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Abstract

Circular migrations are the periodic movement of individuals between multiple locations, 

observed in parts of sub-Saharan Africa. Relationships between circular migrations and HIV are 

complex, entailing interactions between migration frequency, partnership structure, and exposure 

to acute HIV infection. Mathematical modeling is a useful tool for understanding these 

interactions.

Two modeling classes have dominated the HIV epidemiology and policy literature for the last 

decade: one a form of compartmental models, the other network models. We construct models 

from each class, using ordinary differential equations and exponential random graph models, 

respectively.

Our analysis suggests that projected HIV prevalence is highly sensitive to the choice of modeling 

framework. Assuming initial equal HIV prevalence across locations, compartmental models show 

no association between migration frequency and HIV prevalence or incidence, while network 

models show that migrations at frequencies shorter than the acute HIV period predict greater HIV 

incidence and prevalence compared to longer migration periods. These differences are statistically 

significant when network models are extended to incorporate a requirement for migrant mens 

multiple partnerships to occur in different locations. In settings with circular migrations, 

commonly-used forms of compartmental models appear to miss key components of HIV 

epidemiology stemming from interactions of relational and viral dynamics.
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1. Introduction

1.1. Background and Motivation

Circular migrations – the periodic movement of individuals between two (or more) places 

[58], often between home and labor sites – is a relatively common practice in some countries 

in sub-Saharan Africa (for example South Africa [42, 46]). The relationship between 

circular migrations and HIV has been the focus of much recent epidemiological work in 

multiple countries (e.g. South Africa [43–45], Kenya [5], Zimbabwe [12,54], and Tanzania 

[11]). These relationships are complex [15, 46, 50]), with circular migration providing 

multiple mechanisms that have the potential to amplify HIV transmission in a population. 

While the epidemiological implications of coupling between two disconnected areas due to 

movement has been studied before [34], the partnerships of circularly migrant individuals 

have certain novel features (described in detail below), and the precise mechanisms that 

potentially amplify the impact of circular migrations on sexually transmitted infection are 

not fully understood. Modeling provides a useful approach to improve our understanding of 

these relationships, and test specific hypotheses (e.g. the association between migration 

frequency and HIV prevalence and incidence).

A recent review demonstrated that of the HIV transmission models developed for public 

health planning, about 87% were deterministic compartmental models [32], which are 

formulated using ordinary differential equations. Compartmental models have a rich history 

in helping researchers answer many questions about HIV transmission [48, 49], and 

continue to be the “work-horse” of model development [10]. Adaptations of these models 

are continuously being developed to answer contemporary questions in the epidemiology of 

HIV [2,4,7,18,19,21–24,35,55,59,60,65,69]. In compartmental models for HIV, 

compartments typically represent counts of individuals, with the relationships implicit 

within the calculation of the “force-of-infection” terms for the transition from susceptibles to 

infected. Further theoretical elaborations for modeling contact structure within the 

compartmental framework, based on the use of compartments representing pairs or triads of 

individuals, were developed earlier on in the HIV epidemic [16, 17, 28], although have 

played little subsequent role in the applied HIV modeling literature (with one recent 

exception [57];) we return to these in the discussion.

As per Johnson and White’s review [32], the other models used to inform policy decisions 

concerning HIV are stochastic. Network-based models are a particular formulation of 

stochastic models, and represent an alternative approach toward understanding HIV 

transmission. One value they add is to relax the “mass-action” assumptions of 

compartmental models [38] through explicit representation of actors, their attributes and 

infection transmission within partnerships. Network models have been adapted to study 

questions pertaining to HIV transmission more recently than compartmental models 

[14,20,25,27,53,61,66]. Although computationally intensive, the network modeling 

approach is able to capture a wider range of characteristics of the individuals and their 

partnerships in the model. As a consequence, modelers are periodically faced with the 

question of whether network models (with their additional computational complexity) are 

worth the extra time and effort.
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This subset of model types (deterministic compartmental models and stochastic network 

models) collectively represent the commonly used toolkit for modeling the epidemiology of 

HIV and for determining HIV-related policy in settings like South Africa where circular 

migration is common. We thus explore the same set of model types in our investigations of 

circular migrations, and their impact on HIV transmission. Our two goals, then, are to 

understand the relationships between migration frequency and HIV transmission; and to 

identify apparent differences in these relationships according to the class of models used, 

among those commonly used in this setting.

The models we consider here help relax assumptions progressively. One value of this study 

is to make such assumptions explicit to future modelers, who can then assess which 

assumptions have large effects with respect to transmission outcomes [36]. Another benefit 

is to epidemiologists who might use conclusions from these analyses to design future studies 

to refine our understanding of circular migration [36]. Our overall goal is then best 

summarized as a “robustness assessment” [38] – where we demonstrate how robust 

conclusions in this transmission system are to underlying assumptions.

1.2. Sexual Behavior in a Circular Migration System

Movement between two locations influences the sexual behavior of circular migrants; for 

one, circular migrants may have the opportunity to maintain ongoing sexual partnerships at 

their home other partnerships in their workplace [46]. The sexual activity of migrant men at 

any given time is thus contingent upon their location; only partnership(s) with partners in the 

same location are “active” at any given time point (i.e. have a nonzero probability of a coital 

act at the time), while the partnership(s) in the other location are “inactive” at that time.

One epidemiological question that modeling has played a large role in addressing is the 

importance that concurrent, as opposed to sequential, relationships play in sustaining the 

generalized HIV epidemics of sub-Saharan Africa [9, 25, 39, 47, 51]. Within this literature, 

concurrency is defined as any case in which an individual has sex with one person 

temporally between two acts of sex with a second person [67]. Cases in which a circular 

migrant has one ongoing partner in the workplace and another in the village thus meet the 

definition of concurrency used in the field. However, existing models of concurrency all 

presume that the concurrent relations are all active simultaneously; i.e. that each one has a 

non-zero probability of a coital act each day. Circular migration of this type is thus distinct 

from either serial monogamy or from more commonly explored forms of concurrency.

