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Distinguishing tumor from normal glandular breast tissue is an
important step in breast-conserving surgery. Because this distinction
can be challenging in the operative setting, up to 40% of patients
require an additional operationwhen traditional approaches are used.
Here,we present a proof-of-concept study to determine the feasibility
of using desorption electrospray ionization mass spectrometry im-
aging (DESI-MSI) for identifying and differentiating tumor from
normal breast tissue. We show that tumor margins can be identified
using the spatial distributions and varying intensities of different
lipids. Several fatty acids, including oleic acid, were more abundant
in the cancerous tissue than in normal tissues. The cancer margins
delineated by the molecular images from DESI-MSI were consistent
with those margins obtained from histological staining. Our findings
prove the feasibility of classifying cancerous and normal breast tis-
sues using ambient ionization MSI. The results suggest that an MS-
based method could be developed for the rapid intraoperative de-
tection of residual cancer tissue during breast-conserving surgery.
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Breast cancer is the most commonly diagnosed carcinoma in
women in the United States and Western countries. Breast

conservation surgery (BCS) has become the preferred treatment
option for many women with early-stage breast cancer (1). BCS
entails resection of the tumor, with a clean margin of normal
tissue around it. Surgery is usually followed by radiation therapy.
Results from seven large randomized prospective studies, with
the largest two having over 20 y of follow-up, have shown equal
survival when comparing BCS coupled with whole-breast radia-
tion and mastectomy (2, 3).
Normally, breast surgeons aim to remove a patient’s tumor, along

with a rim of normal tissue that is free of cancer. Preoperative
mammography, ultrasonography, or MRI may be used by the sur-
geon to guide adequate resection (4–6). Despite numerous
improvements in imaging and surgical technique, the need for
reexcision to achieve complete tumor resection in the United
States typically ranges from 20–40% (7–15), and has been
reported as being as high as 60% (16). The importance of reex-
cision is underscored by numerous studies, which have shown that
incomplete resection of tumor and positivemargins are associated
with increased locoregional recurrence compared with negative
margins (12, 17–20). Furthermore, the landmark meta-analysis
performed by the Early Breast Cancer Trialists’ Collaborative
Group (18, 21) directly linked local recurrence to survival, placing
great emphasis on the surgeon’s role in minimizing local re-
currence by obtaining adequate margins.
Breast tumor reexcisions are accompanied by a number of un-

desirable problems: The completion of therapy is delayed, infection
rates are increased, cost is increased, there can be a negative psy-
chological impact on the patient, and there can be diminished
aesthetic outcomes (22–24). The development of an intraoperative
technique that allows the fast and accurate identification of re-
sidual tumor at surgical resection margins could decrease the

reexcision rate, and therefore improve the care delivered to
patients with cancer who are receiving BCS.
To this end, multiple intraoperative methods have been ex-

plored, with various benefits as well as limitations. These methods
include touch frozen section analysis (25), touch preparation cy-
tology (26), specimen radiography (27, 28), rf spectroscopy (29, 30),
Raman spectroscopy (31), radioguided occult lesion localization
(32), near-IR fluorescence (33, 34), and high-frequency ultrasound
(35–37). The intraoperative application of MRI, which has been
successfully applied in brain surgery (38–42), is limited in its ap-
plication in BCS. These limitations include MRI interpretation in
the presence of acute surgical changes; lack of real-time imaging,
requiring the interruption of surgery; and accurate localization of
tumor based on images requiring development of fiducials (43–46).
Mass spectrometry imaging (MSI) has been applied to investigate

the molecular distribution of proteins, lipids, and metabolites
without the use of labels (47, 48). In particular, the newly developed
ambient ionization technique of desorption electrospray ionization
(DESI) allows direct tissue analysis with little to no sample prepa-
ration (49, 50). Therefore, with the advantage of easy use, DESI-
MSI has great potential in the application of intraoperative tumor
assessment. The development of DESI-MSI enables the correlation
of lipid distribution in two or three dimensions with tissue mor-
phology (47, 51) and the distinction of cancerous from noncan-
cerous tissues based on lipidomic information (52–54). Distinctive
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lipid profiles associated with different human cancers have been
investigated by DESI-MSI (55–58). Moreover, the grades and
subtypes of human brain tumors have been discriminated using
this technique. Additionally, tumor margins have been delineated
using DESI-MSI, and the results have been correlated with his-
topathological examination (59, 60).
It has been reported that breast cancer demonstrates meta-

