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The detection of adverse drug events (ADEs) is a major chal-
lenge in pharmacovigilance. With the explosion of electronic 
data, there has been an increase of availability of different 
data sources, such as the electronic health records1 or admin-
istrative claims data,2 that have supplemented the existing 
US Food and Drug Administration Adverse Event Reporting 
System3 of voluntary reports. Analysis of these healthcare 
databases provides potential opportunity to detect and con-
trol the impact of potential adverse effects in the population. 
However, signal detection methods are still a great challenge 
in the drug safety scientific community.

Different methodologies have been developed to infer 
safety signals in healthcare databases between drugs and 
potential adverse events that merit further investigation.4,5 
Although encouraging results in ADE detection have been 
reported for some methods,6 some challenges and limitations 
remain most prominent among which is controlling for poten-
tial confounding factors.5,7 In fact, the class of approaches tak-
ing into account cofounding effects showed better predictive 
results in an assessment of different signal-detection algo-
rithms in US Food and Drug Administration Adverse Event 
Reporting System.8 Some approaches, such as multiple 
logistic regression, could be helpful to control cofounding for 
co-medications in spontaneous reporting systems.9,10 Other 
data sources, such as large-scale observational healthcare 
data, also provide important information for drug safety, but 
it is still necessary to determine suitable statistical methods 
for its analysis.11–14 As an example, disproportionality meth-
ods, commonly used in the analysis of spontaneous reports, 
showed poor performance using observational healthcare 
data.15 However, self-controlled cohort methods showed 
potential for risk identification in observational databases.16 
Integration of different sources of information, such as elec-
tronic health records and medical literature, is an option that 

can offer good results in the generation of improved surveil-
lance systems.17–19

The results obtained by our group in a previous medication-
wide association study using an observational healthcare 
database, the Truven MarketScan Commercial Claims and 
Encounters (CCAE) database,2 showed that most of the signals 
generated from four clinically important ADE outcomes were 
positive controls.12,20 However, we observed some statistical 
associations with values above two statistical thresholds, P < 
0.05 and P < 0.0005 (Bonferroni correction), between the ADEs 
and medications not known to be culpable (false positives). Our 
previous system,20 although capable of generating an enriched 
subset of ADE candidates, showed some limitations in its ability 
to exclude some false positives from the final signal selection. 
Other studies using other data algorithms and data sources 
showed the potential to provide an enriched set of drug can-
didates that can cause the ADE.21,22 However, improvement in 
the precision in this enriched set of candidates was achieved 
through the application of 2D structural similarity.21,22

We propose here a complementary method which is based 
on similarity modeling to rank the subset of ADE candidates 
generated through self-controlled case series (SCCS) data 
analysis. Our aim is to improve the precision of the technique 
in different top candidate positions and consequently pro-
vide an efficient way to prioritize signals. Figure 1 shows the 
general steps in the development of our analysis.

RESULTS
Performance of SCCS analysis
We applied the SCCS method to the CCAE administrative 
claims database2,12 to estimate associations between sets 
of drugs defined as positive and negative controls and four 
diverse ADEs: acute renal failure, acute liver failure, acute 
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(anatomical therapeutic chemical) similarity measures, to the candidate associations selected previously in a medication-
wide association study for four ADE outcomes. Our results showed an improvement in the precision when we ranked the 
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information is available.
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myocardial infarction, and upper gastrointestinal (GI) ulcer.20 
Table 1 shows sensitivity, specificity, and precision for 
each ADE. We also calculated the area under the receiver 
operating characteristic curve (AUROC) for each ADE using 
P values and relative risk (RR) to rank all the drugs in each 
reference standard. AUROCs range from 0.58 to 0.78. The 
results showed the capacity of the SCCS analysis to dis-
criminate between drugs that were or were not believed to 
be causally related to the ADEs. However, within the sets of 
drugs selected above the two P-value thresholds (P < 0.05 
and P < 0.0005), the precision in some cases did not show a 
clear improvement as the P value decreases (Figure 2 and 
Supplementary Figure S1). As an example, precision in the 
ADE acute renal failure using the P-value scoring method is 
similar in the top 10 position and the top 20 (precision = 0.6). 
Table 2 also shows the area under the ROC curve for the 
subset of ADE candidates whose P values are <0.05 (this 
partial AUROC is defined in the article as pAUROC). On the 
other hand, ranking the same final subset of ADE candidates 