Data published by Lurie et al. estimate that about 62% of men in the rural district of 

KwaZulu-Natal spend nights away from home [45]. While, in practice, both men and 

women may migrate [6, 8], more epidemiological work examining circular migrations has 

focused on men [42–46], and for this reason we restrict our attention to movement by men. 

In addition, Lurie et al. studied migrations between a rural district and two mining towns, 

one near the home district, and the other farther away. They observed that men who migrate 

close by tend to return home at least once a month, whereas those who migrate farther away 

generally return 3–4 times a year [46]. This theme of short and long migration intervals is 

central to this paper, and we will explore why these intervals are particularly important in 

the context of HIV transmission.

Khanna et al. Page 3

Math Biosci Eng. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Lurie et al. also reported that about 30% of both migrant and non-migrant men report at least 

two current partners [44]. Additionally, the female partner was HIV-positive in about a third 

of serodiscordant couples in the study [45]. For some, the infection may have occurred 

before the initiation of this partnership, but for the remaining fraction, infection would have 

been acquired through a concurrent partnership. Statistical analyses also revealed migrant 

couples to be 2.5 times more likely than non-migrant couples to be HIV serodiscordant [45]. 

One modeling study has been published based on these data, employing a compartmental 

model [13]. This study modeled a mixture of short- and long-distance migrant men, 

assuming different starting prevalences between the home and the work sites (consistent 

with data from the Hlabisa Migration Project), and migration-associated partner change rates 

[13]. This study suggests that migration, if not in conjunction with riskier behavior, has 

almost no effect on the HIV prevalence among females, and motivated our interest in a more 

fundamental theoretical question: to isolate the impact of movement between disconnected 

areas, all other demographic, behavioral and epidemic assumptions for both locations being 

equal.

1.3. Acute HIV Infection

Acute HIV infection potentially plays a critical role in the impact of circular migrations on 

HIV transmission. Based on data presented by Wawer et al. [70], Hollingsworth et al. have 

estimated that the infectivity of an individual after sero-conversion is highest for a period of 

about 2.9 months after infection [30]. Other data sources [41] and other re-analyses of the 

Wawer data [1,56] differ in their numerical details but confirm higher infectiousness during 

acute infection. This period of acute infection is followed by a long period of stable chronic 

infectivity and a final, late-stage rise before death [30,70].

Circular migration systems entail unique interactions between acute infection and 

concurrency structures. Long-term concurrency can amplify HIV spread relative to long-

term serial monogamy in multiple ways; one of these is by increasing the probability that an 

individual has sex with two partners in quick succession, allowing them to be infected by the 

first, and then transmit to the second while still in the acute stage. However, as described 

above, circular migration in which a man (or woman) has an ongoing partnership in two 

locations represents a unique form of concurrency; although circular migrants may have two 

partnerships that overlap in time, the risk of an individual exposing a partner to HIV during 

the acute stage is likely to be less than in other forms of concurrency. This reduction in risk 

is because a migrant, after being infected by a partner in one location, would not be expected 

to have sex with his other partner until he switches location. If the migration interval is 

sufficiently long, he would likely have passed through the stage of acute infection by that 

point. The magnitude of this effect, and the overall size of the epidemic, would thus be 

expected to be a function of intervals at which these circular migrations occur; overall size 

of the epidemic would be smaller at sufficiently long migration intervals.

1.4. Problem Statement

In this paper, we explicitly examine how different examples of compartmental and network 

models compare in their predictions of the impact of circular migrations on HIV prevalence 

trajectories over time, and the incidence of infection. We are particularly interested in the 
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effect of the frequency of circular migration on the above outcomes – as demonstrated by 

each of our models.

2. Methods

2.1. Features Common to Compartmental and Network Models

We begin by describing the features common to all of our models, and then proceed to 

describe the particular features of compartmental models in Section 2.2 and network models 

in Section 2.3. We summarize the salient features of all our models in Table 1.

2.1.1. Conceptualizing the Models—We follow a population which is equally divided 

by sex and between the two locations: a rural “village” and an urban “workplace.” We set up 

these symmetric conditions to isolate the effects of circular migrations in our models. We 

classify the individuals by infection status, migration status, sex, and current location. We 

assume that some, but not all, men, migrate, while female migration is not considered. This 

modeling assumption is consistent with some published epidemiological papers on circular 

migrations [44,45] which present data on migrations by men only. The population thus 

consists of six classes identified by migration status, sex, and current location (migrant men, 

non-migrant men and women, each in the urban and rural locations). Individuals in each 

class are stratified by stage of HIV infection as susceptible, acutely infected, chronically 

infected or infected with late-stage HIV (AIDS) for a total of 24 state variables (see Figure 

1).

2.1.2. State Transitions—Four types of transitions are considered: recruitment (due to 

sexual maturity), mortality (natural and AIDS-related), migrations (at periodic intervals for 

migrant men only), and disease progression (from susceptible, to acute, to chronic, to late-

stage). Infections occur as a result of sexual contact between members of the susceptible and 

infected classes, of opposite sexes, in the same location. We describe the biological 

assumptions that drive transmission in detail below.

2.1.3. Behavioral Processes: Migration and Partnership Structure—We model 

migrations as a memoryless process. Migrations occur at average intervals of 3 weeks or 30 

weeks between consecutive migrations. These migration frequencies are chosen to be 

illustrative of migrations by men in KwaZulu-Natal, South Africa, with some men migrating 

to a nearby location, and others to a location far away (as described in Section 1.2).

Migrant men are assumed to acquire twice as many partners over time as non-migrant men, 

since they may have partnerships in both locations. This is balanced by the fact that at any 

particular time migrant men have sex only with partners in their current location (“active” 

partners), which includes half of their partnerships on average. As a result, migrant men and 

non-migrant men have the same average number of sex acts per time unit. The specific 

methods to achieve this equivalence are different for compartmental and network models, 

and described in the respective sections below.
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We further assume that partnerships average about 100 weeks (about 2 years) in duration, 

consistent with a separate network modeling study of heterosexuals in Sub-Saharan Africa 

[25].

