
Tumor suppressor WWOX regulates glucose
metabolism via HIF1a modulation

M Abu-Remaileh1 and RI Aqeilan*,1,2

The WW domain-containing oxidoreductase (WWOX) encodes a tumor suppressor that is frequently lost in many cancer types.
Wwox-deficient mice develop normally but succumb to a lethal hypoglycemia early in life. Here, we identify WWOX as a tumor
suppressor with emerging role in regulation of aerobic glycolysis. WWOX controls glycolytic genes’ expression through
hypoxia-inducible transcription factor 1a (HIF1a) regulation. Specifically, WWOX, via its first WW domain, physically interacts
with HIF1a and modulates its levels and transactivation function. Consistent with this notion, Wwox-deficient cells exhibited
increased HIF1a levels and activity and displayed increased glucose uptake. Remarkably, WWOX deficiency is associated with
enhanced glycolysis and diminished mitochondrial respiration, conditions resembling the ‘Warburg effect’. Furthermore, Wwox-
deficient cells are more tumorigenic and display increased levels of GLUT1 in vivo. Finally, WWOX expression is inversely
correlated with GLUT1 levels in breast cancer samples highlighting WWOX as a modulator of cancer metabolism. Our studies
uncover an unforeseen role for the tumor-suppressor WWOX in cancer metabolism.
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The WW domain-containing oxidoreductase (WWOX) spans
one of the most active common fragile sites involved in
cancer, FRA16D. WWOX encodes a 46-kDa protein that
contains two N-terminal WW domains and a central short-
chain dehydrogenase/reductase domain.1,2 Loss of WWOX
expression has been identified in a variety of tumors
(reviewed in Gardenswartz and Aqeilan3). In order to under-
stand the role of WWOX as tumor suppressor, Wwox
knockout (KO) mice were generated.4 At birth, homozygous
Wwox-deficient pups were indistinguishable from wild-type
(WT) or heterozygous littermates; at 3 days, homozygous
pups were smaller than littermates4 and all Wwox KO mice
died by 4 weeks after birth because of severe metabolic
defects, mainly hypoglycemia.5 Similar results were obtained
in Wwox-conditional mouse models.6,7 At this point, however,
it remains unclear what are the basis for the molecular defects
underlying this lethal hypoglycemia. Notably, juvenile Wwox
KO mice and haploinsufficient heterozygous mice display
higher incidence of tumor formation.4,8,9 At the molecular
level, it has been shown that WWOX, via its WW1 domain,
interacts with proline-tyrosin motif-containing proteins includ-
ing AP-2g,10 ErbB4,11 c-Jun12 and others13 and inhibits their
transcriptional function. In a recent mass spectrometry
analysis, we demonstrated that indeed the WW1 domain of
WWOX provides a versatile platform that links WWOX with
individual proteins associated with physiologically important
networks, including metabolism.14 Recently, it has been
also shown that WWOX may interact with isocitrate

dehydrogenase and malate dehydrogenase in Drosophila.15

Furthermore, it has been reported that alteration in metabo-
lism affects WWOX transcripts.16 Critically, however, it is not
known whether WWOX as a tumor suppressor is directly
involved in the modulation of glucose metabolism.

Cancer cells exhibit several characteristics that make
them tumorigenic.17 The chronic and often uncontrolled cell
proliferation that represents the essence of neoplastic disease
involves not only deregulated control of cell proliferation but
also corresponding adjustments of energy metabolism in
order to fuel cell growth and division.18 This metabolic
adaptation is directly regulated by many oncogenes and
tumor suppressors and is required to support the energetic
and anabolic demands associated with cell growth and
proliferation.19 The change in glucose metabolism is the
best-known example of metabolic reprogramming in cancer
cells. Under aerobic conditions, normal cells process glucose,
first to pyruvate via glycolysis in the cytosol and thereafter to
carbon dioxide in the mitochondria; under anaerobic condi-
tions, glycolysis is favored and relatively little pyruvate is
dispatched to the oxygen-consuming mitochondria. Otto
Warburg20,21 was the first to observe reprogramming of
cancer cell energy metabolism even in the presence of
oxygen; cancer cells can reprogram their glucose metabolism,
and thus their energy production, by limiting their energy
metabolism largely to glycolysis, leading to a state that has
been termed ‘aerobic glycolysis’. For example, cancer cells
upregulate the hypoxia-inducible transcription factor 1a
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(HIF1a), which is a key mediator of this cellular adaptation to
oxygen stress,22,23 working as a direct master transcriptional
activator of many genes. On one hand, HIF1a enhances
glycolytic flux by upregulating glucose transporters, notably
glucose transporter 1 (GLUT1)24–26 and by transactivating
several glycolytic genes including pyruvate kinase M2 (PKM2)
and hexokinase 2 (HK2).19 On the other hand, HIF1a directly
inhibits mitochondrial respiration by upregulating expression
of the pyruvate dehydrogenase kinase 1 (PDK1) gene, thus
leading to the high rate of glucose catabolism and lactate
production. Significantly, blockage of HIF1a22 or knockdown
of either LDH-A or PDK1 inhibits tumor growth,27 indicating
their significant role in the metabolic reprogramming of cancer
cells.28 It is thus not surprising that HIF1a is tightly
regulated.29,30 Indeed, it has been recently shown that the
chromatin factor SIRT6 acts as a master regulator of glucose
homeostasis via co-repressing HIF1a at glycolytic genes.31,32

