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Abstract

We consider estimation of multiple high-dimensional Gaussian graphical models corresponding to 

a single set of nodes under several distinct conditions. We assume that most aspects of the 

networks are shared, but that there are some structured differences between them. Specifically, the 

network differences are generated from node perturbations: a few nodes are perturbed across 

networks, and most or all edges stemming from such nodes differ between networks. This 

corresponds to a simple model for the mechanism underlying many cancers, in which the gene 

regulatory network is disrupted due to the aberrant activity of a few specific genes. We propose to 

solve this problem using the perturbed-node joint graphical lasso, a convex optimization problem 

that is based upon the use of a row-column overlap norm penalty. We then solve the convex 

problem using an alternating directions method of multipliers algorithm. Our proposal is 

illustrated on synthetic data and on an application to brain cancer gene expression data.

1 Introduction

Probabilistic graphical models are widely used in a variety of applications, from computer 

vision to natural language processing to computational biology. As this modeling framework 

is used in increasingly complex domains, the problem of selecting from among the 

exponentially large space of possible network structures is of paramount importance. This 

problem is especially acute in the high-dimensional setting, in which the number of 

variables or nodes in the graphical model is much larger than the number of observations 

that are available to estimate it.

As a motivating example, suppose that we have access to gene expression measurements for 

n1 lung cancer patients and n2 brain cancer patients, and that we would like to estimate the 

gene regulatory networks underlying these two types of cancer. We can consider estimating 

a single network on the basis of all n1 + n2 patients. However, this approach is unlikely to be 

successful, due to fundamental differences between the true lung cancer and brain cancer 

gene regulatory networks that stem from tissue specificity of gene expression as well as 

differing etiology of the two diseases. As an alternative, we could simply estimate a gene 
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regulatory network using the n1 lung cancer patients and a separate gene regulatory network 

using the n2 brain cancer patients. However, this approach fails to exploit the fact that the 

two underlying gene regulatory networks likely have substantial commonality, such as 

tumor-specific pathways. In order to effectively make use of the available data, we need a 

principled approach for jointly estimating the lung cancer and brain cancer networks in such 

a way that the two network estimates are encouraged to be quite similar to each other, while 

allowing for certain structured differences. In fact, these differences themselves may be of 

scientific interest.

In this paper, we propose a general framework for jointly learning the structure of K 

networks, under the assumption that the networks are similar overall, but may have certain 

structured differences. Specifically, we assume that the network differences result from 

node perturbation – that is, certain nodes are perturbed across the conditions, and so all or 

most of the edges associated with those nodes differ across the K networks. We detect such 

differences through the use of a row-column overlap norm penalty. Figure 1 illustrates a toy 

example in which a pair of networks are identical to each other, except for a single perturbed 

node (X2) that will be detected using our proposal.

The problem of estimating multiple networks that differ due to node perturbations arises in a 

number of applications. For instance, the gene regulatory networks in cancer patients and in 

normal individuals are likely to be similar to each other, with specific node perturbations 

that arise from a small set of genes with somatic (cancer-specific) mutations. Another 

example arises in the analysis of the conditional independence relationships among p stocks 

at two distinct points in time. We might be interested in detecting stocks that have 

differential connectivity with all other edges across the two time points, as these likely 

correspond to companies that have undergone significant changes. Still another example can 

be found in the field of neuroscience, where we are interested in learning how the 

connectivity of neurons in the human brain changes over time.

Our proposal for estimating multiple networks in the presence of node perturbation can be 

formulated as a convex optimization problem, which we solve using an efficient alternating 

directions method of multipliers (ADMM) algorithm that significantly outperforms general-

purpose optimization tools. We test our method on synthetic data generated from known 

graphical models, and on one real-world task that involves inferring gene regulatory 

networks from experimental data.