using RR offered better precision results (Figure 2) and pAU-
ROCs (Table 2). However, as it is explained in the next sec-
tion, combination of SCCS and similarity methods showed an 
improvement in ADE detection.

Performance of similarity-based methods in the SCCS 
analysis candidates
We applied our 2D and 3D molecular structure, ADE, Tar-
get, and ATC similarity-based models to the subset of can-
didates previously selected through SCCS analysis. We 
used two different subsets of drug candidates for each ADE 
based on two different P-value thresholds (P < 0.05 and 
P < 0.0005). Similarity score assignment for each drug in 
every ADE dataset was performed taking out one at a time 
(leave-one-out method) and comparing the similarity against 
the positive and negative controls in the reference standard 
(see Methods section). When the drug candidates within 
the threshold P < 0.05 were ranked according to similarity 
scores, the analysis showed a clear improvement in preci-
sion in different top positions as compared with P values 
(Figure 2 and Supplementary Table S1). Using similarity-
based methods resulted in greater pAUROCs for the subset 
of candidates (Table 2). When performances of the similarity 
methods and RR algorithm are compared, similarity methods 

Figure 1 Flowchart of the different steps implicated in the current 
analysis.
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Table 1 Results provided by SCCS analysis in the Truven MarketScan CCAE 
administrative claims database for four ADEs

ADE TP/FPa Sensitivity Specificity Precision

AUROC 
using  

P valueb

AUROC 
using 
RRc

Acute renal 
failure

19/34 0.68 0.74 0.59 0.74 0.78

Acute liver 
failure

63/32 0.33 0.75 0.72 0.58 0.60

Acute  
myocardial 
infarction

33/46 0.42 0.83 0.64 0.71 0.71

Upper GI 
ulcer

24/53 0.63 0.81 0.60 0.78 0.78

Area under the receiver operating characteristic curve (AUROC) using P 
values and relative risk (RR) provided by SCCS analysis. Calculations were 
performed considering all the drugs in the respective reference standard.
aTP (true positives), FP (false positives).
bTo calculate AUROC, the ADE–drug associations were ranked using  
P values.
cTo calculate AUROC, the ADE–drug associations were ranked using RR.

Figure 2 Precision–Recall curves evaluating the four subsets of 
ADE candidates originated with SCCS analysis (threshold P < 0.05) 
using different methods to rank the candidates (methods: P values, 
relative risk (RR), 2D MACCS, 3D structure similarity, ADE, Target, 
and ATC similarity). SCCS analysis is useful to originate and select 
the subset of ADE candidate drugs. Application of similarity-based 
methods in this selected subset can enrich the precision in different 
top positions compared with P values and RR. For clarity, precision 
is plotted above 0.4. In the recall calculation, only the drugs in the 
selected set of drug candidates (P < 0.05) were taken into account. 
In the sets of liver failure and gastrointestinal (GI) ulcer, there are 
two candidates (the drug–protein candidates interferon beta 1a and 
lipase, respectively) that cannot be evaluated using similarity-based 
models.
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still show better performance in some of the studied ADE out-
comes (Figure 2 and Table 2). We found similar results for 
the set of candidates selected with the threshold P < 0.0005 
(see Supplementary Table S1 and Figure S1). The use of 
similarity-based models allowed us to obtain better positive 
predictive values in some sets. The method is an alternative 
system to organize the set of ADE candidates with value in 
better understanding the detected ADE–drug relationships.