2.1.4. Biological Processes: Infection Transmission and Disease Progression
—We use a transmission probability of 0.0007 (per act) during chronic infection [70]. We 

model acute and late stage transmission probabilities as 26 and 7 times the chronic-stage 

probability [30]. We consider the mean duration of acute infection as 12 weeks [30]. The 

mean lengths of chronic and late stage are taken to be 500 weeks (approximately 9.6 years) 

and 40 weeks respectively [30]. Mean survival time for infected individuals is thus 552 

weeks.

2.1.5. Demographic Structures: Recruitment and Mortality—We set the rate of 

natural mortality to model an average sexual lifespan of 45 years. Mortality due to late-stage 

HIV and the mean lifespan of infected individuals are described above. The recruitment rate 

is selected to balance natural mortality in a disease-free population.

2.1.6. Initial Conditions—We model a population of 5000 individuals (2500 men and 

2500 women) at the start. For compartmental models, overall population size does not affect 

the results; we set it equal to that for network models for consistency. We introduce HIV in 

the population with one hundred women in each location infected at the start of the 

simulation, chosen to avoid stochastic die-off in the network models. The initially infected 

population is distributed among infection classes in proportion to the duration of each stage 

of infection.

2.1.7. Simulations and Outcomes of Interest—Given the initial conditions, we 

simulate HIV transmission in our population under the two compartmental and two network 

models through 5000 weeks using two compartmental and two network models. This 

simulated period is sufficiently long for the epidemic trajectories to stabilize under both 

modeling approaches. We explore two separate average migrations intervals (3 weeks and 

30 weeks) with each model. We compare prevalence trajectories and the total number of 

new infections for each migration frequency across all models. We simulate 10 repetitions 

of each stochastic model to obtain metrics on the range of outcomes in this model; 

compartmental models are solved deterministically only once.

2.1.8. Computing and Software—All simulations are performed in the R programming 

language; we use the odesolve package for compartmental models [64] and the statnet suite 

of packages for network modeling [29].

2.2. Compartmental Models

2.2.1. Details Unique to Compartmental Models—As is common in the 

compartmental modeling literature [33,37,49], our transition rates from susceptible to 

infected compartments (called “force of infection”) depend on:

1. the average number of contacts,

2. the HIV status of the partner in each contact,
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3. the probability of acquiring infection from an infected partner per contact.

However, “contact” is typically defined in one of two ways: as an individual sex act [3, 23, 

24, 49, 62] or as the initiation of a partnership [4, 18, 19, 22, 35, 60, 65, 69]. The “contact-

as-act” approach defines a contact as a sexual episode and assumes that a new partner is 

randomly chosen at every time step. This method estimates cumulative risk based on the 

number of sex acts per unit time assuming that the partner’s HIV status in each act is 

independent of the status at the previous time step. Thus, the contact-as-act approach has 

low transmission probability per contact but a high contact rate due to constant partner 

changes.

In contrast, in the “contact-as-partnership” approach, a contact is defined as the initiation of 

a new partnership, and the probability of transmission within that contact is aggregated over 

all of the coital acts that occur during the duration of a partnership. Contact-as-partnership 

models estimate cumulative risk per unit time based on the number of active partners, 

assuming that their HIV status is unchanged over the entire partnership. The per-act 

transmission probabilities are converted to the contact level using a standard binomial 

model, which estimates the probability to avoid multiple exposures to HIV (see Table 5 in 

Appendix A). As a result, in the contact-as-partnership approach, contact rates (often called 

“partner change rates”) are relatively low but the probability of transmission given contact is 

relatively high, since it reflects the probability of transmission over the course of the entire 

relationship.

It is worth noting that the two interpretations of contact do not change the structure of 

differential equations which govern the model but affect only the model parameters 

representing the HIV transmission rates. Complete details of the model structure, parameter 

values, and differential equations are presented in Appendix A.

We follow the algorithm in [68] to compute the reproduction number R0 for each 

compartmental model (details in Appendix B).

2.2.2. Conservation of Sexual Acts—The parameter values in the contact-as-

partnership case (Table 5) are chosen to reflect some basic known characteristics of migrants 

and non-migrants described above [46]. That is, the average number of new partners per unit 

time for migrant men is greater than that for non-migrant men [42, 46], though the average 

number of coital acts for migrant and non-migrant men is the same. These assumptions 

represent a strong form of “coital dilution,” the tendency for those with multiple partners to 

have fewer coital acts with each one than does someone with only one partner [63]; in our 

case a migrant man with partners in two locations has only half as many coital acts with 

each as a non-migrant man has with his one partner.

Since we are only modeling heterosexual transmission, we enforce balance of sexual 

contacts between sexes, i.e., the total number of contacts of males must equal the total 

number of contacts of their female partners in either location. Therefore, we set:
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(1)

(2)

where tNF.,M is the contact rate between women and migrant men, tNF.,NM is the contact rate 

between women and non-migrant men while NNM., NMM., and NNF. is the number of non-

migrant men, migrant men, and women, respectively at every time step. The dot. represents 

location, and the equations are identical for urban and rural locations.

In addition, we ensure equivalence between the two interpretations of contact by matching 

the sexual activity of individuals per unit time (more details in Appendix A.4).

2.3. Stochastic Network Models

2.3.1. Network Modeling Framework and Terminology—We now create alternate 

models of this system that explicitly track individuals (actors) in the population (including 

individual attributes) and the unique partnerships among actor pairs. These models are based 

on graphs, and we adopt graph-theoretic concepts and terminology. Consequently, “nodes” 

represent individuals, “node attributes” represent their characteristics (e.g. sex, location, 

migration status), and “edges” represent sexual partnerships between these individuals. An 

edge can exist at a given moment regardless of whether it currently entails coital acts (i.e. 

whether or not the pair are in the same location at that time or not); disease transmission is 

modeled explicitly within these partnerships, as described below. We call the undirected 

graph of nodes and edges at a single time point a “cross-sectional network,” or simply a 

“network” for brevity. The cumulative set of nodes and edges across time are called a 

“cumulative network” or “dynamic network.”