The rest of this paper is organized as follows. In Section 2, we present recent work in the 

estimation of Gaussian graphical models (GGMs). In Section 3, we present our proposal for 

structured learning of multiple GGMs using the row-column overlap norm penalty. In 

Section 4, we present an ADMM algorithm that solves the proposed convex optimization 

problem. Applications to synthetic and real data are in Section 5, and the discussion is in 

Section 6.
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2 Background

2.1 The graphical lasso

Suppose that we wish to estimate a GGM on the basis of n observations, X1, …, Xn ∈ ℝp, 

which are independent and identically distributed N(0, Σ). It is well known that this amounts 

to learning the sparsity structure of Σ−1 [1, 2]. When n > p, one can estimate Σ−1 by 

maximum likelihood, but when p > n this is not possible because the empirical covariance 

matrix is singular. Consequently, a number of authors [3, 4, 5, 6, 7, 8, 9] have considered 

maximizing the penalized log likelihood

(1)

where S is the empirical covariance matrix based on the n observations, λ is a positive 

tuning parameter,  denotes the set of positive definite matrices of size p, and ‖Θ‖1 is the 

entrywise ℓ1 norm. The Θ̂ that solves (1) serves as an estimate of Σ−1. This estimate will be 

positive definite for any λ > 0, and sparse when λ is sufficiently large, due to the ℓ1 penalty 

[10] in (1). We refer to (1) as the graphical lasso formulation. This formulation is convex, 

and efficient algorithms for solving it are available [6, 4, 5, 7, 11].

2.2 The fused graphical lasso

In recent literature, convex formulations have been proposed for extending the graphical 

lasso (1) to the setting in which one has access to a number of observations from K distinct 

conditions. The goal of the formulations is to estimate a graphical model for each condition 

under the assumption that the K networks share certain characteristics [12, 13]. Suppose that 

 are independent and identically distributed from a N(0, Σk) distribution, 

for k = 1, …, K. Letting Sk denote the empirical covariance matrix for the kth class, one can 

maximize the penalized log likelihood

(2)

where , λ1 and λ2 are nonnegative 

tuning parameters, and  is a penalty applied to each off-diagonal element of 

Θ1, …, ΘK in order to encourage similarity among them. Then the Θ1̂, …, Θ̂K that solve (2) 

serve as estimates for (Σ1)−1, …, (ΣK)−1. In particular, [13] considered the use of

(3)

a fused lasso penalty [14] on the differences between pairs of network edges. When λ1 is 

large, the network estimates will be sparse, and when λ2 is large, pairs of network estimates 

will have identical edges. We refer to (2) with penalty (3) as the fused graphical lasso 

formulation (FGL).
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Solving the FGL formulation allows for much more accurate network inference than simply 

learning each of the K networks separately, because FGL borrows strength across all 

available observations in estimating each network. But in doing so, it implicitly assumes that 

differences among the K networks arise from edge perturbations. Therefore, this approach 

does not take full advantage of the structure of the learning problem, which is that 

differences between the K networks are driven by nodes that differ across networks, rather 

than differences in individual edges.

3 The perturbed-node joint graphical lasso

3.1 Why is detecting node perturbation challenging?

At first glance, the problem of detecting node perturbation seems simple: in the case K = 2, 

we could simply modify (2) as follows,

(4)

where  is the jth column of the matrix Θk. This amounts to applying a group lasso [15] 

penalty to the columns of Θ1 − Θ2. Since a group lasso penalty simultaneously shrinks all 

elements to which it is applied to zero, it appears that this will give the desired node 

perturbation structure. We will refer to this as the naive group lasso approach.

Unfortunately, a problem arises due to the fact that the optimization problem (4) must be 

performed subject to a symmetry constraint on Θ1 and Θ2. This symmetry constraint 

effectively imposes overlap among the elements in the p group lasso penalties in (4), since 

the (i, j)th element of Θ1 − Θ2 is in both the ith (row) and jth (column) groups. In the 

presence of overlapping groups, the group lasso penalty yields estimates whose support is 

the complement of the union of groups [16, 17]. Figure 2 shows a simple example of (Σ1)−1 

− (Σ2)−1 in the case of node perturbation, as well as the estimate obtained using (4). The 

figure reveals that (4) cannot be used to detect node perturbation, since this task requires a 

penalty that yields estimates whose support is the union of groups.