Levels of HIF1a is also regulated at the post-transcriptional
level.33–35 Taken together, these findings demonstrate the
tight regulation on HIF1a level and activity and may suggest
that further mechanisms exist to ensure proper nutrient and
stress response. We now present data that demonstrate that
loss of tumor-suppressor WWOX is associated with enhanced
level and function of HIF1a resulting in rewiring of cell
metabolism and cancer transformation.

Results

WWOX deficiency causes a cell-autonomous increase
in glucose uptake. As introduced, Wwox-deficient mice
suffer of lethal hypoglycemia (Figure 1a). Although such a
phenotype is typically associated with hyperinsulinemia, the
mice exhibited normal pancreatic islets (Supplementary
Figure S1A) and, lower blood insulin levels (Figure 1b),
indicating that low glucose may have triggered a reduction in

insulin secretion as an adaptive response. In order to
determine whether WWOX influences glucose uptake in a
cell-autonomous manner, we used flow cytometry to mea-
sure glucose uptake in Wwox WT and KO cells using a
fluorescent glucose analog (2-NBDG) that is incorporated
into cells and allows quantification of glucose uptake.
Remarkably, mouse embryonic fibroblasts (MEFs) isolated
from KO embryos displayed an increase in glucose uptake as
early as 1 h following addition of 2-NBDG (Figure 1c). To
further demonstrate that the glucose uptake phenotype
we observed is specifically due to lack of WWOX, we
re-expressed WWOX in WWOX KO MEFs and tested
glucose uptake. We found that indeed re-expression of
WWOX reduced glucose uptake in KO MEFs (Figure 1d).
These results indicate that WWOX deficiency causes
increased glucose uptake in a cell-autonomous manner.

WWOX deficiency is associated with enhanced
glycolysis and reduced mitochondrial respiration. The
glucose uptake results prompted us to test how glucose is
utilized in Wwox-deficient cells. We first measured lactate
production, in order to determine whether glycolysis was
enhanced. We found that Wwox-deficient cells displayed
significantly higher levels of lactate when compared with WT
cells, as assessed in medium of growing MEFs (Figure 2a).
Similarly, Wwox-deficient mice displayed significantly higher
serum levels of lactate when compared with WT mice
(Supplementary Figure S2A). Concomitantly, lack of WWOX
causes a reduction in oxygen consumption (Figure 2b),
suggesting that in Wwox-deficient cells glucose is utilized
primarily for glycolysis, whereas mitochondrial respiration is
inhibited. To further validate these results, we measured
levels of ATP, the final product of mitochondrial respiration.
We found that Wwox-deficient MEFs contain lower ATP
levels as compared with WT cells (Figure 2c). Moreover, we
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Figure 1 WWOX deficiency is associated with a cell-autonomous increase in glucose uptake. (a) Glucose level was measured in the serum of Wwox WT and KO mice
(n¼ 5 per each genotype). Error bars indicate ±S.E.M. (b) Insulin level was measured in the serum of Wwox WT and KO mice (WT, n¼ 9; KO, n¼ 13). Error bars indicate
±S.E.M. (c) Wwox WT and KO MEFs (n¼ 5 per each genotype) were grown in the presence of the fluorescent glucose analog NBDG for 1 h, and glucose uptake was then
quantified using flow cytometry (FACS). Error bars indicate ±S.E.M. (d) Wwox KO MEFs were infected with empty vector (EV) or WWOX-expressing lentivirus. Infected
cells were selected by puromycin, and following expansion, cells (n¼ 3; WWOX, n¼ 3) were assayed for glucose uptake following 1-h incubation with NBDG. Error bars
indicate ±S.E.M.
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checked nicotinamide adenine dinucleotide (NADH) levels as
a main indicator for tricarboxylic acid cycle (TCA cycle)
activity using flow cytometry. Interestingly, Wwox-deficient
MEFs contained significant lower levels of NADH as
compared with WT cells (Figure 2d). Furthermore, we
checked nicotinamide adenine dinucleotide phosphate
(NADPH) as an indicator for enhanced glycolysis and found
that Wwox-deficient MEFs and livers accumulate a higher
NADPH levels, although less significant as compared with
changes in NADH levels, as compared with WT (Figures 2e,
Supplementary Figure S2B). This mild increase in NADPH
levels in KO could be attributed to NADPH reduced utilization
in reactive oxygen species neutralization14 and in building
lipids and fatty acids (unpublished data). To further validate
the observed shift to glycolysis, we used the Metabolon Inc.
platform to assess levels of metabolites in WT and KO MEFs.
Interestingly, Wwox-deficient MEFs displayed higher levels
of fructose 1,6 diphosphate, the glycolytic intermediate, and
reduced levels of the TCA cycle intermediates fumarate,
malate and succinate (Figure 2f), indicating, TCA cycle inhibition
in Wwox-deficient cells. Overall, these results indicate that
absence of WWOX causes a switch toward enhanced
glycolysis and reduced mitochondrial respiration, a response
usually observed under conditions of oxygen stress.