bolic profiles that are distinct from those metabolic profiles
found in normal breast tissue. This finding suggests a potential
for using metabolite information for breast cancer diagnosis and
tumor margin identification (61, 62). Here, we demonstrate an
MS-based methodology for using lipidomic information to dis-
tinguish cancerous from noncancerous tissue and to delineate
tumor boundaries.

Results
Metabolite Profiling in Breast Cancer Tissues Using DESI-MSI. A
DESI-MSI profile from the sample can be acquired quickly from
a linear region of tissue on a slide (what is referred to as a line
scan), or a more complete 2D molecular image can be acquired
from a tissue section on a slide, yielding detailed spatial data that
can be used to correlate underlying histology with the presence
of signatures (multiple peaks) or specific single peaks (from one
molecule). The line scan profile is appropriate for rapid data
acquisition during a surgical procedure, whereas 2D molecular
imaging is carefully done in the research setting to validate sig-
natures relative to classic histopathology criteria. Here, we first
demonstrate profiled mass spectra distinguishing normal and
tumor tissues and then, in the section below, we present DESI-
MSI data from 14 research subjects for more detailed validation.
The tissues from a total of 14 research subjects were analyzed

using DESI-MSI. For each research subject, samples were taken
at the tumor center, at the tumor edge, and 2 cm and 5 cm away
from the tumor, as listed in Table 1. The samples from the
contralateral breast were obtained from five research subjects
who underwent double mastectomies. All of the samples were
analyzed in negative ion mode in the m/z range of 50–1,100,
meaning that the negative ions detected were predominantly
lipid and metabolite species (47, 51, 54, 56, 59, 60). Compared
with positive ion mode, the lipid spectra obtained from negative
ion mode gave more unique information. Representative mass
spectra from profiled breast cancer and nonneoplastic tissue sec-
tions are shown in Fig. 1 with corresponding optical images after
histological staining. DESI-MS analysis, followed by standard H&E
staining, was performed on the same tissue sections. This validation

process has been made possible by using a nondestructive spray
solvent (50:50 acetonitrile/dimethylformamide) to preserve tissue
integrity during DESI-MSI analyses. Two healthy tissue samples
were analyzed first. The first sample comprised breast lobules with
epithelial cells (Fig. 1A), and the second comprised fibrous tissue
mostly composed of fibroblasts and ECM (Fig. 1B). Most of the
ions are detected in anm/z range between 700 and 1,000. According
to previous studies, several peaks have been assigned to phospho-
lipid (PL) species as phosphatidylinositol (PI), phosphatidylserine
(PS), and phosphatidylethanolamine (59, 63–66) (SI Appendix,
Table S1). We then confirmed the peak assignments by performing
high-resolution MS using a Fourier transform ion cyclotron reso-
nance (FT-ICR) mass spectrometer. The high-mass precision
measurement of the FT-ICR analyzer allowed us to determine the
elemental composition of the ions with a precision greater than
0.5 ppm during MS analyses (SI Appendix, Table S1) and to obtain
structure information during tandem MS (MS/MS) analyses (SI
Appendix, Table S2). From these two samples, series of lipid species
present at nearly the same relative abundance [e.g.,m/z 788.7 (i.e.,
PS18:0/18:1) andm/z 885.7 (i.e., PI18:0/20:4)] were identified (Fig.
1 A and B). Below m/z 500, most of the ions detected are back-
ground ions (Fig. 1A andB). The overall signal acquired for fibrous
tissue is less intense than for breast lobules due to a lower cell
density, and therefore lower total lipid content (Fig. 1 A and B). In
contrast, the profiled mass spectrum acquired from breast cancer
tissue presents different relative intensities between the same PL
peaks and ions of higher abundance in the m/z range of 500–700.
Additional peaks in the low-m/z range (i.e., belowm/z 500) are also
detected (Fig. 1C). Using the DESI-MSI data from each of the 14
research subjects, we subtracted the average profile mass spectra of
tumor tissue (Fig. 2A) from the average profile mass spectra of
normal tissue (Fig. 2B) belonging to the same research subjects.
Fig. 2C displays a “tumor-specific mass spectrum” that highlights
all of the ions that could be taken into account to distinguish breast
cancer tissue from normal breast tissue byDESI-MSI. Based on the
profile mass spectra of Fig. 2C, all of the 14 research subjects have
distinctive peak patterns in the low-mass region (Fig. 1C). We also
performed high-mass resolution analyses to cross-validate the
identification of these metabolites (discussion of sample prepara-
tion and MS analysis methods is provided in SI Appendix). We
assigned with a precision greater than 0.5 ppm eight peaks present
in the subtracted spectrum by an electrospray ionization FT-ICR
MS analysis of a lipid extract from the center of a tumor sample
from research subject 9 (SI Appendix, Table S1). MS/MS analyses
allowed the identification of six of these peaks that are potentially