We use the framework of separable-temporal exponential random graph models 

(STERGMs) of Krivitsky et al. [40] to model the evolution of partnership structure in the 

population. This approach, a generalization of exponential random graph models (ERGMs; 

[31]), entails two statistical models, one governing partnership formation, and one governing 

partnership dissolution. Each is specified as an equation that indicates the factors that 

influence each tie in the network forming or breaking, and the magnitude of those effects 

[40]. One strength of the STERGM approach is that the predictors can involve the status of 

other relationships. For instance, a propensity towards monogamy means that any tie 

involving an actor currently in another relationship will be less likely to form. This 

dependence among the “dyads” (i.e. partnerships) in the population means that even though 

the underlying statistical model may be easy to express, it requires computational algorithms 

(such as MCMC) for both estimation of the model and simulation of dynamic networks from 

the model.

2.3.2. Network Modeling Formulation—The general form for an ERGM formation 

model equation is:
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(3)

where yij,t is the random variable for the partnership status of persons i and j at time t; yij,t = 

1 represents the existence of a partnership at time t, and yij,t = 0 represents its absence. The 

vector { } represents the set of n different network statistics that describe 

partnership formation, often prespecified by the researcher (e.g. the number of ties between 

migrant men and rural women; the number of ties between a migrant man and two or more 

women in the same location). The vector , represents “change statistics,” i.e. the 

amount by which these statistics change when the relationship yij toggles from “off” (yij = 0) 

to “on” (yij = 1). The corresponding vector { } represents the coefficients of these 

statistics, as in a standard linear model. The prime (′) symbol represents vector transposition. 

The left-hand side of the equation can be stated in words as the log-odds of actors i and j 

entering a partnership at time t+1, given that they were not in a partnership at time t.

The general form of the dissolution model equation is:

(4)

where the  and  vectors are analogous to those for formation, and may or may not 

contain the same terms. Here the left-hand side of the equation formally expresses the log-

odds of relationship persistence, i.e. that the partnership between i and j exists at time t+1 

given that it existed at time t. Despite this, we refer to this as the “dissolution” model to be 

consistent with other descriptions in the literature (since the dissolution probability is simply 

1 minus the persistence probability) [26,27,53].

The methods for estimating the two θ vectors that maximize the likelihood of the observed 

network statistics for this type of data are derived in [40]. Those θs then define a probability 

distribution for all dynamic networks that will typically place most of its mass on networks 

that are similar to the proposed network statistics; we can thus simulate new dynamic 

networks from the model that stochastically retain the cross-sectional structures and 

partnership durations we posited, for any arbitrary network model.

We parameterized the network components of our models based on descriptions of 

behavioral data as presented in Section 2.1.3 [42,46]. As also explained in Section 2.1.3, we 

chose a mean partnership duration of 100 weeks [25]. Once again, we model prevalence 

trajectories at 3-week and 30-week average migration frequencies, and simulate 10 

repetitions for each frequency in the two types of network models to account for the 

stochasticity of these models. We present theoretical 95% confidence intervals about the 

mean.

2.3.3. Basic Network Models—Network Estimation and Simulation: First, we develop 

network models that are comparable to the compartmental models of Section 2.2. The only z 

statistic in the dissolution model is the number of edges (partnerships); in ERGMs, the 
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change statistic (δ) associated with this term equals 1 for all i, j actor pairs. Given this, the 

coefficient on it acts like an intercept, controlling overall partnership persistence and thus 

expected partnership duration. This simple model implies that all extant relationships have 

the same dissolution probability, as in the compartmental models. Any differences in the 

prevalence of different types of partnerships is thus controlled by the formation model.

For this basic model, the z+ formation statistic vector consists of six terms of the form m(ki, 

kj), where ki and kj represent the classes of the two actors in the partnership, and m 

represents the count of relationships of this type in the population. Here, the set of actor 

classes comprises five types: migrant men, non-migrant urban men, non-migrant rural men, 

urban women, and rural women. There are numerous structural zeros here, including any 

combinations in which ki and kj represent groups that are the same sex, or represent men in 

one location and women in the other. For each of these, m(ki, kj) is zero, and the 

corresponding θ is −∞. All other combinations are possible; we set m(ki, kj) for these to 

equal the expected number of edges of this type which make the cross-sectional partnership 

structure comparable to the contact-as-partnership compartmental model. We then use the 

statnet software to estimate the corresponding θ values. These θ estimates are then used to 

simulate the partnership formation and dissolution components of our disease simulation 

model [29].

Details of the Biological, Behavioral and Demographic Processes: Our basic assumptions 

and parameters regarding initial conditions, migration intervals and patterns, infectivity by 

stage, recruitment, and mortality are largely identical in the basic network models as for the 

compartmental models. Implementation occurs differently given the nature of the 

frameworks; here, most events are stochastic at the individual level, with a probability 

assigned to each potentially affected individual (or partnership in the case of transmission) 

and a separate stochastic draw for each case to determine event outcome. The one exception 

is that disease progression occurs as a step function in the network models, and as a 

memoryless process in the compartmental models. Since all partnerships between men and 

women are explicitly modeled, and transmission events occur within serodiscordant 

partnerships, we do not need a separate mechanism to guarantee conservation of sexual 

contacts.

2.3.4. Restricted Network Models—Network Estimation and Simulation: A key feature 

of the circular migration system is that a migrant man who has two ongoing partnerships 

should be much more likely to have each of those ongoing partnerships in separate locations. 