WWOX directly inhibits expression of HIF1a target
genes. In light of the above results, we hypothesized that
WWOX could influence glucose metabolism by controlling
expression of key metabolic genes. We first performed
comparative superarray gene expression analysis of glucose
metabolism in Wwox WT and KO MEFs. Although most of
the TCA cycle genes remained at the same level in Wwox
KO MEFs (Supplementary Figure S3B), many of the
glycolytic genes were upregulated in Wwox KO cells
(Supplementary Figure S3A). The highest difference was
observed among key glycolytic genes, such as triose
phosphate isomerase (Tpi), aldolase, and the rate-
limiting glycolytic enzyme phosphofructokinase-1 (Pfk-1)
(Supplementary Figure S3A). Interestingly, all of these
upregulated key glycolytic genes in the superarray were
HIF1a target genes (red bars; Supplementary Figure S3B).
We also observed a mild change in the pentose phosphate
pathway (Supplementary Figure S3C) or gluconeogenesis
pathway (Supplementary Figure S3D). Of note, levels of
gluconeogenesis genes in the liver of KO mice were elevated
(Supplementary Figure S3E), likely due to physiological
response to increased serum lactate (Supplementary Figure
S2A) but this change seems not enough to rescue the
hypoglycemic phenotype in Wwox KO mice.
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Figure 2 WWOX deficiency is associated with enhanced glycolysis and reduced mitochondrial respiration. (a) Lactate levels in the media of Wwox WT and KO MEFs
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I inhibitor myxothiazol (5 mM) (IV). Oxygen consumption rate (OCR) was measured using the XF24 SeaHorse Analyzer. Each data point is the average of five independent
measurements. Error bars indicate ±S.E.M. (c) ATP levels were measured in Wwox WT and KO MEFs (WT¼ 4, KO¼ 6). Error bars indicate ±S.E.M. (d) NADH levels
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As HIF1a is a master regulator gene of glycolysis, we
performed quantitative real-time PCR (qRT-PCR) for other
key glycolytic genes that are HIF1a target genes and not
presented in the superarray platform. Using RT-PCR, we
validated increased expression of numerous HIF1a target
genes in Wwox-KO cells as compared with WT cells using an
independent RNA samples (Figure 3a). Notably, we observed
higher levels of Pdk1, which phosphorylates and inhibits
pyruvate dehydrogenase, the rate-limiting enzyme that
regulates entrance of pyruvate into the TCA cycle. Impor-
tantly, we found that overexpression of intact WWOX, but not
a mutant form of WWOX-WFPA, which harbor a mutation in
WW1 domain of WWOX that abrogates its interaction ability,
in Wwox KO MEFs reduced HIF1a target genes’ expression
under normoxia, as assessed by qRT-PCR (Figure 3b). To
further validate that this phenotype is not limited to MEFs, we
examined the effect of WWOX depletion in MCF7 breast

cancer cells. As shown in Supplementary Fig S4A, WWOX
knockdown in MCF7 cells is associated with upregulation of
HIF1a glycolytic genes. In the same line, WWOX over-
expression in WWOX-depleted MCF7 breast cancer cells
suppressed HIF1a target genes (Supplementary Figure S4B).