Table 1. Summarized description of samples from 14 research subjects

Subject no. Tumor center Tumor edge 2 cm away 5 cm away Contralateral

Receptor status

Age, y SexER PR Her2

1 Y Y Y Y Y Positive Positive Negative 42 Female
2 Y Y Y Y Y Negative Negative Negative 63 Female
3 Y Y Y Y N Positive Positive Negative 65 Male
4 Y Y Y Y N Positive Positive Negative 76 Female
5 Y Y Y Y N Positive Positive Negative 48 Female
6 Y Y Y Y N Positive Positive Positive 46 Female
7 Y Y Y Y N Positive Positive Negative 59 Female
8 Y Y Y Y N Negative Negative Positive 60 Female
9 Y Y Y Y Y Positive Positive Negative 38 Female
10 Y Y Y Y N Positive Positive Negative 48 Female
11 Y Y Y Y N Negative Negative Negative 64 Female
12 Y Y Y Y Y Positive Positive Negative 47 Female
13 Y Y Y Y Y Positive Positive Negative 38 Female
14 Y Y Y Y N Positive Positive Negative 40 Female

N, no; Y, yes.
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markers of breast cancer (i.e., m/z 255.2, m/z 281.2, m/z 303.2, m/z
365.4, m/z 415.4, m/z 445.4 in SI Appendix, Table S1 and Figs. S1–
S6). For m/z 391.4 and m/z 655.6, database searching using the
LIPID Metabolites and Pathways Strategy database (www.
lipidmaps.org/) listed a series of isobaric lipids for each m/z
value (SI Appendix, Tables S3 and S4).
This distinctive subtracted tumor spectrum can be used for

further targeted lipid identification and statistical analyses in the
future to guide the intraoperative phenotyping of tumor tissue.

Toward a Breast Tumor Margin by DESI-MSI. DESI-MSI was per-
formed on breast cancer samples from 14 research subjects to
display 2D images correlating the lipid intensities with spatial
distributions. Chemical information combined with the analysis of
tissue morphology by standard light microscopy allows the dif-
ferentiation of tumor and healthy tissue.
Fig. 3 includes the DESI MS images from samples of the tu-