Rationalization of the signals detected in healthcare data
We can identify for each drug in the test the most similar 
drug in the ADE reference standard, with the consequent 
associated ADE information available from the literature. This 
feature facilitates the decision making in the ADE signal eval-
uation process. In some cases, depending on the available 
literature, the system could help to generate further hypoth-
eses about possible ADE mechanisms of action. Moreover, 
these types of models can detect drug pair similarities based 
on whether both drugs are in the same or different phar-
macological classes. Most frequently, the drugs are in the 
same pharmacological class and the information provided by 
the system is obvious. When the drugs belong to different 
classes, the situation becomes more challenging because 
the drug pair relationship is less apparent.

Figure 3 shows some examples of drugs detected by simi-
larity modeling along with the drug source in the reference 
standard. Gemcitabine and zidovudine are both nucleoside 
analogs with clear structural analogy (Figure 3). The 3D 
model associated both drugs with high score (3D_score = 
0.84). However, this is a case where both drugs belong to the 
same structural category but they could be deemed in differ-
ent pharmacological classes. Gemcitabine is used in clinic 
to treat different types of cancer, and zidovudine is an anti-
retroviral agent for the treatment of HIV infection. Both drugs 
have the potential to cause liver failure, although it is not 
clear whether they follow similar etiology. Gemcitabine could 
cause a direct hepatic toxicity, and zidovudine could lead 
to mitochondrial dysfunction.23 Another example of similar-
ity detected by the model is the pair indomethacin–sulindac 
(3D_score = 0.81). In this case, both drugs are nonsteroi-
dal anti-inflammatory drugs (NSAIDs), belong to the same 
pharmacological category, and have the potential to cause GI 
ulcer, liver failure, and acute myocardial infarction.

A pair of drugs belonging to different pharmacological 
classes and pointed out by the GI ulcer 3D models is fluox-
etine–oxaprozin (positive control 3D_score = 0.78). There are 

some reports that indicate that the antidepressant fluoxetine 
can have some anti-inflammatory properties,24 similar to 
the NSAID oxaprozin. However, the mechanism of action in 
both drugs could be different. Oxaprozin is believed to inhibit 
the enzyme cyclooxygenase (COX) with the consequent 
inhibition in the synthesis of prostaglandins. Fluoxetine has 
been reported to inhibit the signaling of toll-like receptors, 
providing a potential mechanism for their anti-inflammatory 
action.24 The ADE GI ulcer in both drugs could be related 
to an increased risk of bleeding. Some selective serotonin 
reuptake inhibitors like fluoxetine have been related to abnor-
mal bleeding. The possible mechanisms for the ADE could 
be by blocking the uptake of serotonin into platelets causing 
platelet dysfunction or by an increase in gastric acid secre-
tion leading to a higher risk of GI bleeding.25 Although differ-
ent mechanisms could be implicated in NSAID-induced GI 
ulcer,26,27 platelet inhibition caused by NSAIDs could also be 
an important factor to explain an increased risk of bleeding 
and therefore GI ulcer.28

Table 2 pAUROC results for the subset of ADE candidates whose P values extracted from SCCS analysis are <0.05

ADE candidates selected using the P value < 0.05

ADE TP/FPa

pAUROC 
(P value)

pAUROC 
(RR)

pAUROC 
(2D MACCS)

pAUROC (3D 
similarity)

pAUROC 
(ADE)

pAUROC 
(target)

pAUROC 
(ATC)

Acute renal failure 13/9 0.64 0.79 0.91 0.75 0.99 0.93 0.98

Acute liver failure 21/8 0.63 0.68 0.88 0.67 1.00 0.98 0.86

Acute myocardial infarction 14/8 0.68 0.88 0.72 0.78 1.00 0.86 1.00

Upper GI ulcer 14/11 0.67 0.66 0.81 0.85 0.94 0.84 0.95

To calculate the pAUROCs, we ranked the ADE candidates (P < 0.05) using the following methods: P value, relative risk (RR), 2D MACCS, 3D similarity, ADE, 
Target, and ATC similarity.
aTP (true positives), FP (false positives). pAUROC means area under the receiver operating characteristic curve for the subset of ADE candidates whose P < 0.05.