Increased expression of HIF1a target genes was also
observed in vivo using RNA from murine peripheral organs
including brown adipose tissue (BAT) (Figure 3c) and skeletal
muscles (Figure 3d). In brief, our results indicate that in the
absence of WWOX, expression of multiple glucose-related
genes are upregulated, particularly HIF1a target genes,
causing enhanced glycolysis and, in parallel, inhibition of
mitochondrial respiration.

WWOX suppresses transactivation function of HIF1a.
Our results so far indicate that WWOX may have a role in
redirecting carbohydrate flux from glycolysis to mitochondrial
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respiration, and in the absence of WWOX, glycolysis is
enhanced and the TCA cycle is inhibited, a phenotype
usually observed as an adaptation against oxygen depriva-
tion. One of the main positive regulators of this switch is
indeed the transcription factor HIF1a. To test whether
WWOX directly affects HIF1a transactivation function, we
examined the effect of WWOX expression on activity of a
luciferase reporter carrying multiple hypoxia-responsive
elements (HREs), the consensus binding sequence for
HIF1a (HRE-Luc), under normoxic and hypoxic conditions.
We found that HRE-Luc activity is specifically suppressed,
in both conditions, following transfection with WWOX
(Supplementary Figure S4D). These results further suggest
that WWOX modulates HIF1a transactivation function.

WWOX decreases HIF1a protein levels both in vitro and
in vivo. Conditions of oxygen stress cause activation of
HIF1a, with increased protein levels because of both protein
synthesis and stabilization of the protein.36 As lack of WWOX
mimic an oxygen stress response, we set to determine
whether Wwox-deficient cells exhibit increased protein levels
of HIF1a. Initially, we tested whether WWOX expression
affect mRNA levels of HIF1a. As shown in Supplementary
Figure S4C, HIF1a mRNA levels are comparable between
Wwox KO and WT skeletal muscles. Next, we examined
whether protein levels of HIF1a is different between Wwox
KO and WT tissues and cells. Nuclei of Wwox WT and KO
MEFs grown under normoxic conditions were separated and
immunoblot analysis was performed with an antibody specific
for HIF1a. As expected for a normoxic condition, HIF1a was

barely detected in WT cells (Figure 3e). In contrast, HIF1a
was readily detected in Wwox KO cells (Figure 3e). HIF1a
was also detected in skeletal muscles, which is considered
the main peripheral organ involved in glucose uptake, of
Wwox KO mice (Figure 3f). These results strongly indicate
that under normal oxygen conditions, WWOX has an
important inhibitory role on HIF1a-dependent glucose-related
gene transcription, and lack of WWOX is sufficient to
upregulate glycolytic gene transcription.

WWOX is downregulated under hypoxic conditions. Our
findings so far indicate that WWOX deficiency is associated
with increased levels of HIF1a protein and its target genes
in normoxic conditions. These results promoted us to
examine the effect of hypoxia, when HIF1a protein is
stabilized, on WWOX levels. In agreement with recent
findings,16 we found that WWOX is downregulated under
hypoxic conditions (Figure 4a) or following CoCl2 treatment
(Figure 4b), which mimics hypoxic conditions. This led us to
wonder on the significance of WWOX expression on HIF1a
levels under hypoxic conditions. To do so, we determined
the levels of HIF1a protein in WT and KO MEFs under
hypoxic conditions. Interestingly, we found that WWOX
does not affect HIF1a protein levels under hypoxic
conditions (Figure 4c), likely as WWOX levels goes down
under these conditions. On the contrary, when WWOX is
overexpressed in WT MEFs under hypoxic conditions,
levels of HIF1a target genes are suppressed (Figure 4e),
unlike the situation in normoxic conditions (Figure 4d),
when basal levels of HIF1a are low. Together, these results
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indicate that WWOX regulates HIF1a levels and activity
under physiological conditions.

Knocking down HIF1a completely rescues the metabolic
phenotype in vitro and in vivo. The above results suggest
that lack of WWOX triggers a HIF1a-dependent metabolic
switch. In order to test whether HIF1a has a critical role in this
phenotype, we decided to knockdown HIF1a in WWOX KO
cells and test whether we could rescue the metabolic
abnormalities observed in these cells. For this purpose, we
specifically knocked down HIF1a in Wwox-deficient cells
(Figure 5a). Notably, when HIF1a levels were depleted, the
increased glucose uptake was completely rescued in
KO-MEFs (Figure 5b), and to a lesser extent in WT-MEFs
(Supplementary Figure S5A). Importantly, forced expression
of WWOX in WT cells did not affect glucose uptake
(Supplementary Figure S5A).