mor center, the tumor edge, and 2 cm and 5 cm away from the
tumor, as well as from the contralateral breast of research sub-
ject 9. The ion maps of four representative ions [m/z 281.2 (oleic
acid), m/z 391.4, m/z 655.6, and m/z 885.7 (PI18:0/20:4)] are
displayed. All images are plotted with the same intensity scale.
The lipid PI18:0/20:4, which is present in both healthy and tumor
tissues, is used as a control to demonstrate successful ion de-
tection. PI18:0/20:4 is abundant in tumor tissue (Fig. 3A) and in
areas with normal mammary glands (Fig. 3 C–E). The histolog-
ical images of the sections analyzed by DESI-MSI (sections from
samples 2 cm and 5 cm away from tumor and from the contra-
lateral side) confirm the specific localization of the PI18:0/20:4 in
the breast lobules of the healthy tissue. However, distinct images
were observed for ions with m/z 281.2, m/z 391.4, and m/z 655.6.
These lipids are abundant at the tumor center, where there is

high tumor cell density (Fig. 3A). These lipids are, however,
absent or weak in normal tissue (Fig. 3 C–E). Interestingly, in the
tissue section from the tumor edge (Fig. 3B), the tumor margin is
sharply delineated by these ions (m/z 281.2, m/z 391.4, and m/z
655.6); high levels of the ions are observed in regions corre-
sponding to tumor on the H&E-stained sections, whereas the ions
are absent in the neighboring normal tissue. The ion with m/z
655.6 is still present, although very weak in normal cells (Fig. 3B).
Another example from research subject 14 is displayed in Fig. 4.

Similarly, the ions at m/z 281.250 and m/z 391.4 are abundant in
the tumor center (Fig. 4A) but are not detected in normal breast
tissue 2 cm and 5 cm away from the tumor (Fig. 4 C and D). The
ion with m/z 655.6 is present in regions corresponding to normal
breast lobules and is less intense compared with tumor tissues. In
a sample at the tumor edge, m/z 281.2 and m/z 391.4 are detected
in an area containing stromal elements but no overt clusters of
malignant cells (indicated by white arrows in Fig. 4B). This finding
suggests that stromal elements adjacent to the tumor may con-
tribute to the accumulation of these lipids.
Tumor and normal tissues were distinguished unambiguously

based on a molecular image of characteristic metabolite profiles
obtained from DESI-MSI. Further analyses of the data presented
in Figs. 3 A and D and 4 A and D using SCiLS laboratory 2014a
software (SCiLS GmbH) and global normalization provided
results comparable to the original ion images (SI Appendix,
Fig. S7).

Fig. 1. Profiled mass spectra in negative ion mode using DESI-MSI located
5 cm away from tumor (A) and 2 cm away from tumor (B) tissue sections from
research subjects 14 and 9, respectively, and a tumor center tissue section
from research subject 14 (C). (Right) Histological images of representative
tissue regions are shown. (Magnification, 40×.) The red-dashed outlines dis-
play background peaks.

Fig. 2. Average of 14 normalized mass spectra from DESI-MSI analysis of
tumor tissue (A) and average of 14 normalized mass spectra from DESI-MSI
analysis of normal tissue (B). (C) Subtraction between the two first mass
spectra (i.e., A − B).
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Overall, 12 of 14 cases demonstrated striking differences be-
tween tumor and normal tissues in the distribution of the ions
withm/z 281.2 and m/z 391.4. One of the two patients comprising
the outlying cases is male, and a male breast has only a limited
amount of breast tissue (mostly behind the nipple); thus, the
interface of normal breast tissue and tumor rarely exists. The
second patient is a perimenopausal woman without a reported
history of pregnancy. Normal breast tissue presents such a wide
range of physiological variations that it will require further in-
vestigation to challenge and validate the results reported here.