Figure 3 Examples of some drug pairs retrieved by the 3D molecular 
structure similarity models for the different ADE outcomes. In each 
pair, a drug is in the leave-one-out test and the other drug is the 
most similar drug in the ADE reference standard (positive controls). 
Carbon atoms in each pair are represented in gray and green.

Gemcitabine–zidovudine Indomethacin–sulindac

Fluoxetine–oxaprozin Ketoprofen–clopidogrel
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Figure 4 Similarity matrices, using 2D MACCS, 3D, ADE, and Target measures, for the set of drugs included in the ADE acute renal failure. We 
compared the different similarity methods to retrieve pharmacological classification results. In each matrix, the diagonal (dark gray) represents 
a drug against itself (in the plot, upper right and lower left are symmetric). Brown represents drug pairs belonging to the same pharmacological 
category and not retrieved in the top 50 similarity scores; red represents drug pairs belonging to the same pharmacological category and 
retrieved in the top 50 similarity scores; blue represents drug pairs belonging to different pharmacological category and retrieved in the top 50 
similarity scores. Pharmacological categories range from well-defined classes, such as benzodiazepine anxiolytics, to broader classes, such 
as antibiotic–antifungals. The class with higher number of members is nonsteroidal anti-inflammatory drugs.
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The 3D molecular structure model in GI ulcer also detected 
that clopidogrel, an antiplatelet agent, is similar to the NSAID 
ketoprofen (positive control 3D_score = 0.79). Both drugs 
have a different mechanism of action because clopidogrel is 
an inhibitor of the P2Y12 adenosine diphosphate receptor and 
ketoprofen develops the anti-inflammatory activity through 
the inhibition of the COX enzyme.29 However, both drugs 
share some pharmacological actions. Both mechanisms, 
adenosine diphosphate and COX inhibition, are implicated 
in the inactivation of platelets. There is available information 
that relates some NSAIDs with antiplatelet properties, i.e., 
the antiplatelet properties of ketoprofen or acetylsalicylic 
acid are known.30,31 On the other hand, clopidogrel has been 
reported to provide anti-inflammatory renoprotective effects, 
although the mechanism of action is still unclear.32 Both 
drugs can cause upper GI ulceration, probably accentuated 
because of the ADE bleeding associated with their antiplate-
let properties. However, the mechanism of action by which 
clopidogrel and ketoprofen cause GI ulcer is also probably 
different. Although clopidogrel’s mechanism remains unclear, 
clopidogrel does not have an effect on the COX pathway.33 
On the other hand, ketoprofen is believed to cause the ADE 
GI ulcer due to the inhibition of COX-1.29 Moreover, NSAIDs 
can cause damage in the GI mucosa following other mecha-
nisms, such as topical irritating effects on the epithelium or 
blood flow reduction in the mucosa.27 Although it is hard to 
reconcile the different mechanisms of action with the high 3D 
similarity, it is worth noting that we also found that clopidogrel 
is similar to other NSAIDs, such as etodolac (0.76), brom-
fenac (0.74), tolmetin (0.73), ketorolac (0.73), mefenamate 
(0.73), valdecoxib (0.72), fenoprofen (0.72), and flurbiprofen 
(0.72). In fact, in the GI ulcer reference standard, there are 
nine NSAIDs within the most 15 similar drugs to clopidogrel 
according to the 3D score. However, similarity is not high with 
all the NSAIDs. For instance, 3D similarity score between 
clopidogrel and acetylsalicylic acid is 0.51. The association 
showed by the model does not provide enough evidence 
that these drugs cause the ADE GI ulcer through the same 
mechanism of action, and more studies would be necessary 
to detect if this association is true.