To test whether the phenotypes observed in the Wwox-
deficient mice was dependent on HIF1a, as we found in vitro,

we treated Wwox-deficient mice with digoxin. Digoxin is
known as an inhibitor for HIF1a expression and blocker for
number of cancer types.37–40 Strikingly, treatment with digoxin
caused a fast and specific increase in blood glucose levels
specifically in KO mice (Figure 5c). Consistently, treated KO
mice displayed decrease expression of HIF1a target genes,
namely GLUT1 and prolyl-hydroxylase domain 3 (PHD3)
(Supplementary Figure S5B), while WT mice did not show any
decrease in the levels of these genes (Supplementary Figure
S5C). These results indicate that, similar to what we observed
in KO MEFs, regulation of glucose metabolism by WWOX
depends on HIF1a in vivo as well.

WWOX physically interacts with HIF1a and functionally
affects its level. WWOX interacts with multiple proteins
mainly via its WW1 domain.13,14 Therefore, we set to
examine whether WWOX interacts with HIF1a and inhibits
its function. To do so, we took advantage of mammalian
glutathione S-transferase (GST)-fusions expressing truncated
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domains of WWOX.14,41 These fusions were expressed
separately in HEK293 cells followed by GST pulldown. As
seen in Supplementary Figure S6A, only GST-WW1 domain-
containing vectors were able to precipitate HIF1a. We next
examined whether full-length mammalian GST-WWOX or
GST-WWOX-WFPA are capable of interacting with HIF1a.
Expression of these constructs in HEK293 cells followed by
GST pulldown revealed that WWOX, but no WFPA mutant, is
able to associate with HIF1a (Figure 5d). To validate that
WWOX and HIF1a interact under physiological conditions,
we examined endogenous protein interaction. HEK293 cells
were treated with MG132 followed by immunoprecipitation.
As seen in Figure 5e and Supplementary Figure 6SA,
endogenous specific interaction can be detected between
WWOX and HIF1a. To further examine functional relevance
of WW1 domain interaction with HIF1a, we re-expressed
WWOX or WWOX-WFPA in Wwox-KO MEFs, then nucleus/
cytoplasm subfractionation and glucose uptake was per-
formed. Enforced WWOX expression, but not that of mutant
WWOX-WFPA, was able to decrease HIF1a levels compar-
able to HIF1a-depleted cells (Figure 5a), and to rescue
glucose uptake (Figure 5b) and expression of HIF1a target
genes (Figure 3b).

It is known that under normoxia, HIF1a is hydroxylated
(HIF1a-OH) at multiple prolyl residues by the PHD proteins.
Following hydroxylation, HIF1a is recognized by von Hippel-
Lindau (VHL) ubiquitin E3 ligase, marking HIF1a for subse-
quent proteasome degradation. Using specific antibodies, we
found that HIF1a hydroxylation is significantly reduced in
WWOX KO MEFs as compared with WWOX WT MEFs
(Figure 5f), suggesting that WWOX increases HIF1a hydro-
xylation leading to its degradation under normoxia. These
results promoted us to examine whether WWOX interacts with
HIF1a-OH. HEK293 cells were treated with MG-132 (to inhibit
HIF1a proteasomal degradation) or cultured in hypoxic
conditions. Endogenous proteins were immunoprecipitated
using monoclonal anti-WWOX or anti-HIF1a antibody
and complexes were immunoblotted using anti-HIF1a or
anti-WWOX or anti-HIF1a-OH antibody. As shown in
Supplementary Figure S6A, WWOX association with HIF1a
or HIF1a-OH is mainly observed on addition of MG-132
suggesting that WWOX expression renders HIF1a less stable.
Altogether, these results suggest that WWOX interaction with
HIF1a modulates HIF1a levels and inhibits its function.