Our network model allows us to introduce this pattern in straightforward ways (see the 

discussion). We refer to this as the “restricted model” because the partnership structure of 

migrant men with multiple partners is restricted to exclude multiple partners in the same 

location. We restrict the partnership structure by adding additional terms to the z+ vector in 

(3). Formally, these statistics, which we call su and sr, represent the number of migrant men 

at a given time point with two or more partners in the urban and rural areas, respectively. 

Both of these terms are constrained to be 0, such that their corresponding θ values are 

estimated at −∞. The technical name for these terms in social network analysis is an 

attribute-specific 2-star [52]. The other coefficients are re-estimated so that they produce the 

correct number of edges during simulations in the light of these new constraints. The 
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substantive consequences of this constraint are that no migrant man has more than two 

partners in total at any moment in time, and for migrant men with multiple partners one 

partner is in the urban and the other is in the rural location.

Note the inherent challenge of modeling dependency in the partnership structure of migrant 

men here; the location of the second partnership of a migrant man now depends on the first. 

Aside from this change in the partnership structure of migrant men, all other aspects of this 

model – the underlying biology, demographic and behavior – are identical to those described 

for the basic network models above.

We do not present R0 computations in the network models, because that is an open area of 

research beyond the scope of this paper.

3. Results

3.1. Comparing Results Across all Models

We present a graphical comparison of migrations at 3- and 30-week intervals in each model 

in Figure 2. We observe that in the contact-as-act compartmental models, a large epidemic is 

quickly produced (equilibrium prevalence: 36.7%). In the contact-as-partnership version, a 

small epidemic is produced (equilibrium prevalence: 1.6%). The two migration frequencies 

produce identical prevalence trajectories within each of these models. Higher prevalence in 

the contact-as-act models is consistent with our computations of the reproduction number 

R0 : 1.58 in the contact-as-act case and 1.19 in the contact-as-partnership case.

We explore the large difference in the two versions of compartmental models in Figure 3. 

The plot of the prevalence trajectories for various intermediate partnership durations shows 

the increase in the projected prevalence when partnership duration decreases, and consider 

the contact-as-act models as a limiting case for the shortest average partnership duration in 

the contact-as-partnership models.

The basic network models produce a prevalence between the contact-as-act and contact-as-

partnership cases. Ten experimental repetitions showed a mean prevalence of 26.9% (95% 

CI: 25.7%, 28.2%) after 5000 weeks when migrations occurred at 3-week intervals (on 

average) and at 25.2% (95% CI: 24.0%, 26.3%) when the average migration frequency is 30 

weeks. Restricted network models, produce an equilibrium prevalence lower than the basic 

network models; mean prevalences of 6.9% (95% CI: 6.6%, 7.4%) at 3-weekly migrations, 

and 5.8% (95% CI: 5.4%, 6.1%) at 30-weekly migrations.

3.2. Impact of Migration Within Each Model

Contact-as-act and contact-as-partnership models project the same number of new infections 

(and identical prevalence trajectories) through 5000 weeks – 13,126 in the former and 736 in 

the latter – for different migration frequencies. Thus, under the compartmental formulation, 

endemic prevalence and number of new infections are independent of the migration 

frequency.
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In the basic network models, we see 6,793 and 6,680 new infections, and prevalence 

trajectories that mostly overlap at the two average migration frequencies. In the restricted 

network models, migrations at an average interval of 3 weeks produce 3,186 new infections, 

while migrations at an average of 30 weeks produce 2,639 new infections. Two sample t-

tests show a statistically significant difference in the number of new infections in the 

restricted network models (p = 0.0001), but not in the basic network models (p = 0.16). We 

also observe that the prevalence trajectory at the shorter migration interval is distinctly 

higher than the trajectory at the longer interval.

We use the above numbers to calculate and plot the proportional difference in the mean 

number of infections produced at the two migration frequencies, relative to the number of 

infections every 30 weeks across all models in Figure 4. Our basic network models show a 

slight increase (1.7%) in the number of new infections produced in migrations every 3 

weeks relative to the number of infections produced with migrations every 30 weeks. The 

restricted network models show a much larger increase (20.7%) for the same measure.

4. Discussion

4.1. Interpreting our Outcomes

4.1.1. Prevalence Trajectory Across Different Models—We have simulated HIV 

epidemics using different modeling approaches to see how they project the epidemiological 

impact of circular migration of male workers. We set up identical conditions in the two 

locations at the beginning to isolate the effects of circular migrations. Each successive 

model then helps us relax some underlying simplifying feature from the previous model. We 

started with the contact-as-act compartmental models that assume mixing is homogeneous 

and instantaneous [37], and each sex act occurs with a different individual, whose infection 

status is randomly assigned based on the current distribution of infections in the population. 

Contact-as-partnership models allow us to relax this assumption about behavior and 

transmission, and explicitly consider transmission within partnerships. Our basic network 

models allow us to explicitly consider individuals, their partnerships, and emergent 

serodiscordance during the course of partnerships. The restricted network models further 

allow us to consider dependence in the partnerships of migrant men, and require multiple 

partnerships for this group to occur in different locations.

The differences in the simulated trajectories of epidemics in the various models emerge for 

multiple reasons. As is well understood, the fundamental assumption of the contact-as-act 

models is clearly unrealistic since a significant number of sexual partnerships would be 

expected to last for a long time and therefore a limited fraction of individuals will be 

exposed to HIV. In that sense, the contact-as-act approach overestimates the epidemic size.

The frequently used alternative definition of contact as partnership eliminates this problem, 

by recognizing that when an individual is in a discordant relationship, transmission within 

that relationship can only happen once, and all subsequent coital acts are “lost opportunities” 

for the virus. However, this contact-as-partnership version of the compartmental model 

introduces an additional limitation: the determination of which couples are discordant occurs 

only at the outset of the relationship; there is no mechanism to allow relationships that begin 
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as concordant negative to subsequently involve a transmission after one member becomes 

infected from another concurrent relationship. This is despite the fact that such overlapping 

relationships implicitly occur in our model quite frequently; for instance, the average partner 

acquisition rate for a migrant man is 0.016 new partners per week, and relationships average 

100 weeks in duration; migrant men are in an average of 1.6 relationships at a time. 