3.2 Proposed approach

A node-perturbation in a GGM can be equivalently represented through a perturbation of the 

entries of a row and column of the corresponding precision matrix (Figure 1). In other 

words, we can detect a single node perturbation by looking for a row and a corresponding 

column of Θ1 − Θ2 that has nonzero elements. We define a row-column group as a group 

that consists of a row and the corresponding column in a matrix. Note that in a p × p matrix, 

there exist p such groups, which overlap. If several nodes of a GGM are perturbed, then this 

will correspond to the union of the corresponding row-column groups in Θ1 − Θ2. 

Therefore, in order to detect node perturbations in a GGM (Figure 1), we must construct a 

regularizer that can promote estimates whose support is the union of row-column groups. 

For this task, we propose the row-column overlap norm as a penalty.
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Definition 3.1. The row-column overlap norm (RCON) induced by a matrix norm f is 

defined as

(5)

RCON satisfies the following properties that are easy to check: (1) Ωf is indeed a norm. 

Consequently, it is convex. (2) When f is symmetric in its argument, i.e., f(V) = f(VT), then 

Ωf(A) = f(A)/2.

In this paper, we are interested in the particular class of RCON penalty where f is given by

(6)

where 1 ≤ q ≤ ∞. The norm in (6) is known as the ℓ1/ℓq norm since it can be interpreted as 

the ℓ1 norm of the ℓq norms of the columns of a matrix. With a little abuse of notation, we 

will let Ωq denote Ωf with an ℓ1/ℓq norm of the form (6). We note that Ωq is closely related to 

the overlap group lasso penalty [17, 16], and in fact can be derived from it (for the case of q 

= 2). However, our definition naturally and elegantly handles the grouping structure induced 

by the overlap of rows and columns, and can accommodate any ℓq norm with q ≥ 1, and 

more generally any norm f. As discussed in [17], when applied to Θ1 − Θ2, the penalty Ωq 

(with q = 2) will encourage the support of the matrix Θ̂1 − Θ̂2 to be the union of a set of rows 

and columns.

Now, consider the task of jointly estimating two precision matrices by solving

(7)

We refer to the convex optimization problem (7) as the perturbed-node joint graphical lasso 

(PNJGL) formulation. In (7), λ1 and λ2 are nonnegative tuning parameters, and q ≥ 1. Note 

that f(V) = ‖V‖1 satisfies property 2 of the RCON penalty. Thus we have the following 

observation.

Remark 3.1. The FGL formulation (2) is a special case of the PNJGL formulation (7) with q 

= 1.

Let Θ̂1, Θ̂2 be the optimal solution to (7). Note that the FGL formulation is an edge-based 

approach that promotes many entries (or edges) in Θ̂1 − Θ̂2 to be set to zero. However, 

setting q = 2 or q = ∞ in (7) gives us a node-based approach, where the support of Θ̂1 − Θ̂2 

is encouraged to be a union of a few rows and the corresponding columns [17, 16]. Thus the 

nodes that have been perturbed can be clearly detected using PNJGL with q = 2, ∞. An 

example of the sparsity structure detected by PNJGL with q = 2 is shown in the left-hand 

panel of Figure 2. We note that the above formulation can be easily extended to the 
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estimation of K > 2 GGMs by including  RCON penalty terms in (7), one for each 

pair of models. However we restrict ourselves to the case of K = 2 in this paper.