WWOX-deficient cells are more tumorigenic and
dependent on HIF1a. WWOX is known as a tumor
suppressor that is altered in many cancer types.3,42,43

In light of our findings that WWOX controls glycolysis through
HIF1a, we hypothesized that loss of WWOX is associated with
increased HIF1a levels and tumorigenicity. To check this
possibility, we generated MEFs from WWOX WT and KO
embryos and immortalized them using a standard 3T3 protocol
followed by H-RAS transformation. Notably, during transforma-
tion, lower numbers of WT MEF-3T3 cell lines were trans-
formed as compared with KO MEF-3T3 cells, with longer time
(data not shown). We next injected transformed WWOX WT
and KO MEFs subcutaneously into flanks of NOD/SCID mice to
assess their tumorigenicity in vivo. KO MEFs grew at a higher
rate as compared with WT cells (Figure 6a), with higher final

tumors volume and weight (Figures 6b and c). Re-expression of
WWOX, but not WWOX-WFPA, in KO cells rescued tumor
growth. Interestingly, when HIF1a was knocked down in KO
transformed cells, the tumorigenic phenotype was abolished. In
contrast, depletion of HIF1a in WT transformed cells did not
have a potent effect on tumor growth as in KO cells suggesting
that KO cells are more dependent on HIF1a for their growth.

Consistent with these and earlier results, WWOX KO
tumors demonstrated elevated levels of GLUT1, a HIF1a
target gene, as compared with WT tumors, providing evidence
of enhanced aerobic glycolysis in these tumors (Figure 6d).

Inverse correlation between WWOX and GLUT1 in
human cancer. Finally, we examined whether human
tumors display an inverse correlation between expression
of WWOX and GLUT1, using immunohistochemistry. To do
so, a breast tissue microarray (US Biomax, Rockville, MD,
USA) was immunostained with anti-WWOX or anti-GLUT1
antibody and levels of WWOX and GLUT1 was scored.
Intriguingly, we observed a significant inverse correlation
(Po0.05) between WWOX and GLUT1 levels in these
tumors (Figure 6e). Together, these results support our
hypothesis that the tumor-suppressor WWOX functions as a
modulator of cancer metabolism.

Discussion

Previous characterization of targeted deletion of the Wwox
gene in mice revealed its bona fide tumor-suppressor
function.4,8,11 However, it is not well known how loss of
WWOX facilitates tumor formation. We present data here
which reveal for the first time a role of WWOX in controlling cell
metabolism, through inhibition of aerobic glycolysis. Under
conditions of normal oxygen availability, WWOX represses
expression of key enzymes, diverting pyruvate toward the
mitochondrial TCA cycle for efficient ATP production. Our
data demonstrate that WWOX interacts with HIF1a; on one
hand WWOX causes suppression of HIF1a transactivation
function and on the other WWOX expression is associated
with HIF1a hydroxylation and likely its degradation to maintain
proper glucose flux toward mitochondrial respiration and to
prevent excessive glycolysis. Several evidences support this
model. First, Wwox-deficient mice suffer from severe hypo-
glycemia leading to mice mortality at 3–4 weeks of age with
high levels of serum lactate. In addition, Wwox-deficient cells
display higher glucose uptake with low oxygen consumption
and ATP production as well as an increase in glycolytic genes
expression when compared with WT cells. These findings
suggest that WWOX deficiency shifts glucose metabolism
toward glycolysis, even under normoxic conditions (Warburg
effect). Second, WWOX decreases HIF1a levels and inhibits
its transactivation function. WWOX physically interacts with
HIF1a and functionally reduces its levels. Furthermore,
WWOX-sufficient cells display higher HIF1a hydroxylation
as compared with WWOX-deficient cells. After all, WWOX
suppresses glycolysis through HIF1a inhibition. In the
absence of WWOX, the glycolytic phenotype can be rescued
either through knocking down HIF1a in Wwox-deficient cells,
or inhibiting HIF1a in Wwox-deficient mice by HIF1a inhibitor,
digoxin. Third, loss of WWOX in transformed MEFs is
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associated with enhanced tumorigenesis as compared with
WT ones. Notably, Wwox-deficient cells depleted of HIF1a
failed to form tumors in mice. Importantly, expression of
WWOX is inversely correlated with that of GLUT1, a direct
target of HIF1a, in human breast cancer patients. Thus, it is
likely that the tumor-suppressor WWOX acts as a safeguard
mechanism to inhibit HIF1a activity under normoxic condi-
tions, to guarantee glucose flux into mitochondria and TCA
cycle and so prevent Warburg effect.