Potential Biomarker Characterization. Although the tumor tissue
can be differentiated from healthy tissue simply by visualizing
single peaks, such as m/z 281.2 (oleic acid), we conducted prin-
cipal component analysis (PCA) and targeted lipid identification
to increase the accuracy of the evaluation. PCA visualization of
data from research subjects 9 and 14 showed separation of the
spectra from tumor and normal tissues in both cases (Fig. 5). In
Fig. 5A, the spectra from the tumor edge of research subject 9
clustered more closely to the tumor than did the distal normal
samples, whereas those spectra from research subject 14 in Fig. 5B
were not distinct from the distal normal samples. This observation
is consistent with histopathological evaluation indicating that the
tissue from the tumor edge of case 9 has a large tumor region (Fig.
3B), whereas the one from case 14 is mostly healthy tissue (Fig.
4B). In both cases, the tumor center spectra were distinctly clus-
tered. Cross-validation between these two datasets was performed
to evaluate the classification. Despite a limited sample number,
clustering was also observed between the estrogen receptor (ER)-
positive and progesterone receptor (PR)-positive tumor center
specimens (n = 10) vs. ER-negative and PR-negative (n = 3)
specimens (SI Appendix, Fig. S8). PCA of human epidermal
growth factor receptor 2 (Her2)-positive (n = 2) and Her2-neg-
ative (n = 11) tumor center specimens, on the contrary, did not
present an apparent separation.

Discussion
Failure to discern the margins of breast cancer adequately in-
creases the likelihood of inadequate resection, resulting in higher
risk of local recurrence. This fact underscores the importance of
accurate margin assessment and complete tumor removal with
lumpectomy. Our study is, to our knowledge, the first demonstra-
tion of MS use for the discrimination of breast cancer and the
delineation of tumormargins. DESI-MSI is an effective technology
for rapidly mapping lipid distributions on cell membranes, showing
excellent histological specificity and tissue classification. This

property facilitates diagnosis of cancer and detection of tumor extent
(67, 68). In this feasibility study, the methodology of DESI-MSI was
applied to discriminate human breast cancer from adjacent normal
tissue using the gold standard H&E stain pathology evaluation as
a comparison. The tissues from the tumor edge revealed distinctive
molecular images consistent with tumor cell distributions, which
were concordant with the interpretation by the breast pathologist,
allowing the delineation of the tumor margin. In the profiled spec-
trum from negative ion mode, distinctive fatty acids and lipids were
identified in breast cancer tissues. Studies indicated that medium-
and long-chain free fatty acids are implicated in the activation of
G protein-coupled receptors expressed in breast cancer cell lines
(69–71). Some of these lipids are also known to be involved in the
migration, proliferation, and invasion of breast cancer cells (i.e., oleic
acid) or more generally in tumor processes (i.e., arachidonic acid)
(69, 71–74). About 85% of samples have a significant increase in ion
abundance in the low-mass region (i.e., below m/z 700) in tumor
samples, whereas most ions in the high-mass range (e.g., m/z 885.7)
exist in both the tumor and normal specimen. In the unique “tumor”
spectrum, the positive ions (peaks with positive intensities) indicate
the lipids abundant in the tumor; in contrast, the negative ions (peaks
with negative intensities) imply the molecules from healthy cells.
This unique peak pattern identification enables the diagnosis of
cancerous tissue in seconds. This property has already been explored
intraoperatively in neurosurgery, allowing for definition of margins
and guidance of tumor resection (59, 75).
Although we were able to generate a metabolite print for breast

cancer tissue that is distinctive from normal tissue in this feasibility
study, we do recognize some limitations of DESI-MSI application.
The data are generated from a very small number of samples.
Furthermore, structural isomerism and stereoisomerism can
complicate precise structural assignment (76). However, as we and
others have shown, the absence of structural attribution in lipid
analysis has not prevented lipid mapping by DESI-MSI. Other
studies have shown that for diagnosis performed by DESI-MSI,
identification of the lipids present in the mass spectra is not
necessary for an empirical correlation of the histopathology and
MS data (77). The fact that the characteristic tumor spectra are
generated at the tumor center and tumor edge in contrast to
unaffected regions from each research subject contributes to the
specificity of the presented results. We have not yet tested this
method for the detection and identification of skip lesions or

Fig. 3. DESI MS images from the tumor center (A), the tumor edge (B), 2 cm
away from the tumor (C), 5 cm away from the tumor (D), and contralateral
side (E) tissue sections from research subject 9 showing the distributions of
ions at m/z 281.2, m/z 391.4, m/z 655.6, and m/z 885.7. (Right) Light mi-
croscopy images of the H&E-stained sections are shown. (Scale bars, 2 mm.)