Evaluating serostatuses at the start of the relationships only, and thus not allowing for sero-

discordance to develop during the course of partnerships, is the likely reason for the low 

estimation of epidemic size in the contact-as-partnership version of compartmental models.

Network models evaluate relative serostatuses of two partners at every time step and thus 

allow for sero-discordance to occur during the course of a partnership. Indeed, the network 

models produce prevalence trajectories in between the trajectories produced by the contact-

as-act and the contact-as-partnership compartmental models. Additionally, we note that the 

basic network models show a higher prevalence than the restricted models. This difference 

presumably occurs since multiple partners of migrant men are required to be in separate 

locations in the restricted models; therefore sexual contact (and consequent infection 

transmission) between the migrant man and his partner in the other location has to wait until 

the time to migration has passed.

4.1.2. Impact of Migration Frequency on Outcomes—We also observe that both 

compartmental models suggest no impact of migration on the HIV transmission regardless 

of its frequency. This is because individuals who move from one location to another at a 

given time are equally matched by the same number and distribution by HIV status moving 

in the opposite direction. In contrast, when the HIV epidemic is simulated with the basic 

network models, which were intentionally designed to mimic many of the mechanisms 

embedded in the compartmental models, we see that migrations at 3-week average interval, 

produce a slightly larger epidemic than migrations at a 30-week average interval. When the 

partnership structure of migrant men is restricted – a reasonable assumption for men who 

spend extended periods of time in two locations – the difference in epidemic size is large, 

and statistically significant.

This model alone shows a large effect of the frequency of migration on onward transmission 

of HIV. The direction of this effect – migrations at intervals shorter than the length of acute 

infection produce a bigger epidemic than migrations at intervals longer than the length of 

acute infection – is in line with our hypothesis.

4.2. Limitations and Future Work

In practice, frequency of circular migration is likely much more variable between 

individuals, and dependent on other individual circumstances. Better data on the behavior of 

migrants, and models that utilize these data may help us learn more about the relationship 

between migration frequency and HIV transmission. Models that incorporate migrations by 

women [6,8], multiple locations, and more complex migration patterns will be needed to 

further understand the implications of circular migrations on HIV transmission. The 

restricted network model, and its ability to handle dependence in partnerships of migrant 

men, may provide one starting point to model such dynamics well.
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One artifact of the restricted model we developed here was that a migrant man could have a 

maximum of two partnerships at any given time. This artifact was not present in the basic 

network models, and future work using models developed here may want to address this 

limitation in the restricted models.

The compartmental models that we explored showed no effect of migration frequency on 

HIV prevalence. Of course, as mentioned in the Introduction, these are not the only 

approaches for conceiving of partnerships within compartmental models; they are merely the 

ones commonly used in the field of applied HIV epidemiology and policy analysis in this 

region. Those alternative approaches includes models based on rich theoretical work [16, 

28], but which, to our knowledge, have only been used in one HIV modeling application 

[57] in the last decade. These “pair formation models” represent single individuals in one set 

of compartments and pairs in ongoing partnerships in another set. The latter are 

distinguished by the pairs’ serostatuses (neither, one, or both HIV-positive), and, since 

individuals in them are allowed to have outside contacts, it is possible for pairs to move 

from one serostatus compartment to another after relational formation. Unfortunately for our 

interests here, that approach is limited to having the additional contacts be one-off acts.

For the case of circular migration, a proper representation of the system requires the 

possibility of at least two ongoing partnerships, and, as we saw when comparing the basic 

and restricted network cases, the ability to capture the propensity that these partners are 

likely to be in different locations and thus be active at different times. One other early paper 

did propose a model for tracking actor triplets (an individual and her/his two concurrent 

partners) in a compartmental framework [17]. Although this method gets closer to our 

scenario, it does not allow for either of the concurrent partners to also have other partners; 

each triplet is isolated in the social network. Thus, the larger chains that are made possible 

by a high prevalence of concurrent partnerships and that can foster disease transmission are 

still not represented. These longer chains become intractable within a compartmental 

framework as their length increases, while network models are able to represent them 

naturally. Our work here suggests that the methodological challenges inherent in currently 

used approaches to HIV modeling, if not properly recognized, could lead to models that 

misconstrue the effects that migration frequency has on HIV epidemics in settings with 

circular migration.

Our goal here was to compare the most commonly used adaptations of compartmental 

models to study their predictions. Other methods might include using stochastic 

compartmental models [38] where transitions are described using continuous time Markov 

chains. Analyzing models that relax other structural assumptions is an interesting research 

area – and one we leave for future work.

4.3. Conclusions

We see that representative models from the model classes that are commonly used in HIV 

epidemiology, despite being made as similar as possible given the constraints of those 

classes, produce very different epidemics overall in this context. This is due in part to the 

inability for either the contact-as-act or the more popular contact-as-partnership formulation 

to represent the complex interactions between partnership structure and the viral dynamics 
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of acute infection. Network models can be considerably more complex to develop than 

compartmental ODE models, and network modelers are often asked whether the effort is 

“worth it.” The answer depends on the purpose for which the model is needed, as is true for 

all models, with the goal to develop models that are “as simple as possible, but no simpler” 

[38]. This work suggests that to understand the epidemiological effects of circular 

migrations – and thus evaluate the impacts of interventions proposed in settings where 

circular migrations play a major role – the answer is yes.
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Appendix A. Formulation of Compartmental Models: Assumptions, 

Equations and Parameter Sets

Here we describe details of the model structure, parameter values, and differential equations 

that are first described in Section 2.2. We denote the four stages of infection (susceptible, 

acute, chronic and late) by S, A, C and L respectively, and describe a state by the notation 

SXYZ, AXYZ, CXYZ or LXYZ where X denotes the migration status of the individual (migrant M 

or non-migrant N); Y denotes the sex (male M or female F); and Z denotes the location 

(urban workplace U or rural village R). Thus, for example, SMMU represents a susceptible 

migrant male in the urban area. Since females do not migrate in the model, the first subscript 

N for females is redundant, but we include it for symmetry.
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Tables 2 and 3 show the demographic parameters and initial values of the state variables that 

remain constant for either interpretation. The system of equations (described below in 

Section A.1) is simulated over 5000 time steps with the parameter values in Table 3. Each 

time step represents 1 week. Tables 5 and 4 provide values for the biological and behavioral 

parameters that are different for the contact-as-partnership and contact-as-act models 

respectively. These values are selected so the number of coital acts is the same across the 

two models, and in the mean per-act transmission probability.