Visualizing correlations between similarity measures 
and pharmacological classes
Similarity measures can show some degree of coincidence 
with the pharmacological class. To visualize this effect, we 

plotted in Figure 4 the similarity matrix for the acute renal fail-
ure reference standard (positive and negative controls) using 
the four measures: 2D and 3D molecular structure and the 
knowledge-database ADE and Target similarities. Each matrix 
contains 49 columns and rows, the same number as the drugs 
in the reference standard (protein drugs in the initial refer-
ence standard, such as lipase, were not included). Drugs were 
grouped according to the pharmacological category (brown 
dots in the graphic). We represented in each matrix the top 
50 drug pair similarity scorings. Red dots represent drug pairs 
retrieved in the top 50 belonging to the same pharmacologi-
cal class. Blue dots represent drug pairs in which both drugs 
belong to different pharmacological category. In each matrix, 
there are 74 drug pairs belonging to the same pharmacologi-
cal class within 1,176 possible drug pairs (=(49 × 49 − 49)/2). 
Random results would yield 3.15 drug pairs (=50 × 74/1,176) 
belonging to the same pharmacological class. As we expected, 
the bidimensional similarity matrices showed that all the simi-
larity measures are related to the pharmacological classifica-
tion showing results far from random (Figure 4; P < 0.001). 
However, the measures based on knowledge databases, such 
as ADE and Target similarities, are more related to the phar-
macological classification than molecular structure measures. 
For the ADE and Target similarity matrices in the renal failure 
set, we retrieved 34 and 41 drug pairs (of 50) in the same 
pharmacological category, respectively (Table 3). However, in 
the case of 2D and 3D similarities, we retrieved 17 drug pairs 
in the same category in both cases. The same test has been 
conducted for the other ADE outcomes mentioned in the cur-
rent article (Table 3). Results showed similar patterns in the 
comparison of the different similarity measures. The methods 
based on knowledge data detected above all similarity within 
the pharmacological class, whereas 2D and 3D molecular 
structure methods showed more flexibility to detect interclass 
similarity. This fact showed the pharmacological dependency 
of some knowledge data. ADE and Target similarities offered 
good results in the previous analysis improving the precision 
of the selected drug–ADE associations. However, the informa-
tion provided by the similarity models in this case is obvious 
because the system detects preferably intraclass similarity. 
Otherwise, as Figure 4 shows, 2D and 3D structural similar-
ity have the potential of pointing out more challenging drug–
ADE relationships. The figure demonstrates that the molecular 
structure (2D and 3D) and pharmacological class, although 
overlapping, are not identical and likely complementary.

Table 3 Number of drug pairs that belong to the same pharmacological class retrieved by the different similarity measures within the top 50 scores

Top 50 drug pair similarity scorings

Acute renal failure* Acute liver failure Acute myocardial infarction* Upper GI ulcer*

Drug pairs (of 50) in the 
same pharmacological 

class (proportion)

Drug pairs (of 50) in the 
same pharmacological 

class (proportion)

Drug pairs (of 50)  
in the same pharmacological  

class (proportion)

Drug pairs (of 50) in the 
same pharmacological 

class (proportion)

3D 17 (0.34) 25 (0.50) 31 (0.62) 27 (0.54)

2D MACCS 17 (0.34) 30 (0.60) 14 (0.28) 12 (0.24)

ADE 34 (0.68) 37 (0.74) 42 (0.84) 43 (0.86)

Target 41 (0.82) 33 (0.66) 32 (0.64) 37 (0.74)

The proportion of drug pairs in the same class is also showed in the table.
*P < 0.001 for chi-square test 4 × 2 table. The difference was not significant in liver failure set.
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DISCUSSION

Similarity methods were applied to medication-wide asso-
ciation studies performed in an administrative claims data-
base with 46 million patients. However, similarity-based 
modeling can be applicable to improve signal detection 
steps using other data mining algorithms or other type of 
pharmacovigilance data, such as the FDA Adverse Event 
Reporting System or electronic health records.21,22 The 
method also allows rationalizing the relevance of the sig-
nals to optimize the decision-making process. However, 
these type of systems are not intended to replace other con-
siderations used to evaluate the signal relevance, such as 
data consistency, biological relationships, or similar signals 
detected in other sources of data.34 Our intention is to pro-
vide additional information useful in the signal assessment. 
A more complete understanding of the conditions related to 
the ADE could improve drug patient safety processes.