4 An ADMM algorithm for the PNJGL formulation

The PNJGL optimization problem (7) is convex, and so can be directly solved in the 

modeling environment cvx [18], which calls conic interior-point solvers such as SeDuMi or 

SDPT3. However, such a general approach does not fully exploit the structure of the problem 

and will not scale well to large-scale instances. Other algorithms proposed for overlapping 

group lasso penalties [19, 20, 21] do not apply to our setting since the PNJGL formulation 

has a combination of Gaussian log-likelihood loss (instead of squared error loss) and the 

RCON penalty along with a positive-definite constraint. We also note that other first-order 

methods are not easily applied to solve the PNJGL formulation because the subgradient of 

the RCON is not easy to compute and in addition the proximal operator to RCON is non-

trivial to compute.

In this section we present a fast and scalable alternating directions method of multipliers 

(ADMM) algorithm [22] to solve the problem (7). We first reformulate (7) by introducing 

new variables, so as to decouple some of the terms in the objective function that are difficult 

to optimize jointly. This will result in a simple algorithm with closed-form updates. The 

reformulation is as follows:

(8)

An ADMM algorithm can now be obtained in a standard fashion from the augmented 

Lagrangian to (8). We defer the details to a longer version of this paper. The complete 

algorithm for (8) is given in Algorithm 1, in which the operator Expand is given by

where UDUT is the eigenvalue decomposition of A, and as mentioned earlier, nk is the 

number of observations in the kth class. The operator q is given by
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and is also known as the proximal operator corresponding to the ℓ1/ℓq norm. For q = 1, 2, ∞, 

q takes a simple form, which we omit here due to space constraints. A description of these 

operators can also be found in Section 5 of [25].

Algorithm 1 can be interpreted as an approximate dual gradient ascent method. The 

approximation is due to the fact that the gradient of the dual to the augmented Lagrangian in 

each iteration is computed inexactly, through a coordinate descent cycling through the 

primal variables.

Typically ADMM algorithms iterate over only two groups of primal variables. For such 

algorithms, the convergence properties are well-known (see e.g. [22]). However, in our case 

we cycle through more than two such groups. Although investigation of the convergence 

properties of ADMM algorithms for an arbitrary number of groups is an ongoing research 

area in the optimization literature [23, 24] and specific convergence results for our algorithm 

are not known, we empirically observe very good convergence behavior. Further study of 

this issue is a direction for future work.

We initialize the primal variables to the identity matrix, and the dual variables to the matrix 

of zeros. We set μ = 5, and tmax = 1000. In our implementation, the stopping criterion is that 

the difference between consecutive iterates becomes smaller than a tolerance ε. The ADMM 

algorithm is orders of magnitude faster than an interior point method and also comparable in 

accuracy. Note that the per-iteration complexity of the ADMM algorithm is O(p3) 

(complexity of computing SVD). On the other hand, the complexity of an interior point 

method is O(p6). When p = 30, the interior point method (using cvx, which calls Sedumi) 

takes 7 minutes to run while ADMM takes only 10 seconds. When p = 50, the times are 3.5 

hours and 2 minutes, respectively. Also, we observe that the average error between the cvx 

and ADMM solution when averaged over many random generations of the data is of 

O(10−4).

5 Experiments

We describe experiments and report results on both synthetically generated data and real 

data.

5.1 Synthetic experiments

Synthetic data generation—We generated two networks as follows. The networks share 

individual edges as well as hub nodes, or nodes that are highly-connected to many other 

nodes. There are also perturbed nodes that differ between the networks. We first create a p × 

p symmetric matrix A, with diagonal elements equal to one. For i < j, we set

and then we set Aji to equal Aij. Next, we randomly selected seven hub nodes, and set the 

elements of the corresponding rows and columns to be i.i.d. from a Unif([−0.6, −0.3]∪[0.3, 

0.6]) distribution. These steps resulted in a background pattern of structure common to both 
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networks. Next, we copied A into two matrices, A1 and A2. We randomly selected m 

perturbed nodes that differ between A1 and A2, and set the elements of the corresponding 

row and column of either A1 or A2 (chosen at random) to be i.i.d. draws from a Unif([−1.0, 

−0.5]∪[0.5, 1.0]) distribution. Finally, we computed c = min(λmin(A1), λmin(A2)), the 

smallest eigenvalue of A1 and A2. We then set (Σ1)−1 equal to A1 + (0.1 − c)I and set (Σ2)−1 

equal to A2 + (0.1 − c)I. This last step is performed in order to ensure positive definiteness. 