A.1. Compartmental Models

We begin by considering susceptible migrating urban males. We describe the rate of change 

in this population (with one week taken as one time unit) as

(5)

where δ is the rate of migration between the urban and rural area. The parameter ν is the 

number per unit time that enter the entire population. The parameter βx,y denotes the 

probability that disease is transmitted in an act (in the contact-as-act case), and the 

probability that disease is transmitted during the course of a partnership (in the contact-as-

act case); the first subscript x represents acute (A), chronic (C) or late (L) stage, and the 

second subscript represents the migrant status of the male partner: migrant (M) or non-

migrant (NM). We present detailed calculations below. Since urban migrant men account for 

one-eighth of the total population, the number of new arrivals per unit time in this group is 

ν/8. The parameter μ denotes the rate of natural mortality. The parameter tXYZ is the contact 

rate; we use t instead of the more common c to avoid confusion with the chronic stage of 

infection (for which we use C).

The change in population of acutely infected migrating urban males is

(6)

where γ1 is the rate at which an acutely infected individual becomes chronically infected.

The change in the population of chronically infected migrating urban males is

(7)

where γ2 is the rate of chronic to late-stage transition. The change in population of late-stage 

migrating urban males is
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(8)

where μd is the rate of mortality due to the disease.

Now we consider the females in the urban area. An urban female can become infected either 

by an infected male in one of the three infectious states, who is either a migrant or a non-

migrant. Therefore we have

(9)

(10)

(11)

and

(12)

to describe the various interactions of females in the urban area.

The interactions of the non-migrant males are similar to those of the migrant males defined 

in equations (5) to (8), without the migration term. Thus,

(13)

(14)

(15)
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(16)

describe the changes in population for the four infection states of urban non-migrant males.

The basic structure of equations (5) to (16) is the same for the rural area with the location 

sub-script U replaced by R (for rural). Thus, we have a system of 24 interacting equations.

A.2. Computational Details of the Infection Model

In the interpretation of contact as partnership, we take a hypothetical value of 100 weeks as 

the average duration of partnerships. The per-act transmission probabilities are converted to 

the partnership-level and are given in Table 5. To convert these probabilities, the constants 

βA,M and βA,N represent the probabilities that infection is transmitted during the course of a 

partnership when the partnerships involve acutely infected migrant and non-migrant men, 

respectively. If pi is the probability of transmission per coital act during the stage i of 

infection, then

(17)

and

(18)

where d is the average duration of the partnerships and n is the number of coital acts per 

time unit for an active partnership. The division by 2 in the exponent for migrant men 

reflects the fact that each of their relationships is active only half of the time. Thus, while 

migrant men have twice as many partners per unit time as non-migrant men, the amount of 

sex men in both groups have is the same. That is, the total number of sexual acts that 

migrant and non-migrant men have are now equal, since overall coital frequency for a man 

does not depend on his number of partners.

In the contact-as-act approach, β simply represents the per-act transmission probabilities as 

shown in Table 4.

A.3. Modeling Fertility and Mortality

We consider two types of mortality: natural mortality (μ) and mortality due to the disease 

(μd). Thus 1/μ is the average sexual lifespan of an uninfected individual. We assume that an 

uninfected individual will remain sexually active from the age of 15 years to the age of 60 

years; thus setting μ = 1/(45 × 52) sets the sexual lifespan of an individual to (45 × 52) 

weeks, or 45 years. The average lifespan of an infected individual is 552 weeks, comprising 

acute, chronic and late stages that last on average for 12, 500 and 40 weeks respectively 

[30].
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To solve for the number of arrivals in the population per unit time, we set equation (5) equal 

to 0 in the disease free state. Then

implying

(19)

Therefore, there are 625/(45 × 52) individuals that enter the sub-population of susceptible 

migrant men in the urban location per week. The other sub-populations of men have the 

same number of arrivals per week, and each of the two sub-populations of women have 

1250/(45 × 52) individuals that arrive per unit time.

A.4. Equivalence of the Two Interpretations of Contact

To understand this equivalence, consider the initial conditions; we start with 3000 

partnerships, of which 2000 are accounted for by migrant men, and 1000 are accounted for 

by non-migrant men. Since there are 1250 total non-migrant men in the population, and all 

of their partnerships are active, the average number of active partnerships per person per unit 

time (“active mean degree”) of non-migrant men is 1000/1250=0.8. The active mean degree 

of migrant men is the same, because exactly half of their total partnerships are active at any 

given time, and their population size is also 1250 (yielding 1000/1250 =0.8 active mean 

degree). The balance of partnerships between genders and the 1:1 sex ratio at the outset 

imply that women have the same active mean degree at this time point as well.

We assume 3 sexual acts per week per active partnership, which implies an average of 0.8 × 

3 = 2.4 (consistent with estimates presented in [70]) sexual acts per person per week, for 

each group (migrant men, non-migrant men, and women). We set coital frequency at 2.4 

sexual acts per person per week in the contact-as-act model, and thus, the two definitions of 

contact are comparable in terms of coital acts per person per unit time at the start. As the 

simulation moves forward in time, and the sex ratio changes, equations 1 and 2 guarantee 

that sexual acts between the two sexes are conserved, and the two interpretations of contact 

remain comparable.