In this study, similarity-based methods have been applied 
after the signals have been detected from healthcare data-
bases with the intention of selecting final candidates pointed 
out by two different methodologies. However, implementa-
tion of similarity systems for all the drugs studied in health-
care databases would be an alternative to help in the early 
detection of ADEs related to newly marketed drugs with not 
enough accumulated exposure in the population.

The types of models showed in the current study are highly 
dependent on the training dataset, in our case, the ADE ref-
erence standard. Different structural and pharmacological 
complexity in the reference standard construction could be 
responsible for a different performance in the diverse ADE 
outcomes. For instance, 2D MACCS (Molecular Access 
System) model performs better in the outcomes renal and 
liver failure rather than myocardial infarction and GI ulcer. 
As an example, some drugs that cause myocardial infarc-
tion, such as frovatriptan, are not captured with good score 
when compared with other anti-migraine drugs also pres-
ent in the reference standard, such as zolmitriptan (2D TC 
= 0.49). In fact, frovatriptan showed some differences in the 
molecular structure, such as a benzamide group not pres-
ent in other triptan derivatives. Amlodipine and nifedipine, 
two calcium channel blockers, constitute another example 
of drugs with similar mechanism of action but not captured 
by our 2D similarity (TC = 0.48). Both drugs are derivatives 
of dihydropyridine, but different substitutions at molecular 
level makes difficult the similarity recognition according to 
MACCS fingerprint. On the other hand, the 3D model per-
forms better in the ADEs myocardial infarction and GI ulcer 
than in renal and liver failure. The drugs mentioned above, 
frovatriptan, amlodipine, and nifedipine, showed a better 
score according to the 3D similarity (the 3D positive con-
trol score is 0.84, 0.82, and 0.82, respectively). As it was 
shown in previous studies,35 both 2D and 3D similarity mea-
surements are complementary but different, capturing simi-
larities between different pairs of drugs. Three-dimensional 
methods are capable of detecting connections between the 
structure and biological characteristics not captured by 2D 
methods and vice versa.

Caveats and limitations
Performance of the similarity-based modeling is based on 
the reference standard database. External predictive power 
could be limited depending on the quality and comprehen-
siveness of the initial data. Additional improvements in the 
initial reference standard databases could be implemented 
for the construction of more reliable systems. When the ref-
erence standard reflects some complexity, i.e., drugs with 
similar pharmacological characteristics in both positive and 
negative controls, it would be advisable to use only similarity 
scorings against the positive control group to avoid cancella-
tion of the similarity signal.

The nature of the similarity measurement is also an impor-
tant limiting factor. Some fingerprints could contain certain 
bias information. As an example, ADE and Target fingerprints 
are calculated from the information contained in knowledge 
databases. Although these data sources are of great utility, 
the information available could be influenced by pharma-
cological classification of the drugs. Moreover, these types 
of similarity measures have difficulties to correctly evaluate 
similarity for some drugs for which there is scarce available 
information, i.e., this is the case of new drugs.

METHODOLOGY
Materials

Healthcare data. The database used to apply the similarity-
based methods was collected from a previous publication.20 
Analysis of four different ADEs was performed using an 
observational healthcare database: the CCAE administra-
tive claims database.2,12 The database contained 46.5 mil-
lion lives. Detailed description about the healthcare data has 
been published by our group previously.20

Reference standard datasets. Negative and positive controls, 
i.e., drugs that cause the ADEs or do not, were established 
based on natural language processing of structured product 
labels and systematic search of the scientific literature. We 
studied four clinically important ADEs: acute renal failure, 
acute liver failure, acute myocardial infarction, and upper GI 
ulcer. More details about drug reference standard data col-
lection, including drug names, can be found in a previous 
publication.20 Protein drugs, such as lipase or darbepoetin 
alfa, were not included in our current databases when simi-
larity measures are applied because molecular structure 
analysis is limited depending on size.