We generated n independent observations each from a N(0, Σ1) and a N(0, Σ2) distribution, 

and used these to compute the empirical covariance matrices S1 and S2. We compared the 

performances of graphical lasso, FGL, and PNJGL with q = 2 with p = 100, m = 2, and n = 

{10, 25, 50, 200}.

Results—Results (averaged over 100 iterations) are shown in Figure 3. Increasing n yields 

more accurate results for PNJGL with q = 2, FGL, and graphical lasso. Furthermore, PNJGL 

with q = 2 identifies non-zero edges and differing edges much more accurately than does 

FGL, which is in turn more accurate than graphical lasso. PNJGL also leads to the most 

accurate estimates of Θ1 and Θ2. The extent to which PNJGL with q = 2 outperforms others 

is more apparent when n is small.

5.2 Inferring biological networks

We applied the PNJGL method to a recently-published cancer gene expression data set [26], 

with mRNA expression measurements for 11,861 genes in 220 patients with glioblastoma 

multiforme (GBM), a brain cancer. Each patient has one of four distinct clinical subtypes: 

Proneural, Neural, Classical, and Mesenchymal. We selected two subtypes – Proneural (53 

patients) and Mesenchymal (56 patients) – for our analysis. In this experiment, we aim to 

reconstruct the gene regulatory networks of the two subtypes, as well as to identify genes 

whose interactions with other genes vary significantly between the subtypes. Such genes are 

likely to have many somatic (cancer-specific) mutations. Understanding the molecular basis 

of these subtypes will lead to better understanding of brain cancer, and eventually, improved 

patient treatment. We selected the 250 genes with the highest within-subtype variance, as 

well as 10 genes known to be frequently mutated across the four GBM subtypes [26]: TP53, 

PTEN, NF1, EGFR, IDH1, PIK3R1, RB1, ERBB2, PIK3CA, PDGFRA. Two of these genes 

(EGFR, PDGFRA) were in the initial list of 250 genes selected based on the within-subtype 

variance. This led to a total of 258 genes. We then applied PNJGL with q = 2 and FGL to 

the resulting 53 × 258 and 56 × 258 gene expression datasets, after standardizing each gene 

to have variance one. Tuning parameters were selected so that each approach results in a 

per-network estimate of approximately 6,000 non-zero edges, as well as approximately 

4,000 edges that differ across the two network estimates. However, the results that follow 

persisted across a wide range of tuning parameter values.

We quantify the extent of node perturbation (NP) in the network estimates as follows: N Pj 

= ∑i |Vij|; for FGL we get V from the PNJGL formulation as . If N Pj = 0 (using 

a zero-threshold of 10−6), then the jth gene has the same edge weights in the two conditions. 

In Figure 4(a)–(b), we plotted the resulting values for each of the 258 genes in FGL and 

PNJGL. Although the network estimates resulting from PNJGL and FGL have 
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approximately the same number of edges that differ across cancer subtypes, PNJGL results 

in estimates in which only 37 genes appear to have node perturbation. FGL results in 

estimates in which all 258 genes appear to have node perturbation. In Figure 4(c)–(d), the 

non-zero elements of Θ1̂ − Θ̂2 for FGL and for PNJGL are displayed. Clearly, the pattern of 

network differences resulting from PNJGL is far more structured. The genes known to be 

frequently mutated across GBM subtypes are somewhat enriched out of those that appear to 

be perturbed according to the PNJGL estimates (3 out of 10 mutated genes were detected by 

PNJGL; 37 out of 258 total genes were detected by PNJGL; hypergeometric p-value = 

0.1594). In contrast, FGL detects every gene as having node perturbation (Figure 4(a)). The 

gene with the highest N Pj value (according to both FGL and PNJGL with q = 2) is 

CXCL13, a small cytokine that belongs to the CXC chemokine family. Together with its 

receptor CXCR5, it controls the organization of B-cells within follicles of lymphoid tissues. 