How does tumor-suppressor WWOX affect glucose
metabolism? Our findings demonstrate that WWOX affects
HIF1a function. In this context, there are two supposed
scenarios for HIF1a regulation by WWOX. The first possibility
is that WWOX interacts with HIF1a and inhibits its transactiva-
tion function; this could be through sequestering HIF1a and
prevented it from binding its targets’ promoters. In addition,
WWOX could interact with HIF1a and limits its localization
in the nucleus or on its HRE consensus sequence,

thus inhibiting its activity, perhaps similar to TSG10.44

Alternatively, WWOX could interact with HIF1a and facilitate
its degradation. When WWOX is lost or is unable to interact
with HIF1a, HIF1a accumulates. Eventually, association
between WWOX and HIF1a is required for HIF1a neutraliza-
tion in normoxic conditions. HIF1a degradation under nor-
moxic conditions happened mainly by PHD2 that hydroxylates
it and then HIF1a is ubiquitinated by VHL ubiquitin E3 ligase
marking HIF1a for subsequent proteasome degradation.
Intriguingly, HIF1a is hydroxylated progressively in WWOX
WT MEFs compared with modest HIF1a hydroxylation in
WWOX KO MEFs suggesting that WWOX facilitates
HIF1a hydroxylation and perhaps HIF1a degradation under
normoxic conditions. Moreover, this can explain the observed
reduction of WWOX levels under hypoxic conditions,
which may contribute to HIF1a stabilization. Similarly, it has
been reported that PHD2 interaction with HIF1a in the
nucleus is crucial for HIF1a hydroxylation and degradation.45
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Whether WWOX affects PHD2 activity is to be determined.
Nevertheless, our findings demonstrate that the interaction
between WWOX and HIF1a in the nucleus affects HIF1a
levels.

Accumulation of HIF1a may have further implications in
cancer cells. The HIF pathway has been suggested as a
positive regulator of tumor growth as its inhibition often results
in tumor suppression.46 In clinical samples, HIF is found
elevated and correlates with poor patient prognosis in a
variety of cancers. As WWOX is frequently lost in cancer, this
may be associated with increased levels of HIF1a (Figure 6f).
In this scenario, HIF1a target genes, including GLUT1, HK2
and PDK1, are transcribed resulting in their enhanced
transactivation. Enhanced expression of these genes corre-
lates with enhanced glycolysis, while decreased glucose flux
into TCA cycle and oxidation phosphorylation, namely Warburg
effect. Importantly, high activity of these factors has been widely
associated with tumor development and metastasis.47,48 It is
therefore possible that WWOX loss leads to dysregulation of
key glycolytic genes that fuel cancer cell metabolism, an
emerging hallmark of cancer cells. In conclusion, we demon-
strate evidence that WWOX can modulate cancer cell
metabolism through regulation of HIF1a level and activity.

Materials and Methods
Cell culture and transient transfection. MEF cells were grown in
DMEM; MCF7 and HEK293 cells were grown in RPMI, both medium were
supplemented with 10% FBS (Gibco, Grand Island, NY, USA), glutamine and
penicillin/streptomycin (Biological Industries, Beit-Haemek, Israel). Cells were
routinely authenticated, and cell aliquots from early passages were used.
Transient transfections were achieved using Mirus TransLTi (Mirus Bio LLC,
Madison, WI, USA) according to the manufacturer.

RNA extraction and reverse transcription-PCR and RT-PCR.
Total RNA was prepared using TRI reagent (Sigma Aldrich, Munich, Germany) as
described by the manufacturer. One microgram of RNA was used for cDNA
synthesis using First-Strand cDNA Synthesis kit (Bio-Rad, Hercules, CA, USA).
qRT-PCR was performed using Power SYBR Green PCR Master Mix (Applied
Biosystems, Foster City, CA, USA). All measurements were performed in triplicate
and standardized to the levels of UBC.

Cellular fractionation. Nuclear and cytoplasmic extracts were prepared as
follows. First, cells were scraped in PBS, and after centrifugation, the cell pellet
was reconstituted in a hypotonic lysis buffer (10 mmol/l HEPES (pH 7.9), 10 mmol/l
KCl, 0.1 mmol/l EDTA) supplemented with 1 mmol/l DTT and a broad-spectrum
cocktail of protease inhibitors (Sigma-Aldrich, Munich, Germany). The cells were
allowed to swell on ice for 15 min, then NP40 was added and cells were lysed by
vortex. After centrifugation, the cytoplasmic fraction was collected. Afterward,
nuclear extracts were obtained by incubating nuclei in a hypertonic nuclear
extraction buffer (20 mmol/l HEPES (pH 7.9), 0.42 mol/l KCl, 1 mmol/l EDTA)
supplemented with 1 mmol/l DTT for 15 min at 4 1C. The nuclear fraction was
collected after centrifugation. Successful fractionation was confirmed by the
exclusive presence of GAPDH and lamin in the cytoplasmic and nuclear fractions,
respectively.