Drug structure. We collected the molecular structures of 
the drugs included in the study from DrugBank database.29 
Structures of some drugs not available in DrugBank were 
downloaded from PubChem.36

Methods

SCCS analysis. A SCCS analysis was performed for four 
different ADEs in the CCAE administrative claims database. 
A detailed description of the analysis has been published 
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in the study by Ryan et al.20,37,38 Two sets of drug candi-
dates for each ADE, using as thresholds P < 0.05 and P < 
0.0005, were evaluated using similarity-based modeling as 
described below.

Two-dimensional molecular structure similarity. We calcu-
lated 2D molecular structure similarity between all the drugs 
in each database using a 2D molecular fingerprint called 
MACCS.39,40 In the fingerprint, we represent each drug as a 
bit vector that codifies in each position through 1 or 0 the 
presence or nonpresence of different structural keys. For 
instance, some structural keys represented in MACCS would 
be: position 11 codifies the presence of four-membered rings; 
position 78 codifies C=N groups; position 163 codifies six-
membered rings, etc. To simplify the sparse binary vector, 
only the positions codifying the fragments that are present 
are retained in the final fingerprint representation. More 
details about MACCS fingerprint calculation are provided in 
a previous study.22,41

We used the Tanimoto coefficient (TC) to calculate the 
similarity between all drug pairs. The TC is a measurement 
between two fingerprints that ranges from 0 (minimum simi-
larity) to 1 (maximum similarity). The TC is defined as:

TC
N

N N N
AB

A B AB
=

+ −
In the equation, NAB is the number of features present in 
common in both fingerprints A and B, NA is the number of 
features in fingerprint A, and NB is the number of features 
in fingerprint B.

Three-dimensional molecular structure similarity. 3D similar-
ity is calculated in different steps:

1) Drug database preparation: Bioactive conformations with 
specific chiral centers were downloaded from DrugBank.29 
The drug database was prepared with LigPrep module from 
the Schrödinger 2011 package.42 We generated possible pro-
tonation states at neutral pH and a maximum of three enan-
tiomers for unspecified chiral centers for some drugs. This 
process also involved optimization of the geometry of the 
structures using OPLS_2005,43 the force field that describes 
the potential energy of the system.

2) Conformational analysis: The 3D structure of each drug 
in the databases was determined through conformational 
analysis using water as an implicit solvent in the Macromodel 
module from Schrödinger.44 The engine search method 
was Monte Carlo Multiple Minimum. For simplicity reasons, 
only the structure with the global minimum potential energy 
OPLS_2005 was retained and used as a template in the 
shape screening step.

3) Shape screening calculations: We used the 3D struc-
tures determined in the previous conformational analysis 
as template queries to run shape screening calculations for 
all the drugs included in the study using phase module from 
Schrödinger package.45 Our objective is to identify similar 
shape and pharmacophoric properties between all the drugs. 

The calculation generated a maximum of 500 conformers 
for each drug and aligned them to each template. We cal-
culated a 3D similarity score between all the drug pairs that 
ranges from 0 to 1. The similarity score, called Phase Sim 
property, was calculated considering the overlapping vol-
ume between atoms that present the same pharmacophoric 
characteristics.45

ADE similarity: The data about adverse effects were down-
loaded from SIDER database.46 SIDER is a side effect 
resource that contains information about 996 medicines 
and 4,192 adverse effects extracted from public documents 
and package inserts. Although SIDER is a useful source, 
not all the drug reactions are totally confirmed, and in some 
cases, further studies would be necessary. However, for 
the four ADE outcomes, SIDER database showed a high 
degree of coincidence with our reference standard: 94, 84, 
92, and 97% of coincidence between SIDER and our refer-
ence standards for acute renal failure, acute liver failure, 
acute myocardial infarction, and upper GI ulcer, respec-
tively. For labeling the drugs in SIDER as positive or nega-
tive, we used the specified ADE terms and related (example 
for renal failure: renal failure acute, acute renal insufficiency, 
shutdown renal, etc).