This gene was not identified as a frequently mutated gene in GBM [26]. However, there is 

recent evidence that CXCL13 plays a critical role in driving cancerous pathways in breast, 

prostate, and ovarian tissue [27, 28]. Our results suggest the possibility of a previously 

unknown role of CXCL13 in brain cancer.

6 Discussion and future work

We have proposed the perturbed-node joint graphical lasso, a new approach for jointly 

learning Gaussian graphical models under the assumption that network differences result 

from node perturbations. We impose this structure using a novel RCON penalty, which 

encourages the differences between the estimated networks to be the union of just a few 

rows and columns. We solve the resulting convex optimization problem using ADMM, 

which is more efficient and scalable than standard interior point methods. Our proposed 

approach leads to far better performance on synthetic data than two alternative approaches: 

learning Gaussian graphical models assuming edge perturbation [13], or simply learning 

each model separately. Future work will involve other forms of structured sparsity beyond 

simply node perturbation. For instance, if certain subnetworks are known a priori to be 

related to the conditions under study, then the RCON penalty can be modified in order to 

encourage some subnetworks to be perturbed across the conditions. In addition, the ADMM 

algorithm described in this paper requires computation of the eigen decomposition of a p × p 

matrix at each iteration; we plan to develop computational improvements that mirror recent 

results on related problems in order to reduce the computations involved in solving the FGL 

optimization problem [6, 13].
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Figure 1. 
An example of two networks that differ due to node perturbation of X2. (a) Network 1 and 

its adjacency matrix. (b) Network 2 and its adjacency matrix. (c) Left: Edges that differ 

between the two networks. Right: Shaded cells indicate edges that differ between Networks 

1 and 2.
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Figure 2. 
A toy example with p = 6 variables, of which two are perturbed (in red). Each panel shows 

an estimate of (Σ1)−1 − (Σ2)−1, displayed as a network and as an adjacency matrix. Shaded 

elements of the adjacency matrix indicate non-zero elements of Θ̂1 − Θ̂2, as do edges in the 

network. Results are shown for (a): PNJGL with q = 2, which gives the correct sparsity 

pattern; (b)–(c): the naive group lasso. The naive group lasso is unable to detect the pattern 

of node perturbation.
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Figure 3. 
Simulation study results for PNJGL with q = 2, FGL, and the graphical lasso (GL), for (a) n 

= 10, (b) n = 25, (c) n = 50, (d) n = 200, when p = 100. Within each panel, each line 

corresponds to a fixed value of λ2 (for PNJGL with q = 2 and for FGL). Each plot’s x-axis 

denotes the number of edges estimated to be non-zero. The y-axes are as follows. Left: 

Number of edges correctly estimated to be non-zero. Center: Number of edges correctly 

estimated to differ across networks, divided by the number of edges estimated to differ 
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across networks. Right: The Frobenius norm of the error in the estimated precision matrices, 

i.e. 
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Figure 4. 
PNJGL with q = 2 and FGL were performed on the brain cancer data set corresponding to 

258 genes in patients with Proneural and Mesenchymal subtypes. (a)–(b): N Pj is plotted for 

each gene, based on (a) the FGL estimates and (b) the PNJGL estimates. (c)–(d): A heatmap 

of Θ̂1 − Θ̂2 is shown for (c) FGL and (d) PNJGL; zero values are in white, and non-zero 

values are in black.
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Algorithm 1

ADMM algorithm for the PNJGL optimization problem (7)
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