 1
�
; [1]

where Np = Tpsp
Tds2d

is the critical population size. In this equation,

a population’s mean velocity is negative below N* and positive
above N*, explaining why populations above N* grow rapidly and
populations below N* continually decline.
These dynamics suggests that N* constitutes an effective bar-

rier to cancer, which can prevent most cancers from progressing
(Fig. 1C). Simulations support this conclusion because they ex-
hibit a sharp transition in the probability of progression at N*
(Fig. 1D). Indeed, drastically different probability curves col-
lapse onto a single curve when N0 is rescaled by N*.
By considering only the average dynamics, we miss the vari-

ability of outcomes in adapting populations. In SI Appendix, we
formulate and solve a stochastic generalization of Eq. 1 that
explains the variability of outcomes well (Fig. 1E). Outcome
variability depends only upon N* and the strength of drivers sd.
Higher values of sd lead to larger stochastic jumps ΔN, which
increases variability and leads to more gradual changes in the
probability of cancer across N0.
The effects ofN* and sd on cancer progression can be intuitively

understood using a simple random-walk analogy. The population’s
reverse sawtoothed path abides by a one-dimensional randomwalk

in an effective potential Ueff = −
R ðdN=dtÞdN (Fig. 1C). Akin to

chemical reactions activated by thermal energy, cancer progression
is a rare event that transitions through an unstable state, requiring
a quick succession of driver fixations.
Our analytical formalism indicates that population dynamics

depend entirely on two dimensionless parameters: a deterministic
mean velocity dependent only upon N/N* and a stochastic step
size of ∼sd. By reducing the complexity of our evolutionary system
to two parameters, we were next able to infer their values from
real cancers without overfitting.

Model Validation Using Cancer Incidence and Genomics Data. Our
model of cancer progression predicts several properties of cancer:
the presence of an effective barrier that small lesions seldom
overcome, a broad distribution in the number of accumulated
drivers and passengers in tumors, and a tug-of-war between drivers
and passengers in individual cancers. We looked for evidence of
these phenomena in age–incidence data (25) and recent cancer
genomics data, which also allowed us to estimate sd, sp, and the
probability of cancer progression.
Fig. 2A presents the incidence rate of breast cancer versus age

(25) alongside the predictions from our model and a classic
driver-only model (SI Appendix). The incidence rate was calcu-
lated by assuming that precancerous lesions arise with a constant
rate r beginning at birth. Lesions then progress to cancer in time
τ with probability P(τ), determined from simulations (SI Ap-
pendix, Fig. S1). The age–incidence rate I(t) is then the convo-
lution of P(τ) with the lesion initiation rate r. Because many
lesions never progress and go extinct in our model, the incidence
rate saturates at old age: Imax = r

R∞
0 PðτÞdτ = rP∞, where P∞ is

the probability that a lesion ever progresses to cancer.
Observed age–incidence rates saturate with age, allowing us

to estimate the efficiency of cancer progression. We estimate the
rate of lesion formation in breast cancer r ≥ 10 per year, de-
ducible in two ways: by multiplying the number of human breast
epithelial stem cells by their rate of mutation into a lesion
(SI Appendix) or by considering the number of lesions observed
in normal breasts (21). By comparing this limit (r ∼ 10 y−1) to the
maximum observed breast cancer incidence rate Imax ∼ 10−2

cancers·year−1, we find that P∞ ∼ 10−3, or only ∼0.1% of lesions
ever progress. Likewise, most other cancer subtypes (84%) pla-
teau at old age, indicating that inefficient progression is common
(SI Appendix, Fig. S1). These findings are consistent with medical

Fig. 2. Signatures of balance between drivers and passengers in incidence and genomics data. (A) Predicted and observed breast cancer incidence rates
verses age. Incidence rates in our model and the data both plateau at old age, but a traditional driver-only model (I ∝ tk) does not. (B) Histogram (blue) of the
collective number of protein-coding mutations (SNMs) in breast cancer, alongside predicted distributions (lines colors as in A). Our model captures the width
and asymmetry of the distribution when sd = 0.4, whereas a driver-only model predicts a narrower, less-skewed distribution. (C) (Upper) The total number of
aggregate SCNA and SNM drivers verses the total number of passengers in sequenced tumors (points) fitted by linear regression. (Lower Left) Aggregated
cancer genomics data plotted on log axes, with the y intercept from each subtype’s linear fit subtracted [lung cancer (green), colorectal cancer (MIN−, dark
purple; MIN+, light purple)]. (Lower Right) The distribution of slope values obtained by bootstrapping 10,000 samples of each tumor type. All cancers exhibit
positive slopes (P < 0.08 − 10−5), suggesting estimates of sp/sd of breast, 0.0060 ± 0.0010; melanoma, 0.016 ± 0.003; lung, 0.0094 ± 0.0093; colorectal, MIN−