Appendix B. R0 Computations for Compartmental Models

We follow the algorithm outlined in [68] to compute the reproduction number R0. Our 

system consists of three infectious states for migrant-men (AMM., CMM., LMM.), women 

(ANF., CNF., LNF.), and non-migrant men (ANM., CNM., LNM.), giving a total of nine infected 

states in each location. Each of these groups (migrant-men, women and non-migrant men) 

have a population of susceptibles that form the uninfected state in each group. In this study 

we consider two locations, but since the two locations are structurally identical, we base our 
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calculations on one location and nine infected states. We ignore the migration parameter δ 

because we only consider one location. As our analysis has shown, the migration parameter 

has no effect on infection transmission in either interpretation of “contact” in the framework 

of compartmental models.

We define a column-vector  as the rate of production of new infections in each of the nine 

infectious states outlined above. Since the chronic and late-stages consist only of flows from 

the acute stage, no new infections are produced in the states. Therefore, vector  consists of 

non-zero entries in the first, fourth and seventh positions, and zeros everywhere else.

We then

1. Define a new 9×9 matrix F as  where x is each of the nine infectious states.

2. Define a vector  that consists of everything except the new infections in the nine 

infectious states.

3. Define matrix  where x is as defined above.

4. Compute the dominant eigenvalues for FV−1 at the disease-free equilibria to obtain 

R0.

Our compulations yield R0 values of 1.58 and 1.19 when contact is defined as act and 

partnership respectively. In Figure 2, the former interpretation of contact yielded an 

equilibrium prevalence of 1.6% and the latter interpretation yielded an equilibrium 

prevalence of 36.7%. Given these prevalences, the estimate for R0 appears high, especially 

in the contact-as-partnership case. But these estimates are approximations, and the important 

result for us is the relative differences in the magnitude of the R0 estimates in the two 

interpretations of contact, and the consistency of the higher estimate with the higher 

prevalence (as seen in the contact-as-act case).

Khanna et al. Page 23

Math Biosci Eng. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Transfer diagram for migration system. The solid horizontal arrows show flows between 

infection states. The dotted diagonal show infection transfer between infected and 

susceptible individuals belonging to opposite sexes in the same location. The double-headed 

vertical arrows represent movement of migrant men between the two locations. Location A 

and Location B represent rural village and urban workplace, respectively.
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Figure 2. 
Comparison of prevalence trajectories at 3 and 30-week migration frequencies in all the 

models we study.
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Figure 3. 
Prevalence trajectories at intermediate partnership durations between the two extremes: 

contact-as-act (which has a mean partnership duration of 1 week) and contact-as-partnership 

(which has a mean partnership duration of 100 weeks).
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Figure 4. 
Comparison of number of new infections through 5000 weeks across all primary models. 

The barplot shows the per cent increase in the number of new infections with 3-week 

migrations relative to 30-week migrations. The “act” and “partnership” bars represent the 

number of new infections the compartmental contact-as-act and contact-as-partnership cases 

respectively. The “basic” and “restricted” bars represent the number of new infections in the 

basic and restricted network models respectively.
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Table 2

Demographic and biological parameters: These parameters are identical in the contact-as-act and the contact-

as-partnership cases.

Parameter Notation Value

Demographic Parameters

Natural Mortality Rate μ 1/(45 × 52)

AIDS-related Mortality Rate μd 1/40

Fertility Rate ν 1250/(45 × 52)

Biological Parameters

Acute-Stage Duration 1/γ 12 weeks

Chronic-Stage Duration 1/η 500 weeks

Late-Stage Duration 1/μd 40 weeks
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Table 3

Initial values for state variables. These initial values are the same in both contact-as-act and contact-as-

partnership approaches. Total population size is 5000, including 2500 men and 2500 women. These men and 

women are divided equally between the two locations. In each location, half the men are migrant, and half the 

men are non-migrant.

State Variable Value

Susceptible Migrant Males 1250

Acutely Infected Migrant Males 0

Chronically Infected Migrant Males 0

Late-Stage Infected Migrant Males 0

Susceptible Females 2450

Acutely Infected Females 12/552 × 100

Chronically Infected Females 500/552 × 100

Late-Stage Infected Females 40/552 × 100

Susceptible Non-Migrant Males 1250

Acutely Infected Non-Migrant Males 0

Chronically Infected Non-Migrant Males 0

Late-Stage Infected Non-Migrant Males 0
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Table 4

Biological and behavioral parameters in the contact-as-act model. Biological parameters βA, βC βL are per-act 

transmission probabilities, subscript i represents one of the three infection-states, and βi shows the 

computation of per-partnership transmission probabilities for the particular infection-state. Behavioral 

parameters t... are set to 2.4 to have a mean number of 2.4 sexual acts per week in the population. The 

subscript. represents rural (R) or urban (U) regions.

Biological Parameters

βC 0.0007

βA 0.0007 × 26

βL 0.0007 × 7

Behavioral Parameters

tMM. 2.4

tNM. 2.4

tNF.,M 2.4

tNF.,NM 2.4
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Table 5

Biological and behavioral parameters in the contact-as-partnership model. Biological parameters pA, pC pL are 

per-act transmission probabilities, subscript i represents one of the three infection-states, and βi shows the 

computation of per-partnership transmission probabilities for the three infection states. Behavioral parameters 

tMM., tNM., show number of sexual partners per unit time for migrant and non-migrant men respectively. 

Behavioral parameters tNF.,M, tNF.,NM show the number migrant and non-migrant partners per unit time of 

women respectively. The subscript. represents rural (R) or Urban (U) regions, and is identical in either case. 

The parameter d is the average duration of partnerships, taken as 100 weeks. The parameter n is the average 

number of coital acts within an active partnership per week.

Biological Parameters

pC 0.0007

pA 0.0007 × 26

pL 0.0007 × 7

βi (for non-migrants) 1− (1−pi)d×n

βi (for migrants) 1− (1−pi)d×n/2

Behavioral Parameters

n 3

d 100

tMM. 0.016

tNM. 0.008

tNF.,M

tNF.,NM
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