Fig. 4. DESI MS images from the tumor center (A), tumor edge (B), 2 cm
away from the tumor (C), and 5 cm away from the tumor (D) tissue sections
from research subject 14 showing the distributions of ions at m/z 281.2, m/z
391.4, m/z 655.6, and m/z 885.7. (Right) Light microscopy images of the H&E-
stained sections are shown. (Scale bars, 2 mm.)
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multicentric lesions, but the results presented here will likely fa-
cilitate the development of an adequate clinical protocol to test
our findings further. Our study was limited to invasive ductal
carcinoma, but future studies will also be performed on ductal
carcinoma in situ and invasive lobular carcinoma through the
retrospective analysis of large numbers of banked specimens and
dedicated intraoperative protocols.

Conclusion
This work illustrates the feasibility of the application of DESI-
MSI as a promising lipidomic-based diagnostic tool in breast
cancer. Classification of DESI-MSI data showed high recogni-
tion of breast cancer tissue. Additionally, DESI-MSI allowed
discrimination between normal and cancerous tissue, hence de-
lineating tumor margins. Further work mapping and character-
izing these lipids will assist in increased specificity, identifying
subtypes of breast cancer and hormone receptor status. The ac-
quisition of this information will be more rapid than traditional
standard means, allowing for more efficient adjuvant treatment
planning. Thus far, these distinctive lipid profiles are easy and

rapidly generated, allowing for the potential application of DESI-
MSI in vivo intraoperatively in BCS to aid in margin assessment.
The future direction of DESI-MSI research will be in conducting
experiments in situ in lumpectomy cavities and/or on lumpectomy
specimens.

Materials and Methods
Tissue Sample Preparation. All human tissue samples were obtained with in-
formed consent and handled in accordancewith approved Institutional Review
Board protocols at the Brigham and Women’s Hospital and Dana–Farber
Cancer Institute. A total of 61 breast tissue samples encompassing tumor and
adjacent tissue were obtained from 14 patients with breast cancer who un-
derwent mastectomy at Brigham and Women’s Hospital. The specimens were
collected from the tumor center, tumor edge, and normal breast tissue 2 cm
and 5 cm away from tumor, as well as from contralateral breast tissue when
bilateral mastectomies were performed. Only cases with invasive ductal car-
cinoma histology were included in this study. The specimens were classified
based on receptor status: ER, PR, and Her2 (78). Among the 14 cancers, nine
were ER-positive, PR-positive, and HER2-negative (ER/PR+, HER2−); two were
triple-negative (ER/PR−, HER2−); one was ER/PR+, HER2+; one was ER/PR−,
HER2+; and one did not have receptor information available. The subjects
comprised 13 female patients and 1 male patient, aged 38–76 y.

Samples were flash-frozen and stored in a freezer at −80 °C before analysis.
The tissues were sectioned at a thickness of 12 μm using a Microm HM550
cryostat (Mikron Instruments, Inc.). A thickness of 20 μm was selected in
several cases with fatty tissue. All samples were mounted on standard glass
slides used for histology, which were dried in a desiccator before analysis.

DESI-MSI. All samples were analyzed using an AmazonSpeed mass spec-
trometer (Bruker Daltonics) connected to a commercial DESI source (Prosolia,
Inc.). Additional details are provided in SI Appendix.

Histological Staining. Standard H&E staining was performed on the same
tissue sections after DESI-MSI, as well as on serial sections to visualize tissue
morphological information. All of the reagents used for H&E staining were
purchased from Sigma–Aldrich. The optical tissue images were scanned using
an Axio Imager M1 microscope (Zeiss) at a magnification of 40×. The mor-
phology of tissue sections was evaluated on a Mirax Digital Slide Desktop
Server system (Zeiss).

PCA Visualization. PCA clusteringwas conducted usingClinProTools version 2.3
(Bruker Daltonics) utilizing level scaling, peaking on total average spectrum,
no peak limits, peak calculation by intensities, and anm/z range of 500–1,000.
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