0.028 ± 0.007 and MIN+ 0.041 ± 0.006.
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observations that very few lesions ever progress to cancer (26,
27). Like our model, these studies also find that most lesions
regress to undetectable size. Conversely, in a driver-only model
(SI Appendix), every lesion eventually progresses to cancer after
sufficient time (i.e., P∞ = 1), and incidence rates plateau only if
the lesion formation rate is unrealistically low (0.01 per year).
Good agreement between age–incidence data and our model is
obtained for sd ≈ 0.1−0.2.
Recent cancer genomics data offer a new opportunity to validate

our model. Specifically, we looked at somatic nonsynonymous
mutations (SNMs) and somatic copy-number alterations (SCNAs)
from over 700 individual cancer–normal sample pairs (SI Appen-
dix, Table S2). Analyzing SNMs and SCNAs separately and in
aggregation yielded similar results (SI Appendix, Fig. S2 and
Table S3). Fig. 2B shows a wide and asymmetric distribution of the
total number of SNMs in breast cancer. Our model predicts
a similarly wide distribution of total SNMs due to the stochastic
period that cancers linger at the critical population size N* while
accumulating mutations. To compare these data with various
models we normalized the total number of mutations by their
median (27) because several evolutionary parameters and se-
quencing decisions can alter these distributions by a multiplicative
factor (SI Appendix). Our model agrees with the data when the
effect size of drivers is large (sd≈ 0.4). In contrast, a traditional five-
driver model (SI Appendix) which neglects deleterious passengers
and, thus, a critical barrier yields a narrower, less-skewed distri-
bution than observed.
Overall, our model agrees with the 11 most sequenced cancer

subtypes best when sd ≈ 0.1−0.6 (SI Appendix, Fig. S3 and
Table S4). These estimates agree with sd = 0.16−0.58 experi-
mentally measured as growth rate changes of mouse cells upon
mutations in p53, APC, or Kras (23). These experimental meas-
urements and our estimates are also considerably larger than
previous theoretical estimates of sd = 0.004 (4), where cancer
progression was modeled as an exponential growth unaffected by
passengers. Such a driver-only model fits SNM distributions
poorly, and fits suggest that just one to two drivers are needed
for cancer (SI Appendix, Table S4), which is inconsistent with
known biology. Taken together, cancer genomics data and recent
experiments (23) strongly support our model and refute the
driver-only model.
We then compared the number of drivers and the number of

passengers observed in individual cancer samples to our model.
Lesions that linger around N* in our model acquire additional
passengers and additional counterbalancing drivers, whereas lesions
that progress quickly acquire fewer of each. This predicts a linear

relationship: nd = sp/sd · np + constant (SI Appendix), where the
slope provides an estimate of sp/sd. We indeed observed a positive
linear relationship between nd and np in all tumors studied (Fig. 2C
and SI Appendix, Table S3; P < 0.08−10−6). Linearity was con-
firmed by regressing the aggregated data in log–log axes (Fig. 2C),
which yielded nd ∼ n0:98p , consistent with nd ∼ np. Regressing nd on
np and using 104 bootstrapped samples to estimate the confi-
dence, we obtain an sp/sd ∼ 0.005−0.05 (Fig. 2C). Using our
estimate sd ≈ 0.1−0.6, we obtain a damaging effect of a pas-
senger mutation sp ≈ 5 · (10−4−10−2). These estimates are consis-
tent with effects of germ-line SNMs in humans where 64% of
mutations decrease fitness by 10−5−10−2 (28). In summary, this
analysis shows that passengers are indeed deleterious and
∼100× weaker than drivers.
We considered and refuted several alternative explanations

for the observed positive linear relationship between drivers
and passengers. First, variation in the tumor stage or the rate/
mechanism of mutagenesis cannot explain the observed re-
lationship (SI Appendix, Table S3). Second, SCNAs and SNMs
are uncorrelated, so the linear relationship could not result
from their differing effect sizes (SI Appendix, Fig. S2 and
Table S3). Because the data disagree with these alternate hy-
potheses, we conclude that cancer indeed proceeds as a tug-of-
war between drivers and passengers.