We calculated ADE similarity through the use of fingerprints. 
For each of the four studied ADEs, we excluded in SIDER 
the ADE itself and related terms in the calculation of the fin-
gerprint. The concept of the ADE fingerprint is similar to 2D 
molecular structure fingerprints. In the ADE fingerprints, we 
codified in the different bit positions the presence or absence 
(code 1 or 0, respectively) of different adverse events associ-
ated with the drugs. As an example, some adverse events 
represented in the calculation of ADE fingerprints would be: 
position 1 codifies the presence of the ADE abasia; position 
82 codifies the presence of the ADE acidosis; position 563 
codifies the presence of the ADE bullous eruption; position 
3,385 codifies the presence of the ADE rhabdomyolysis, etc. 
We retained in the final ADE fingerprint only the positions 
codifying the fragments that are present (sparse binary vec-
tor simplification). As described above (see Methods section 
for 2D molecular structure similarity), we calculated the TC 
between all the drug pair fingerprints.

Target similarity: Data about drug targets were downloaded 
from DrugBank database.29 We integrated the drug targets 
database with the enzymes, transporters, and carriers data-
sets from DrugBank. Repeated cases were eliminated. We 
also considered targets from different species/organisms as 
a unique target case. The procedure to calculate the Target 
fingerprints is the same as described before in ADE finger-
prints or MACCS, but instead of considering adverse events 
or the structural keys, we listed now targets for each bit vector 
position. Therefore, we calculated TC between all the Target 
fingerprints.

ATC similarity: The ATC Classification System47 is used 
for the classification of drugs. Chemical characteristics, 
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therapeutic action, and information about the system or 
organ on which the drugs act are introduced in the data-
base. Because some drugs could have several classifica-
tion codes, a manual revision of the classification was made 
to provide more accurate data. The different categories in 
the database are codified in bit positions of a fingerprint as 
explained previously. We used the TC to calculate similarity 
between all the ATC fingerprints.

Construction of ADE similarity matrix and scoring extraction: 
All drug pair similarities, based on TC or Phase Sim prop-
erty, for each ADE reference standard database were inte-
grated in a similarity matrix. A score for each drug in the ADE 
reference standard is calculated through a leave-one-out 
procedure. Each drug was taken out and evaluated by the 
similarity model to compare the performance with the rest of 
the candidate drugs. For every drug is defined a maximum 
pairwise score (TC or Phase Sim property) obtained against 
each drug that produces the ADE in the reference standard 
dataset. A second pairwise maximum similarity score against 
the set of drugs that do not produce the ADE is calculated. 
The final score is provided by the difference between simi-
larity scores, the ADE score, and the non-ADE score. As 
an example, the drug meloxicam in the acute renal failure 
reference standard was compared in the 2D MACCS model 
against the set of drugs that produce the ADE, and the maxi-
mum TC pairwise was 0.89. On the other hand, the maximum 
TC against the non-ADE drugs was 0.49. The final difference 
scoring was 0.40.

Assessment of the similarity models: Evaluation of the simi-
larity methods applied to the four sets of ADE candidates was 
compared with the results ranking the drug candidates using 
P values and RR. The evaluation focused on the proportion 
of true positives for each ADE identified by every approach. 
We calculated the precision of the methods (TP/TP+FP) 
as a standard measurement to compare the performance. 
Precision-Recall graphics were plotted for the four ADEs 
considering as true positives and false positives the drugs 
in the reference standard deemed as positive and negative 
controls, respectively. Areas under the ROC curves were also 
reported to compare the performance of the different meth-
ods within the P < 0.05 selected subset of candidates (pAU-
ROC). We also evaluated through ROC curves the global 
performance of the SCCS analysis in the CCAE administra-
tive claims database.
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