Immunoprecipitation assays. Cells were lysed by using Nonidet P-40
lysis buffer containing 50 mmol/l Tris (pH 7.5), 150 mmol/l NaCl, 10% glycerol,
0.5% Nonidet P-40 and protease inhibitors. Lysates were pre-cleared with mouse
IgG, immunoprecipitations were carried out in the same buffer and lysates were
washed four times with the same buffer containing 0.1% Nonidet P-40.
Immunoblotting was conducted under standard conditions. Antibodies used were
polyclonal anti-WWOX, polyclonal anti-Lamin (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), anti-hydroxy HIF1a rabbit (Pro564) rabbit (cat # 3434, Cell
Signaling Technology, Danvers, MA, USA) and anti-HIF1a mouse mAB (cat #
NB100-105, Novous Biological, Littleton, CO, USA).

GST pulldown. HEK293 cells were transfected with expression vectors
encoding mammalian GST-WWOX (pEBG-WWOX) and GST-WWOX-WFPA
(where tryptophan (W44) and proline (P47) in the first WW domain of WWOX
was replaced by phenylalanin (F) and alanine (A), respectively). Twenty-four hours
later, cells were exposed to hypoxia (1% O2 for 6 h) and then lysed using 0.5%
NP40-containing buffer. Following washing, cells were incubated with GST beads
(Amersham GE Healthcare, Chicago, IL, USA) for 4 h at 4 1C, washed and then
prepared for electrophoresis.

Lactate and oxygen consumption assays. Lactate levels were
determined with Lactate Assay Kit (BioVision, Milpitas, CA, USA). Optical density
(OD) was measured at 570 nm, 30 min after addition of substrate. For oxygen
consumption, Wwox-WT and KO MEFs (5� 104) were seeded. At 24 h, oxygen
consumption rate was measured with the Seahorse XF24 instrument (Seahorse
Bioscience, North Billerica, MA, USA), as per the producer’s instructions.

Glucose uptake assay. Cells were grown under normal conditions for 24 h
and 4mM 2-NBDG (Invitrogen, Paisley, UK) was added to the media for 1 h.
Fluorescence was quantified using flow cytometry (BD, Franklin Lakes, NJ, USA).

ATP concentration assay. Wwox-WT or KO MEFs were grown in normal
media for 24 h and ATP concentration was measured by ATP bioluminescent
somatic cell assay kit (Sigma-Aldrich) as per the manufacturer’s instructions.

NADPH assay. NADPH concentration was determined with the NADPH
Assay Kit (BioVision). OD was measured at 450 nm from liver lysates as per the
manufacturer’s instructions.

Luciferase reporter assays. 293T (1� 105) cells were transiently
transfected with 1mg of the following plasmids as described in the text:
HIF-Luc, 2MYC-EV, 2MYC-WWOX, HA-HIF1a and Renilla. Twenty-four hours
after transfection, cells were incubated under normoxia or hypoxia (1% O2) for 6 h
after which cells were harvested and luciferase activity was determined using the
Dual Luciferase Reporter Assay system (Promega, Madison, WI, USA).

List of antibodies. Antibodies used were polyclonal anti-WWOX antibody
(cat # S2603, Epitomics, Burlingame, CA, USA), anti-GAPDH mouse mAB (cat #
CB1001, Calbiochem, Billerica, MA, USA), anti-Lamin A/C (N-18, Santa Cruz
Biotechnology), anti-HIF1a mouse mAB (cat # NB100-105, Novous Biological),
anti-HIF1a rabbit (cat # NB100-479, Novous Biological), anti-GST goat
(cat # 27457701V, GE Healthcare), anti-HSP90 rabbit (cat # CA1016,
Calbiochem), anti-hydroxy HIF1a rabbit (Pro564) rabbit (cat # 3434, Cell Signaling
Technology), anti-a tubulin mouse (cat # 3873, Cell Signaling Technology).

Superarray. RNA was purified from WWOX WT and KO MEFs cells. One
microgram of RNA was used for cDNA synthesis using First-Strand cDNA
Synthesis kit (Bio-Rad) and RT-PCR was performed using Glucose Metabolism
PCR Array of mouse (cat # PAMM-006Z, SAbiosciences, Qiagen Company,
Valencia, CA, USA) according to the manufacturer’s procedures, keeping a
threshold of 0.4 as confidence value in the threshold cycle.
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