A Critical Mutation Rate. By simulating cancer progression over
a broad range of evolutionary parameters (SI Appendix, Fig. S4),
we observed another barrier to cancer: a critical mutation rate,
above which the probability of cancer is exceedingly low (Fig. 3A).
Through further analytical treatment (SI Appendix), we found
that this mutational barrier is created and determined by the load
of segregating (unfixed) passengers in the population. The origin
of a critical mutation rate can be understood by considering the
number of segregating passengers per cell, previously shown to be
Poisson distributed with mean μp/sp, during mutation–selection
balance (29). The average fitness reduction of a cell due to this
mutational load is then μp. If this fitness reduction exceeds the
benefit of a new driver (μp > sd), then drivers seldom fixate (17,
30) (Fig. 3C). Hence, cancer is extremely rare above the critical
mutations rate μ* = sd/Tp.
Fig. 3A shows that this simple argument accurately predicts

the location of the critical mutation rate. By incorporating more
details about segregating passengers and selection against them
(SI Appendix), we explain observed simulation dynamics well
across the entire phase space (Fig. 3 A and B and SI Appendix,
Fig. S4).

Fig. 3. Effect of mutation rate on cancer dynamics. (A) The probability of cancer (adaptation) computed by simulations across mutation rates and initial
population sizes. Evolutionary parameters partition adaptation into a regime where cancer is almost certain (green) and a regime where it is exceedingly rare
(brown), accurately predicted by theoretical estimates of N* (magenta) and μ* (blue). A theory incorporating passenger interference with driver sweeps and
selection against passengers explains simulations well (black lines). (B) Cancer probability as a function of μ and sp (N0 = 103). Theory (black lines) accurately
reproduces the complex transition between regimes. (C) Diagram illustrating how the load of segregating (unfixed) passengers influences relative cell fitness
and the probability of a driver fixating. Hitchhiking passengers reduce a driver’s fitness benefit and probability of fixation. (D) Probability of cancer con-
strained to grow within a human lifespan ∼60 years, 104 generations, with N0 = 103 for various mutation rates exhibits an optimum mutation rate.
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This analysis offers a new mode by which mutational melt-
down operates. Whereas prior models of mutational meltdown
consider deleterious mutations in isolation (16), we find that
mutational meltdown can occur when deleterious mutations in-
hibit the accumulation of advantageous mutations.
When cancer progression is constrained to develop within a

human lifetime, we observe an optimum mutation rate for the
probability of cancer (μopt = 10−9−10−8 nucleotide−1·generation−1;
Fig. 3D), similar to experimentally measured rates in cancer of
10−8 (7). Above μopt, population meltdown is very common,
whereas below μopt, progression is too slow.

The Adaptive Barrier and Critical Mutation Rate Explain Cancer
Treatment Outcomes. Chemotherapy and radiation are valued
for their ability to kill rapidly dividing cells; however, our model
shows that the elevation of mutation rates (including SCNAs and
aneuploidy) by these therapies dramatically affects cancer sur-
vival. We use the phase diagrams from Fig. 3 to rationalize
outcomes of these and other treatments.
In Fig. 4A, we present evolutionary paths of cancers—from

hyperplasia, to cancer, to treatment, and to relapse or remission—
on top of the phase diagrams described above. Treatments suc-
ceed if they push cancer into the nonadaptive regime (where the
probability of growth is low) and fail if they do not. Our model
suggests that chemotherapy succeeds, in part, because it moves
cancers across the mutational threshold μ*. Above this threshold,
drivers seldom overpower the load of segregating passengers,
making readaptation difficult. Driver-targeted therapies (that elim-
inate an oncogene’s benefit) must bring n < N* to succeed.
Cancers with higher loads of mutations/alterations are closer

to the critical mutation rate and should be most susceptible to
mutagenic meltdown. Several recent studies (31–33) found that

patient survival from breast (all subtypes) and ovarian cancer was
greatest when tumors harbored exceptionally high levels of
chromosomal alterations. These findings are paradoxical for all
previous models of cancer (31), where a greater mutation rate
always accelerates cancer, yet fully consistent with our model
(Fig. 4B).
Treatments exploiting cancer’s load of deleterious passengers

remain unexplored. Fig. 4C shows that a relatively mild threefold
to fivefold increase of the deleterious effect of passengers sp
causes complete remission. Increasing sp is doubly effective be-
cause it exacerbates accumulated passengers and slows down
future adaptation. Below we discuss possible treatment strategies
that would increase sp.
Increases in μ work synergistically with increases in sp in our

model (SI Appendix, Fig. S6). Hence, combinations of mutagenic
chemotherapy with treatments elevating the cost of passengers
may be most effective; these therapies should further synergize
with driver-targeted therapies.

Discussion
We present an evolutionary model of rapid adaptation incor-
porating rare, strongly advantageous driver mutations and fre-
quent, mildly deleterious passenger mutations. In this tug-of-war
process, populations either succeed and adapt or fail and go
extinct. Simulations and theory identify two regimes of dynamics:
one where populations almost always adapt and another where
they almost always fail. The complex stochastic dynamics of this
process is accurately described as simple diffusion over a poten-
tial barrier located at a critical population size separating the two
regimes. This general framework for adaptive asexual popula-
tions effectively characterizes the dynamics of cancer progression
and therapeutic responses.

Fig. 4. Mapping and interpreting treatment outcomes. (A, Upper) An adapted population (cancer) can be reverted to extinction by increasing the mutation rate
(mutagenic chemotherapy) or by decreasing the population size (e.g., surgery or cytotoxic chemotherapy). (Lower) Our phase diagrams explain therapeutic
outcomes: therapies that alter evolutionary parameters enough to push it outside of the adaptive regime cause continued population collapse; those that do not
readapt and relapse. (B, Upper) Cancers with intermediate mutational loads are the most aggressive (31, 33), whereas patients with very high level of chro-
mosomal instability are most effectively treated. (Lower) This result is well explained by our phase diagrams, where cancers with high mutation rates are sus-
ceptible to mutational meltdown, yet paradoxical for all previous evolutionary models of cancer. We believe traditional therapies decrease population size and
may increase the mutation rate. (C) Threefold increase in the effect of passenger mutations leads to rapid population meltdown below N*, without relapse.
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We show that the late onset of cancer, evident in age–incidence
curves, can be explained by a passenger-generated barrier to cancer
and does not require more complex models of cancer progression
(e.g., a specific order of mutations, or multihit model, or variable
mutation rate). We also considered a commonly used two-hit
model in SI Appendix, where the first driver confers no fitness
benefit, whereas two drivers confer a strong cumulative effect.
This two-hit model also exhibits a barrier to cancer and behaves
similarly to our model (SI Appendix, Fig. S7), yet with an effec-
tively larger N* and sd.
Our framework suggests that most normal tissues reside in a

regime where cancer progression is exceedingly rare. Most lesions
fail to overcome the adaptive barrier at N*. This implies that ob-
served tumors acquired drivers faster than a mean trajectory and
may be testable via phylogenetic analysis.
Clinical cancers, on the contrary, reside above the adaptive

barrier in a rapidly adapting state. Successful therapies must push
a cancer below this adaptive barrier N* or increase the mutation
rate above the critical value μ*.
We tested our model and estimated its parameters using age–

incidence curves, cancer exome sequences from ∼1,000 tumors
in four cancer subtypes, and data on clinical outcomes. Age–
incidence curves support our hypothesis that nearly all lesions
fail to progress and allowed us to estimate the fitness benefit of a
driver as sd ≈ 0.1−0.6, in good agreement with direct experi-
mental measurements (23). Genomics data also affirmed that a
damaging effect of a nonsynonymous passenger is 100 times smaller
than the effect of a driver, but passengers are 100 times more
numerous than drivers. Taken together, these data support the
notion of a tug-of-war between rare large-effect drivers verses
frequent mildly deleterious passengers.
Clinicians could exploit deleterious passengers by either in-

creasing the mutation/alteration rate in cancers with already high
mutation rates or by increasing the deleterious effect of pas-
sengers. Clinical data indeed show that cancers with a higher

load of chromosomal alterations, closer to μ*, respond better to
treatments (31–33). PARP inhibitors, which increase DNA
damage in BRCA1/2-positive tumors, may already be curing
patients by inducing mutational meltdown (34).
Passenger mutations and alterations can be deleterious by gain-

of-function toxicity via proteotoxic/misfolding stress (14, 35) or by
eliciting an immune response to mutated epitopes (15). Their
damage to cancer cells could be magnified by (i) inhibiting unfolded
protein response (UPR) pathways and proteasomes (14), (ii) hy-
perthermia that further destabilizes mutated proteins and clogs
UPR pathways (36), or (iii) activating an immune response (37). All
these strategies are in clinical trials, yet none are believed to work by
exacerbating passengers’ deleterious effects. Our alternative expla-
nation for their efficacy suggests that these therapies will be most
effective in combination and in cancers with many passengers.
This study focused on the evolution of cancer, but our model

should generalize to other adaptive asexual processes. Consider
a small population entering a new environment. Fluctuations in its
size often lead to its extinction. Occasionally, however, the pop-
ulation may acquire several new highly advantageous traits for this
new environment, allowing it to rapidly expand its size and avert
extinction. Both its evolutionary parameters (18) and behavior (38)
mirror our model. Our mathematical framework further explains
why these populations sometimes adapt, yet often fail.

Materials and Methods
Simulations used a first-order Gillespie algorithm (12). Drivers and passengers
were classified in the studies where they were first identified. See SI Ap-
pendix for details.
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